This paper investigates a delayed shallow water fluid model that has not been studied in previous literature. Applying geometric singular perturbation theory, we prove the existence of traveling wave solutions for the model with a nonlocal weak delay kernel and local strong delay convolution kernel, respectively. When the convection term contains a nonlocal weak generic delay kernel, the desired heteroclinic orbit is obtained by using Fredholm theory and linear chain trick to prove the existence of two kink wave solutions under certain parametric conditions. When the model contains local strong delay convolution kernel and weak backward diffusion, under the same parametric conditions to the previous case, the corresponding traveling wave system can be reduced to a near-Hamiltonian system. The existence of a unique periodic wave solution is established by proving the uniqueness of zero of the Melnikov function. Uniqueness is proved by utilizing the monotonicity of the ratio of two Abelian integrals.
Citation: Minzhi Wei. Existence of traveling waves in a delayed convecting shallow water fluid model[J]. Electronic Research Archive, 2023, 31(11): 6803-6819. doi: 10.3934/era.2023343
This paper investigates a delayed shallow water fluid model that has not been studied in previous literature. Applying geometric singular perturbation theory, we prove the existence of traveling wave solutions for the model with a nonlocal weak delay kernel and local strong delay convolution kernel, respectively. When the convection term contains a nonlocal weak generic delay kernel, the desired heteroclinic orbit is obtained by using Fredholm theory and linear chain trick to prove the existence of two kink wave solutions under certain parametric conditions. When the model contains local strong delay convolution kernel and weak backward diffusion, under the same parametric conditions to the previous case, the corresponding traveling wave system can be reduced to a near-Hamiltonian system. The existence of a unique periodic wave solution is established by proving the uniqueness of zero of the Melnikov function. Uniqueness is proved by utilizing the monotonicity of the ratio of two Abelian integrals.
[1] | D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves, Philos. Mag. R Soc., 39 (1895), 422–413. |
[2] | Z. Feng, On traveling wave solutions of the Burgers-Korteweg-de Vries equation, Nonlinearity, 20 (2007), 343–356. https://doi.org/10.1088/0951-7715/20/2/006 doi: 10.1088/0951-7715/20/2/006 |
[3] | N. J. Zabusky, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240–243. https://doi.org/10.1103/PhysRevLett.15.240 doi: 10.1103/PhysRevLett.15.240 |
[4] | G. Derks, S. Gils, On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations, Jpn. J. Ind. Appl. Math., 10 (1993), 413–430. https://doi.org/10.1007/BF03167282 doi: 10.1007/BF03167282 |
[5] | T. Ogama, Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 24 (1994), 401–422. https://doi.org/10.32917/hmj/1206128032 doi: 10.32917/hmj/1206128032 |
[6] | W. Yan, Z. Liu, Y. Liang, Existence of solitary waves and periodic waves to a perturbed generalized KdV equation, Math. Model. Anal., 19 (2014), 537–555. https://doi.org/10.3846/13926292.2014.960016 doi: 10.3846/13926292.2014.960016 |
[7] | P. E. P. Holloway, E. Pelinovsky, T. Talipova, B. Barnes, A nonlinear model of internal tide transformation on the australian north west shelf, J. Phys. Ocean., 27 (1997), 871–896. https://doi.org/10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2 doi: 10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2 |
[8] | Z. Li, Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by $(G^\prime /G)$-expansion method, Appl. Math. Comput., 217 (2010), 1398–1403. https://doi.org/10.1016/j.amc.2009.05.034 doi: 10.1016/j.amc.2009.05.034 |
[9] | X. Li, Z. Du, S. Ji, Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation, Commun. Pure Appl. Anal., 18 (2019), 2961–2981. https://doi.org/10.3934/cpaa.2019152 doi: 10.3934/cpaa.2019152 |
[10] | X. Li, M. Wang, A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms, Phys. Lett. A, 361 (2007), 115–118. https://doi.org/10.1016/j.physleta.2006.09.022 doi: 10.1016/j.physleta.2006.09.022 |
[11] | M. Song, X. Hou, J. Cao, Solitary wave solutions and kink wave solutions for a generalized KDV-mKDV equation, Appl. Math. Comput., 217 (2011), 5942–5948. https://doi.org/10.1016/j.amc.2010.12.109 doi: 10.1016/j.amc.2010.12.109 |
[12] | K. Wang, G. Wang, F. Shi, Diverse optical solitons to the Radhakrishnan-Kundu-Lakshmanan equation for the light pulses, J. Nonlinear Opt. Phys. Mater., https://doi.org/10.1142/S0218863523500741 |
[13] | K. Wang, J. Si, G. Wang, F. Shi, A new fractal modified Benjamin-Bona-Mahony equation: its genneralized variational principle and abundant exact solutions, Fractals, 31 (2023), 2350047. https://doi.org/10.1142/S0218348X23500470 doi: 10.1142/S0218348X23500470 |
[14] | H. Wu, Y. Zeng, T. Fan, On the extended KdV equation with self-consistent sources, Phys. Lett. A, 370 (2007), 477–484. https://doi.org/10.1016/j.physleta.2007.06.045 doi: 10.1016/j.physleta.2007.06.045 |
[15] | G. Xu, Y. Zhang, On the existence of solitary wave solutions for perturbed Degasperis-Procesi equation, Qual. Theory. Dyn. Syst., 20 (2021), 80. https://doi.org/10.1007/s12346-021-00519-0 doi: 10.1007/s12346-021-00519-0 |
[16] | J. Zhang, F. Wu, J. Shi, Simple soliton solution method for the combined KdV and MKdV equation, Int. J. Theor. Phys., 39 (2000), 1697–1702. https://doi.org/10.1023/A:1003648715053 doi: 10.1023/A:1003648715053 |
[17] | M. Antonova, A. Biswas, Adiabatic parameter dynamics of perturbed solitary waves, Commun. Non. Sci. Numer. Simul., 14 (2009), 734–748. https://doi.org/10.1016/j.cnsns.2007.12.004 doi: 10.1016/j.cnsns.2007.12.004 |
[18] | K. Wang, Bäcklund transformation and diverse exact explicit solutions of the fractal combined KdV-mKdV equation, Fractals, 30 (2022), 2250189. https://doi.org/10.1142/S0218348X22501894 doi: 10.1142/S0218348X22501894 |
[19] | K. Wang, A fractal modification of the unsteady Korteweg-de Vries model and its generalized fractal variational principle and diverse exact solutions, Fractals, 30 (2022), 2250192. https://doi.org/10.1142/S0218348X22501924 doi: 10.1142/S0218348X22501924 |
[20] | Y. Song, Y. Peng, M. Han, Travelling wavefronts in the diffusive single species model with Allee effect and distributed delay, Appl. Math. Comput., 152 (2004), 483–497. https://doi.org/10.1016/S0096-3003(03)00571-X doi: 10.1016/S0096-3003(03)00571-X |
[21] | X. Sun, Y. Zeng, P. Yu, Analysis and simulation of periodic and solitary waves in nonlinear dispersive-dissipative solids, Commun. Non. Sci. Numer. Simul., 102 (2021), 105921. https://doi.org/10.1016/j.cnsns.2021.105921 doi: 10.1016/j.cnsns.2021.105921 |
[22] | X. Sun, W. Huang, J. Cai, Coexistence of the solitary and periodic waves in convecting shallow water fluid, Non. Anal.: RWA, 53 (2020), 103067. https://doi.org/10.1016/j.nonrwa.2019.103067 doi: 10.1016/j.nonrwa.2019.103067 |
[23] | Z. Du, D. Wei, Y. Xu, Solitary wave solutions for a generalized KdV-mKdV equation with distributed delays, Nonlinear Anal.-Model. Control, 19 (2014), 551–564. https://doi.org/10.15388/NA.2014.4.2 doi: 10.15388/NA.2014.4.2 |
[24] | Y. Xu, Z. Du, Existence of traveling wave fronts for a generalized KdV-mKdV equation, Math. Model. Anal., 19 (2014), 509–523. https://doi.org/10.3846/13926292.2014.956827 doi: 10.3846/13926292.2014.956827 |
[25] | C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical Systems, Springer-Verlag, 1609 (1994), 45–118. https://doi.org/10.1007/BFb0095239 |
[26] | N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, 31 (1979), 53–98. https://doi.org/10.1016/0022-0396(79)90152-9 doi: 10.1016/0022-0396(79)90152-9 |
[27] | Z. Du, J. Liu, Y. Ren, Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach, J. Differ. Equations, 270 (2021), 1019–1042. https://doi.org/10.1016/j.jde.2020.09.009 doi: 10.1016/j.jde.2020.09.009 |
[28] | J. Ge, Z. Du, The solitary wave solutions of the nonlinear perturbed shallow water wave model, Appl. Math. Lett., 103 (2020), 106202. https://doi.org/10.1016/j.aml.2019.106202 doi: 10.1016/j.aml.2019.106202 |
[29] | S. Ji, X. Li, Solitary wave solutions of delayed coupled Higgs Field equation, Acta Math. Sin. (English Series), 38 (2022), 97–106. https://doi.org/10.1007/s10114-022-0268-6 doi: 10.1007/s10114-022-0268-6 |
[30] | X. Li, Z. Du, J. Liu, Existence of solitary wave solutions for a nonlinear fifth-order KdV equation, Qual. Theory Dyn. Syst., 19 (2020), 24. https://doi.org/10.1007/s12346-020-00366-5 doi: 10.1007/s12346-020-00366-5 |
[31] | K. Zhuang, Z. Du, X. Lin, Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method, Nonlinear Dyn., 80 (2015), 629–635. https://doi.org/10.1007/s11071-015-1894-7 doi: 10.1007/s11071-015-1894-7 |
[32] | N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663–1688. https://doi.org/10.1137/0150099 doi: 10.1137/0150099 |
[33] | M. Han, Bifurcation Theory and Periodical Solution of Dynamic System, Science Press, Beijing, 2002. |
[34] | C. Liu, D. Xiao, The monotonicity of the ratio of two Abelian integrals, Trans. Am. Math. Soc., 365 (2013), 5525–5544. https://doi.org/10.1090/S0002-9947-2013-05934-X doi: 10.1090/S0002-9947-2013-05934-X |