Research article

Differential Harnack estimates for the semilinear parabolic equation with three exponents on $ \mathbb{R}^{n} $

  • Received: 20 September 2024 Revised: 26 November 2024 Accepted: 09 January 2025 Published: 16 January 2025
  • In this paper, we thought about the positive solutions to the semilinear parabolic equation with three exponents, and obtained several differential Harnack estimates of the positive solutions to the equation. As applications of the main theorems, we found blow-up solutions for the equation and classical Harnack inequalities. Our results generalize some recent works in this direction.

    Citation: Fanqi Zeng, Wenli Geng, Ke An Liu, Boya Wang. Differential Harnack estimates for the semilinear parabolic equation with three exponents on $ \mathbb{R}^{n} $[J]. Electronic Research Archive, 2025, 33(1): 142-157. doi: 10.3934/era.2025008

    Related Papers:

  • In this paper, we thought about the positive solutions to the semilinear parabolic equation with three exponents, and obtained several differential Harnack estimates of the positive solutions to the equation. As applications of the main theorems, we found blow-up solutions for the equation and classical Harnack inequalities. Our results generalize some recent works in this direction.



    加载中


    [1] R. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom., 37 (1993), 225–243. https://doi.org/10.4310/jdg/1214453430 doi: 10.4310/jdg/1214453430
    [2] J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., 100 (1991), 233-256. https://doi.org/10.1016/0022-1236(91)90110-Q doi: 10.1016/0022-1236(91)90110-Q
    [3] P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201. https://doi.org/10.1007/BF02399203 doi: 10.1007/BF02399203
    [4] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17 (1964), 101–134. https://doi.org/10.1002/cpa.3160170106 doi: 10.1002/cpa.3160170106
    [5] J. Moser, Correction to: "A Harnack inequality for parabolic differential equations", Comm. Pure Appl. Math., 20 (1967), 231–236.
    [6] M. Bǎileşteanu, A Harnack inequality for the parabolic Allen-Cahn equation, Ann. Global Anal. Geom., 51 (2017), 367–378. https://doi.org/10.1007/s10455-016-9540-2 doi: 10.1007/s10455-016-9540-2
    [7] D. Booth, J. Burkart, X. Cao, M. Hallgren, Z. Munro, J. Snyder, et al., A differential Harnack inequality for the Newell-Whitehead-Segel equation, Anal. Theory Appl., 35 (2019), 192–204. https://doi.org/10.4208/ata.OA-0005 doi: 10.4208/ata.OA-0005
    [8] X. Cao, M. Cerenzia, D. Kazaras, Harnack estimate for the endangered species equation, Proc. Amer. Math. Soc., 143 (2015), 4537–4545. https://doi.org/10.1090/S0002-9939-2015-12576-2 doi: 10.1090/S0002-9939-2015-12576-2
    [9] X. Cao, B. Liu, I. Pendleton, A. Ward, Differential Harnack estimates for Fisher's equation, Pacific J. Math., 290 (2017), 273–300. https://doi.org/10.2140/pjm.2017.290.273 doi: 10.2140/pjm.2017.290.273
    [10] S. Hou, L. Zou, Harnack estimate for a semilinear parabolic equation, Sci. China Math., 60 (2017), 833–840. https://doi.org/10.1007/s11425-016-0270-6 doi: 10.1007/s11425-016-0270-6
    [11] A. Abolarinwa, A. Osilagun, S. Azami, A Harnack inequality for a class of 1D nonlinear reaction-diffusion equations and applications to wave solutions, Int. J. Geom. Methods Mod. Phys., 21 (2024), 2450111. https://doi.org/10.1142/S0219887824501111 doi: 10.1142/S0219887824501111
    [12] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124. https://doi.org/10.1090/proc/14297 doi: 10.1090/proc/14297
    [13] G. Huang, Z. Huang, H. Li, Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann. Global Anal. Geom., 43 (2013), 209–232. https://doi.org/10.1007/s10455-012-9342-0 doi: 10.1007/s10455-012-9342-0
    [14] H. Wu, C. Kong, Differential Harnack estimate of solutions to a class of semilinear parabolic equation, Math. Inequal. Appl., 25 (2022), 397–405. https://doi.org/10.7153/mia-2022-25-24 doi: 10.7153/mia-2022-25-24
    [15] H. Wu, L. Min, Differential Harnack estimate for a semilinear parabolic equation on hyperbolic space, Appl. Math. Lett., 50 (2015), 69–77. https://doi.org/10.1016/j.aml.2015.06.002 doi: 10.1016/j.aml.2015.06.002
    [16] R. Hamilton, Li-Yau estimates and their Harnack inequalities, Adv. Lect. Math., 17 (2011), 329–362.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(156) PDF downloads(12) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog