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Abstract: In this paper, we thought about the positive solutions to the semilinear parabolic equation
with three exponents, and obtained several differential Harnack estimates of the positive solutions to
the equation. As applications of the main theorems, we found blow-up solutions for the equation and
classical Harnack inequalities. Our results generalize some recent works in this direction.
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1. Introduction

The differential Harnack estimate is a fundamental and powerful technique in the study of partial
differential equations on R" (see [1,2]). Gaussian bounds for the heat kernel follow immediately from
the differential Harnack estimate. The Holder continuity is also a direct consequence of the differential
Harnack estimate. Numerous other conclusions about the fundamental geometry of space can also be
deduced by differential Harnack estimates. Many mathematicians have paid attention to the study on
this topic (see, for example, [3—5] and the references therein).

In this paper, we consider differential Harnack estimates for the following Cauchy problem:

D F(x, 1) = Af + (% Df7 + ha(x, 0 f + s(x, Df in R" X [0, 0o), 0
f(x,0)= fox) in R, '

where the functions &y, h,, and hs are C? in x and C° in ¢ with h; > 0, h, > 0, and h3 > 0, and p, ¢,
and s are positive constants with p > g > s > 1. Equation (1.1) arises from many classical equations
(see [6-8]) and there are many questions related to Eq (1.1) (see [9, 10]).

Now, let us recall some relevant work with the above Eq (1.1). In the case where A,(x,7) = 1 and
hy(x,t) = hs(x,t) = 0, Eq (1.1) reduces to the endangered species equation. Cao et al. [8] proved a
differential Harnack estimate for positive solutions of the Cauchy problem for the endangered species
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equation. In the case where hi(x,t) = ¢, hy(x,t) = —c, hs(x,t) = 0, p = 1, and ¢ = 2, Eq (1.1)
reduces to the Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) equation. Cao et al. [9] proved
a differential Harnack estimate for positive solutions of the Fisher-KPP equation on an n-dimensional
Riemannian manifold M with non-negative Ricci curvature, where c is a positive constant. If s(x, 1) =
=1, hy(x,t) = 1, h3(x,t) = 0, p = 3, and ¢ = 1, then Eq (1.1) reduces to the parabolic Allen-Cahn
equation. Bdilesteanu [6] proved a differential Harnack estimate for the solution of the parabolic Allen-
Cahn equation on a closed n-dimensional manifold. When h(x,t) = a, hy(x,t) = —b, h3(x,t) = 0,
p = 1, and g = 3, where a and b are two constants, Eq (1.1) reduces to the Newell-Whitehead-Segel
equation. The differential Harnack estimate for the Newell-Whitehead-Segel equation was obtained by
the authors in [7]. Hou [10] proved a differential Harnack estimate for positive solutions of equation
(1.1) when hs(x,t) = 0. For more results on differential Harnack estimates of Eq (1.1), see [11-15].

The motivation of this article is to develop some differential Harnack estimates for positive solutions
to Eq (1.1) on R". The method we employ is the parabolic maxinum principle. We are now ready to
state our main results.

Theorem 1.1. Assume that f(x,t) is a positive solution of Eq (1.1)andu =In f. If o, B, ¢, d, k, a, and
h; (i = 1,2,3) satisfy

a>26>0, a>0, (1.2)
a(p—;)+2ﬁ > ¢ > max {(1;(—;120;2, a(p—pl)+ﬁ} ,
W > > max |G oD (1.3)
a(s—i)+2ﬁ > k > max {(i;;)_,;f ’ a(s—sl)+,3 ,
2
na
c>2d>k>B, a> 0, (1.4)
2(a-p)
and 5
(E—A)hizo, Ah; >0, i=1,2,3, (1.5)
then we have g
Hy = aAu + BIVul* + ch1"P™V + dhye" ™V + khse"s™D + -2 0 (1.6)

forallt.

Remark 1.1. (1) Compared with the previous work established in [7, 8, 11], here we do not assume
the coeflicients of equations are constant, and therefore our results can be regarded as an extension of
several classical estimates.

(2) When hs(x,t) = 0, the estimate (1.6) above can be reduced to the formulas (1.6) in Theorem 1.1
of [10]. Hence the above Theorem 1.1 generalizes the result in [10].

As applications of this estimate (1.6), we derive the blow-up of the solutions for Eq (1.1) and a
classical Harnack inequality by integrating along space-time paths.

Corollary 1.2. Let f be a positive solution of equation (1.1) with h; (i = 1,2, 3) satisfying (1.5), and ¢
is a constant satisfying 0 <n(p—1)<c<2andc>d >k > 1. Then f blows up in finite time provided
that

4n r-1
f(xo.70) 2 ( 2 on ro)) (1.7)
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at some point (X, tp).
Corollary 1.3. Let f be a positive solution of Eq (1.1) with h; (i = 1, 2, 3) satisfying (1.5) and u = In f.
Let y(t) = (x(1),1), t € [t1,1,], be a space-time curve joining two given points (x1,t,), (x2,1) € R" X
[0, 00) with O < t; < t,. Assume further that a = 2(’;!“_@ < na. Then we get
lx2 — x |2]
2ty — 1)

We also get the following differential Harnack estimate, which is different from (1.6).

fx, 1) < f(x, 1) (%) exP[ (1.8)

Theorem 1.4. Assume f(x,t) is a positive solution of Eq (1.1) and u = In f. If &, ,[3, ¢ d k a m, and
h; (i = 1,2,3) satisfy

@a>28>0, m>0, (1.9)
fv(p—ll))+25 > & > max {(32;5;2’ 07(p—p1)+5} ’
s 0 a7, ), .10
&(S_l)+23 > 7( > max {(;{;)—,gz ’ @(s—sl)+[s} ’
~7
e>d>k=p az;fmﬁ)w, (1.11)
& —
and 5
(5—A)h,~20, Ah; >0, i=1,2,3, (1.12)
then we have
Hy = @Au + BIVul® + e P™ + dhye" @D + khye™) + % >0 (1.13)
—e m

forallt.

Remark 1.2. (1) When h;(x, t) = ¢’ with a constant y and hy(x, t) = h3(x, t) = 0, Theorem 1.4 reduces
to Theorem 1 in [14]. Hence the above Theorem 1.4 generalizes the result in [14].

(2) The case of n = 1, p = 2, and h, = h; = 0 was studied by Hamilton in [16]. Particularly, we
apply Theorem 1.4 withn = 1 and p = 2, and by picking @ = 1,,@ =0,h =1, =h3=0,a=7%,and
¢ = 1, we conclude that

" m

Uy + Ze + m >0,

yielding )

m T 3

f, + 2(1——6'_”")f > f7 + ZfZ

If m 1s small enough, the estimate in [16] will be improved.
Corollary 1.5. Let f be a positive solution of Eq (1.1) with h; (i = 1,2, 3) satisfying (1.12) and u = In f.
Let 7(t) = (x(2),1), t € [t1,12], be a space-time curve joining two given points (x1,t;), (x2,1) € R" X
[0, 00) with O < t; < t,. Assume further that a = & < g, Then we get

2(a—p)
lx, — X |2]

2(t, — 1)

mity

-1\
frsh) < f(xz,a)(jm,,—_l) exp[ (1.14)
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The paper is structured as follows. In Section 2, we prove Theorem 1.1, Corollary 1.2 and Corollary
1.3. In Section 3, we prove Theorem 1.4 and Corollary 1.5.

2. The proofs of Theorem 1.1, Corollary 1.2 and Corollary 1.3

Using the parabolic maximum principle, we will first derive our differential Harnack estimate in this
section. We always write u, for the partial derivative of u with respect to ¢ and omit the time variable ¢
for simplicity.

Let f(x,1) € C* (R" X [0, 0)) be a positive solution of (1.1) and u = In f. Substituting f = €" into
Eq (1.1), we have

u, = Au+ [Vul> + 7P + hye@™D 4 pyettD, (2.1

Based on this observation, a Harnack quantity H is defined as
H = aAu +,8|Vu|2 + ch PV + dhye" 4D + khye D + o, (2.2)

where «, 58, ¢, d, k € Rand ¢ : R" X [0, 00) — [0, o) will be determined later. To support our primary
findings, we first assert and prove a technical lemma.

Lemma 2.1. u = In f and H are defined as in (2.2). Assume that f(x,t) is a positive solution of Eq
(1.1). Then we have
H,=AH +2VH -Vu + (p — D """ VH + (¢ — Dhye""VH + (s = Dhze"* " VH
+2(a = BIVVul’ + [a(p — 1) + B = cpl(p — Dhy """ |Vuf?
+[a(g — 1) + B — dgql(g — Dhae""|Vuf?
+[a(s = 1) + B — ks](s — Dhze"“V|Vu?
+ [(@ = )Ahy + 2(a(p = 1) + B = cp)Vhy - Vu + c(hy), — hy(p = D)ge"P™D
+ [(@ = d)Ahy + 2(a(q — 1) + B — dq)Vhy - Vu + d(hy), — hy(g — Dle"@™V
+ [(@ = ARy + 2(a(s — 1) + B — ks)Vhs - Vu + k(h3), — h3(s — Dgle"C™
+ [(c = d)(p — @)l hye" P De" ™D
+[(c = k)(p — $)]hihze" P Ve ™D
+ [(d = k)(g — )hyhze" Ve ™D 2V - Vu — Ap + ¢,.

(2.3)

Proof. Using (2.1), we can compute the following evolution equations:
H, = a(Au), + BAVuP), + c(h1€"P™D), + d(hye" D), + k(h3e“™D), + ¢,
(Au), = Auy)
= A(Au+ Vul + 1™ + e @™ + hye' V)

= A(Au) + Alvulz + A(hleu([l—l)) + A(hzeu(q—l)) + A(h3eu(s—1))

and
(IVul*), = 2V(u,) - Vu

=2V (Au + |Vul? + hye"P™D 4+ hye"a) 4 h3eu(s—l)) Vi
= AlVul? = 2|VVul* + 2V|Vu|* - Vu
+ ZV(hleu(p_l)) -Vu + zv(hzeu(q—l)) -Vu + 2V(h3eu(s—1)) -Vu,

Electronic Research Archive Volume 33, Issue 1, 142-157.



146

where we applied the formula
AlVul? = 2Vu - VAu + 2|VVul*. (2.4)

Hence we get

H, = a[A(Au) + AlVul> + A(h1€"P™D) + A(he" D) + A(hze™D)]
+ BIAIVul* = 2|VVul* + 2V|Vul* - Vu
+2V(1 PV Vi + 2V(hpe" V) - Vi + 2V (h3e"™Y) - Vi)
+ce P V() + chi(p — D" P V[Au + |[Vul* + he"P™D + hpe D + hye'™ V] (2.5)
+de"TV(hy), + dhy(q — De" " V[Au + |Vul* + he"P™D + hye ™D + hzeV]
+ ke D(hs), + kha(s = 1)e"™V[Au + [Vul* + by e P + hye 0D 4 hye'™]

+ ¢[.
A direct calculation gives

AH = A(@Au + BVul + chye ™ + dinpe" @™ + k'™ + )

= aA(Au) + BAIVUl + cA(he"P™D) + dA(he" 9™V + kA(h3e"“™D) + Ag (2-6)
and
VH = V(aAu + BIVul* + chie"P™" + dhye" @™V + khze" ™) + ¢)
= aVAu + BV|Vul* + cV(hie"P™V) + dV(hye" V) + kV(h3e"™D) + V. @7
Using (2.4), (2.6), and (2.5), we obtain
H, = AH + 2(a — B)|VVul* + 2aVu - VAu
+ (@ = A e"P D) + (@ = d)A(he"T V) + (@ — k)A(hze"™D)
+ B2V|Vul* - Vu + 2V(h1e"“P™V) - Vu + 2V (hpe"4D) . Vu
+2V(h3e"™DY - Vul — Ag
+ce“ P V() + chi(p = De"“PV[Au + |Vul® + hi P + hpe' @D + hye" V] (28)
+de" D (hy), + dhay(q — e V[Au + [Vul* + 7y e"P™D + hye" D + pye ]
+ ke" "V (h3), + khy(s — 1)e"* " V[Au + [Vul® + hie“?™" + hye ™D + by ]
+ ¢,
By (2.8) and (2.7), we get
H, = AH + 2(a — B)\VVul* + 2VH - Vu
+ (@ = )A(h e"P™D) + (@ = d)A(he" T V) + (a — k)A(hze"™V)
+2(B = c)V(hiP™V) - Vu + 2(8 — d)V(hye" ™) - Vuy
+2(8 — k)V(h3e"*™D) - Vu — Ap — 2V - Vu 29)

+ce P V() + chi(p — De"P D [Au + |[Vul* + he"P™D + hye ™D + hze V]
+de" TV (hy), + dhay(g — 1)e" T V[ Au + [Vul> + hye" ™ + hpe" D 4 hze" V]
+ ke"*V(hs), + khz(s — )" V[Au + [Vul* + 7PV + hye" ™D + hze V]
+ ¢;.
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Direct computations show that
A(hie"P™Dy = e“P"DAR + 2(p — 1)e"P" DV R, - Vu

+hy(p — D?*"“ P V\Vul + hy(p — De"PDAu,
A(hye"@™V) = "D AR, + 2(q — 1)e""VVh, - Vu

+ (g — 1D)?e"“TV\Vul> + hy(g — 1)e" ™D Au,
A(hze"™D) = VAR + 2(s — 1)e"“"DVh; - Vu

+ h3(s — 1% VVul + hs(s — 1e"“ YAy

(2.10)

and
V(hie"?™D) . Vu = ¢“P"DVh - Vu + (p — 1)he“P~D|Vul?,

V(hye" @) - Vu = "9 DVh, - Vu + (q — 1)hye"D|Vul?, (2.11)
V(h3e"™D) . Vu = e“C"DVh; - Vu + (s — Dhze"D|Vul?.
Substituting (2.10) and (2.11) into (2.9), we get (2.3). This completes the proof of Lemma 2.1. O

We can now validate Theorem 1.1.
Proof of Theorem 1.1. Define the n-rectangle R := IT_ [p;, ¢;] C R", and set

(b b
Gr(x.)= =+ Z( ) (2.12)

+
i\ (= p)* (g — xi)?

fort>0,a>0,b>0,and x = (x1, ..., x,) € R, while ¢ — +c0as x; = p;, g;ort — 0.
The corresponding Harnack quantity is

Hy = aAu + BIVul* + chie"P™V + dhye" 9™V + khye"™D + gp(x, 1).

Note that Hp — Hy as R — R”, and Hy > 0O for small 7.
So as to obtain a contradiction, assume that there is a first time #, and point x, € R such that

Hg(xp, t9) = 0. Then at (x, £y), we have

(Hg); <0, VHg=0, AHr>0

and
Au = —é(ﬁqulz +ch PV + dhye" ™V + khze"“ ™V + ¢p).

Then using Lemma 2.1 and the Cauchy-Schwarz inequality |VVu|> > ﬁ(Au)z, we can get
2a-p)
na?
+[a(p = 1) + B = cpl(p — D" "[Vul® + [a(g - 1) + B — dgl(g — Dhye" T "|Vul?

+[a(s = 1) + B — ks](s = Dhze"“ V| Vuf?

+ [(@ = A + 2(a(p = 1) + B = cp)Vhy - Vu+ c(hy), = i (p = 1)gpgle" ™
+ (@ = DA +2(alq = 1) + B = dg)Vhy - Vu +d(ho), = ha(g = Deple"™"
+ [(@ = K)Ahsy + 2(a(s — 1) + B — ks)Vhs - Vu + k(hs), — h3(s — Dgle"™™"
+[(c = d)p = Qihae" "™ 4 [(c = K)(p — )l hze" Ve D

+ [(d = k)(q — )hahze" T Ve ™D — 2V ey - Vi — Adg + (o).

0> (BIVul* + chie“?™ + dhye" ™) + khye" ™™V + ¢g)?
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Setting X = e“P7D, Y = 44D Z = ¢“¢~D_ and W = |Vul?, and using

1
2Vh, - Vu > =2|Vh|* - 5|Vu|2,

1
2Vh, - Vu > —§|Vh2|2 — 2|Vul,
and
2Vhs - Vu > —|Vhs|* = [Vul%,
we arrive at

2(a - p)

na?

" (a(p—1)+/3—cp)(1—

0> (hIX? + d*W3Y? + K*h3Z% + B2 W?)
) N 4(a - B)Bc
hi(p-1)) n(p-1ea?

] (p— D Xw

[ 1 4(a — B)Bd
+|@@lg=D +,8—dq)(1 s 1)) * e 1>a2]“" D YW
| 1 4(a — B)Bk
+ »(a/(s -DH+B8- ks)(l — (s = 1)) + WG = Da? (s — DhsZW
[ 2 4(a - p)c
+ [(@=c)Ahy =4 a(p — 1) + B —cp)IVIu|” + c(h); + e (p—-1 1¢R]X

(2.13)
r 4 d
+ [ (@ = A, - 4alg = 1)+ B = dg)Vhal + d(ha), + ( (e mﬁ M _ - 1)) o] ¥

+ | (@ = K)ARs — das = 1) + B — ks)|VAsP + k(hs), + (W‘ C(s- 1)) h3¢R]

4o —ped o — ,B)Ck
na/ na

hih, XY + hihs XZ

(c=k)p—-s)+

+[{(c—d)p-q) +

h2h3 YZ - 2V¢R Vu - A¢R

+ (d_k)(q_s)+w]
] na?

Na=p) o Ho=Pfdr,,

+ (¢R)t O{ ¢R + naz

By demonstrating that the right-hand side of (2.13) is positive, we can then obtain a contradiction.
The assumption of (1.3) in Theorem 1.1 implies

¢ > max { —(Z;;irgz ; —a(p;l)w} ,
d > max ({0 ela-bid) (2.14)
k > max { (Z‘l)—rgz , a(s—sl)+ﬂ} .
By (2.14), we get
_ 2 _ 2 _ 2
M, > M, > M, (2.15)
4(a - p) 4(a - p) 4a - p)
and by rewriting (2.15), we obtain
4 4 d 4 k
He=Pe _ponzo, 2P pyso, HPE_(_1yso (2.16)
na na? na?
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and
Aa=Pe | AHae-pd | Ha-pk
(p- 1)71042 -7 (g- 1)na/2 - (s- l)na2 -
Using (2.14), we have
Za(P—1)+,3, dza(q—1)+,3’ kza(s—1)+/3,
pP q S

and by rewriting (2.18), we obtain

ap-1)+p-cp<0, alg—1)+B-dg<0, a(s—-1)+p—-ks<O.

By combining (2.19) and (2.16), we get
4a =P

ap-D+B-cp<0, ———-(p-1D=20,
na

ag-1+p-dg<0, 2P 1),
na

a(s—1)+B—ks <0, 4(a_f)k—( ~1)>0
nw

The requirement of (1.3) in Theorem 1.1 also suggests

a(p—-1)+28 >
—p 2
a(qg—1)+28

q
a(s—1)+28 >k

N

Then, combining (2.21) and (2.17), we have

a(p—1)+,8—cp+4(a ﬁ)ﬁc_a(p—1)+2,8—cp>0
n(p - a?

a/(C[—l)+ﬁ—dq+4(( fiﬁf_a/(q—l)+2,8—dq20,

a(s—1)+B—ks + ((“ ’B))’B];_oz(s—l)+2ﬁ ks > 0.

Rewriting (2.22), we obtain

1 4(a — B)Bc
(ap=D+p-cp)|l- I = 1))+ (= Da? >0,

1 4(a - B)Bd
@a=Dp=doll =3 - 1))+ ng-Da? =

1 4(a — BBk
(a(s=1)+B—ks)|1 - h3(s—1))+ G = Da? > 0.

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Note the inequality
Y a - 2 \vj 2
@By g, yus IV
na 4Ha = B)Bor

Combining (1.2), (1.4), (1.5), (2.20), and (2.23) and removing a number of non-negative terms from

the right side of (2.13), we have

_NeE | 2a-p)
Ha-B)Bor  na* K

A¢_"( 6, 6 )
: i\ (o = p)* (g —x)*)’

oo 2 2
IVl _Z( (xx — po)? (Qk_xk)3)’

k=1

0> (dr): — A

By (2.12), we can compute

and

IVrl* zn: (_ 2b _ 2b )2
Pr I\ = p)PVor (@ — ) Vor

s

IA

( k 1 k 2k k )
k=1 ( ) ( ) '

:2(a—,8)>0 B: —na/z >0

~ 4a-p)B

A:
na?

To arrive at a contradiction, we need

2
AdE — Adg — B|V§R|

+ (dr) > 0.

R

Next, plugging (2.12), (2.25), and (2.26) into the left-hand side of (2.27), we get

n 2 n
a b b 6b 6b
Al- E — E
[l * ((Xk - Pi)? " (qr = x1)? )] [ ((xk - po)* * (qr — xi)* ﬂ

k=1 k=1

- B

Z": (_ 2b B 2b ﬂ a
S\ (o= p)PVor (g — 0P Vor r
- 1 1
kzz:‘((xk —pt (g — xi)* )] .

By (1.4), we have Aa* — a > 0. To prove (2.27), we need

Ad* —a

T+ (Ab® — 6b — 4bB)

Ab* — b(6 + 4B) > 0.

Electronic Research Archive Volume 33, Issue 1,
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(2.26)

(2.27)

(2.28)
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In summary, a and b satisfy

na’ na’ na’
a>———>, b2 6+ .
2(a-p) 2(a - p) (@-p)B
Then, we can demonstrate that the inequality on the right side is positive. Thus, there is a contradiction.
We obtain ¢ — ¢, Hr — Hp if R — R", assuming that the solution is present in the complete space
R”. This suggests Hy > 0 and completes the proof.
Proof of Corollary 1.2. We pick « =2,8=1,a =2n,and csuchthat 0 < n(p — 1) < ¢ < 2 and
c>d>k>pin Theorem 1.1. Since u = In f, we get

Af — |Vf]?
Vul* = VAP 2.30
By substituting (2.29) and (2.30) into (1.6), we can calculate
A VfI? 2n
27f _ f]j +ch P+ dho fT + kb + -z 0,
and then v )
2Af—| /1 +ch1f”+dh2f’1+kh3fs+7nf20. (2.31)
Noting
fi=Af +hifP + hof?+ hsf?, (2.32)
by (2.31) and (2.32), we have
V> 2
2| J{' + Tnfz Q2 = O 7 + (2 = Dhof? + 2 — k)hs f°.
Furthermore, we observe that
2
2+ =f 2 Q=S + Q2= Dhaf" + 2= s,
which implies that
1 1
21=| =2—="f;
[7) =27
1 2n s
< e (_Tf +Q2 - ff+Q2-dhfi+Q2-khf )
_ _ q-1 _ _ s—1
_ %(Zn 2 = d)thy f t Q2 =k)thsf —(2—c)h1f”‘l) (2.33)
1 (2n-Q2- Athy 471 — (2 = k)ths f*~!
- f2—p ( tfp_l - (2 - c)hl
1 2n
< 75 7 -om)
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We might presume that f > ( )P 7T at the origin xo = 0 for #y = 1, and hence we have

2- )h)

I _@-on
1= ap

2n < 2-coh
tfpct T2

Therefore, for ¢ > 1, we obtain

2
(f) 0.0 <55 (tf:‘ _(2_0)'“)

(2 C)I’ll
= 00, t>(_ -
<0,

such that £(0, 7) is strictly increasing when f(0, ) is finite.
() If p > 2, then f772(0,1) > f772(0,1) for t > 1 and (2.33) simplifies to

- no -2
2(f),(0’t)§l‘f(0,1) 2 —=c)h f77°(0,1).

(1) If 1 < p <2, it is easy to obtain that

2 [(1y! . 2n
p—1|(?) l(o =2 ,,(f) O0 < Fmon ~ M

(2.34)

(2.35)

(2.36)

Therefore, there is 6 > 0 such that when ¢ is sufficiently large, the right-hand side of (2.35) and (2.36)

are smaller than —¢ < 0, and therefore % — 0 in finite time. This completes the proof.

Proof of Corollary 1.3. We obtain H, > 0 by the differential Harnack estimate (1.6), which

indicates that 1
Au > — (—,8|Vu|2 — che"?™D — dhye" ™V — khye"™ %)
(01

Then, combined with (2.1), we calculate the evolution of u along v, i.e.,

(u(x(®),0)r = Vu - X + uy
=Vu- i+ Au+ |Vul? + h P + hye @D 4 pze s

B

> Vu- i+ VP -2y = L (1 = SHpeed
a at 04

d k .
+(1 - —)hze"(q_l) +(1- _)h3eu(3—1)
a a

1 1
> VuPc = By - e L (1= Sy
2 «a 2 at %

d k
+ (1= =)hpe"@™D 4 (1 = —)hze"™V
a a

1 a
> — |k - —
at

b
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where we have used the assumption @ > 2B and k <d < c < a.
Hence we have

(2.37)

Integrating the previously mentioned quality (2.37) along 7y, and taking the infimum of all such space-
time pathways, we get

f S d—u(x(t). 1) < inf f 2(%|x|2+ ;)dt,

| YO=(x(0,1)
and then

21 n
. )
u(xy, 1) —u(xy, 1) < inf f (=|x|” + —)dkt.
Y=o Jy, 2 t

Using u = In f, we have

Sf(x1,0) . ftz I , n
< f —|x[* + —)dt|.
Faont) ~ P [ortns " GHT+)

Hence we can arrive at (1.8). This finishes the proof.
3. The proofs of Theorem 1.4 and Corollary 1.5

Estimating the following Harnack quantity is our main method of research:
H := @Au+ BIVul + chie"?™D + dhye" ™D + khye"™D + 6, 3.1)

where @, B, 5:,‘7’ k € Rand 6 : R" x [0,00) — [0, o) will be determined later. We now derive the
derivation of H in t.
Next, similar to the proof of Lemma 2.1, we can get Lemma 3.1.

Lemma 3.1. Suppose that f(x,t) is a positive solution of (1.1), u = In f, and the definition of H is
stated in (3.1). Then we obtain

H, = AH +2VH - Vu + (p = D" ?"VH + (g — Dhye"""H + (s — Dh3e"*""H
+2(@ = BIVVul’ + [@(p — 1) + B — &pl(p — Dhye" """ |Vul’
+[a(g - 1) + B - dql(g — Dhye" ™ V| Vuf?
+[a(s — 1) + B — ks](s — Dhze" V| vu?
+[(@ = &)Ahy +2(@(p — 1) + B = Ep)Vhy - Vu + &(hy), — hi(p — Dple"P™D
+ 1@ = DAy +2a(g = 1) + B = dq)Vhy - Vi + d(ho), = ha(g — Dple"™?
+[(@ — k)Ahs + 2(a@(s = 1) + B — ks)Vhy - Vu + k(hs), — h3(s — 1)gple"C™V
+[@ - d)(p — @)1hihpe" PP @V
+[(@ = ©)(p = 9)]hhze" P~ De ™D
+[(d - k) (g — $)hyh3e" T Ve ™) —2V0 . Vi — AG + 6,.

(3.2)

Electronic Research Archive Volume 33, Issue 1, 142-157.



154

Proof of Theorem 1.4. Define the n-rectangle R := I1]_ [p;, q;] C R", and set

QR(XJ):l_& +Z( b, b (3.3)

e (xe = pi)* (g — xx)?

fort>0,a>0,b>0,m>22_[6+ L

> 2( ﬂ) &1 and x = (xy, ..., X,) € R, while g — +o0 as x; — p;, g; or
t— 0.

(@ /3’)/5
The corresponding Harnack quantity is defined as
ﬁR = @Au +B|Vu|2 + Th PV + dhye" TV + khye ™V 4 Op(x, 1).

Note that ﬁR - ﬁo as R —» R", and ﬁR > ( for small .
In order to obtain a contradiction, assume that there is a first time 7, and point x, € R such that
Hg(xp, t9) = 0. Then at (x, £y), we have

(Hg); <0, VHgr=0, AHg>0,

and
1. - -
Au = ——BIVul* + ¢h1e“ "D + dhye ™ + khze"“™V + 6g).
a

Similar to the proof of (2.13), we can obtain

0> 2(62&_23 ) @EHX + ERY? + 22 + BPW?)
+ :(d/(p -1 +B-2p) (1 = hl(pl_ 1)) + :Ei :fiﬁi] (p - DI XW
+ :(d/(q -1 +B-dg) (1 - h2(q1_ 1)) + i((z :ffy‘j] (g — Dh YW
- :(d/(s— 1) +B—/}s)(1 - h3(sl_ 1)) - f(i”:f;ﬁf (s — DhsZW

+|@-aam - 4a(p - D) +p—ep)lVhl + &h), + (Tﬁ)c —-(p- 1)) h19R]X

P - : Ma-pyd
+[(@ - dahy - 4@q - 1) + B - dQIVhol + d(ha), + ((mﬁ) e —1))hzeR] 3.4

+ | @ = B)ARs — 4(aCs = 1) + B — k) Vi + k(hs), (% _(s- 1)) h39R]
+|@-dyp- )+W]h 7o XY
tle-Bp-s+ M]h hsXZ
] na?
+ld=Big-s+ W] hohsYZ — 2V6g - Vi — Abg

2@-p),  Ha- ,3),39R

+ (6g); + ——0 +
O na? K na?

’
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where X = ¢~V Y = ¢4D 7 = ¢“=D and W = [Vul>.
By demonstrating that the right-hand side of (3.4) is positive, we can then obtain a contradiction.
Similar to the proof of (2.24), we can get

na?|Vog|? N 2@ -p) »

0> (Og); — AOg — — 0. 3.5
For the sake of simplicity, we set
- 2a-p ~ v’
A= (a~,8)>0, B = na
na@? 4@ - pp ﬁ)ﬁ
In order to obtain a contradiction, we need
- - |VOg|?
AG% — Ay — pIVORL (Op)t > 0. (3.6)
R

Next, similar to the calculation of (2.29), we can get

n 2 n 7 1
- a b b 6b 6b
A —_
[1 —em ; ((Xk - pi)? * (g — xi)? )] L:l ((Xk - pu)* ’ (g — x)* )}

| = 2b 2b g ma
- B Z (_ N ) - —mt\2 pmt
(xk—pk)%@ (Qk_xk)3@ (1 —e™)%e
Ade™ — ma Z ( Lo, 1 )]
= (x = p)t (g =)t |

P ——
(1 _ e—mt)Zemt
By (1.9), we have Ad*e™ —ma > 0. To prove (3.6), we need

+ (AD* — 6b — 4bB)

—b(6+4B) > 0.

In summary, & and b satisfy

2 ~2

nma na

S

az= —, > = [6+ nai~].

2Aa-p) 2@-p (@-pp

Then, we can demonstrate that the inequality on the right side is positive. Thus, we obtain a contra-
diction.

Assuming that the solution exists in the whole space R", we get 9 — ﬁ Hp — Hyif R > R".
This implies Hy > 0 and completes the proof.

Proof of Corollary 1.5. Corollary 1.5 follows immediately from Theorem 1.4 by using a similar
method to that in the proof of Corollary 1.3. We omit the proof of Corollary 1.5.

4. Conclusions

In this paper, some new types of differential Harnack estimates were established for positive solu-
tions of the semilinear parabolic equation with three exponents on R”. Additionally, as applications,
we found the blow-up of the solutions and classical Harnack inequalities for this equation. Our results

generalize some known results.
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