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Abstract: Intraguild predation is a common ecological phenomenon that manifests itself by the ag-
gression of one predator by another to obtain a shared prey species. In this paper, we develop a discrete
analog of a stoichiometric continuous-time intraguild predation model. We analyze the dynamics of the
discrete-time model, such as boundedness and invariance, stability of equilibria, and features of ecolog-
ical matrices. The dynamic behavior of the two models is compared and analyzed through numerical
analysis. We observe the same coexistence region of populations and stoichiometric effects of food
quality of the shared prey in both models. Obvious differences between the discrete- and continuous-
time models can be observed with intermediate and high levels of light intensity. The multistability
characteristics and the existence interval of chaos differ among the different time scale models. This
study provides evidence of the importance of time scales on intraguild predation.
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1. Introduction

Ecological stoichiometry is an important part of ecology that links the metabolic demands of or-
ganisms with the relative supply of elements in the environment [1]. It examines the balance between
energy and chemical elements and the extent to which this balance plays a part in determining the
organisms’ growth and reproduction and their ecological interactions. Recognizing the importance
of stoichiometric limitations between predator requirements and the nutrient composition of prey has
greatly enhanced our appreciation of trophic relationships. Many studies have demonstrated that eco-
logical stoichiometry is a highly suitable framework for explaining predator responses to prey food
quality [1–4].
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Nature exhibits many interactions among individual organisms of different species (notably com-
petition, predation/parasitism, mutualism, commensalism, or amensalism). Intraguild predation (IGP)
within the cotope group contains two interaction types: competition and predation, and usually, there
is not only a predatory relationship but also a potential competition relationship between two predatory
species in order to compete for limited resources. IGP distinguishes itself from traditional predation
by the fact that the behavior reduces potential competition for exploitation. The direct energy gain
of predators makes IGP different from the traditional competition [5]. Thus, its effect on population
dynamics is more complex and worth studying. IGP is a significant factor in predicting the stability of
food webs and the maintenance of biodiversity, in addition to being a taxonomically widespread inter-
action within communities that can occur at different trophic levels [6]. The development of the IGP
model can be traced back to Holt and Polis [7], who developed a three-species Lotka–Volterra food
web model to study the species coexistence of IGP and found that achieving a stable three-species
steady state is challenging. Following that, a series of studies examined IGP models with different
structures and forms such as the Lotka–Volterra type [8–10], special forms of the functional and nu-
merical response [11–13], prey switching or adaptive prey behavior [14, 15], generalist predators or
time delays [16–18], stochastic approaches [19–21], and stoichiometry [22, 23].

Diehl [22] investigated a model of competition among predators to explore stoichiometry as an
IGP-intraguild mechanism. Later, the dynamic resource model of Loladze et al. [24] assumed that om-
nivores were the inferior carbon competitors and showed that dynamic interaction between autotroph
quality and quantity could facilitate coexistence when resource quality is low. The system investigated
in [22] is based on a continuous time scale. However, many plants in the wild and agricultural contexts
have non-overlapping generations, and many herbivores have distinct annual or seasonal dynamics.
Therefore, the main purpose of this paper is to propose a discrete-time version of the stoichiometric
IGP model based on the continuous stoichiometric IGP model [22] and compare the differences in the
dynamic behavior of models under different time scales. In particular, we focus on the following four
questions: 1) How do the stoichiometric effects of food quality affect IGP? 2) What is the coexistence
interval of the population for both models when the environmental parameter changes? 3) Can chaotic
dynamics emerge under a biologically plausible parameter set, and if so, do the parameter ranges of
the discrete-time model admit chaos, as in the continuous-time model? 4) Does multistability exist in
both models?

We construct the discrete-time IGP model with stoichiometry following the discretization approach
in [25] and theoretically analyze the dynamical behavior of this model. The dynamical behavior is
compared between the discrete- and continuous-time models, which leads to our conclusions.

2. Model construction

We consider the IGP system in [22] in the aquatic ecosystem. Zooplankton competes with fish for
algae and is consumed by fish, which constitutes an IGP system. We use A(t), Z(t), and F(t) to represent
the population density of algae, zooplankton, and fish at time t, respectively. Then the continuous IGP
model with stoichiometry takes the form [22]

dA
dt
= rA

(
1 −

A
min{K, (PT − θZZ − θF F)/q}

)
− aAZ(A)Z − aAF(A,Z)F,
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dZ
dt
= eAZ min

{
1,

(PT − θZZ − θF F)/A
θZ

}
aAZ(A)Z − aZF(A,Z)F − dZZ, (2.1)

dF
dt
= eAF min

{
1,

(PT − θZZ − θF F)/A
θF

}
aAF(A,Z)F + eZF min

{
1,
θZ
θF

}
aZF(A,Z)F − dF F.

Here, r is the maximum growth rate of algae, K is the algae carrying capacity, and PT is the total
Phosphorus in the system. θZ and θF are the constant P (Phosphorus): C (Carbon) ratios of the zoo-
plankton and fish, respectively. q is the minimal algae P:C ratio. dZ and dF are the specific loss rates of
the zooplankton and fish, respectively. eAZ denotes the conservation of algae into the zooplankton, eAF

represents the conservation of algae into the fish, and eZF denotes the conservation of zooplankton into
the fish. The functions aAZ(A), aAF(A,Z), and aZF(A,Z) are the functional responses of the zooplankton
feeding on algae, the fish feeding on algae, and the fish feeding on zooplankton, respectively.

Similar to the functional response properties outlined in [26], it is assumed that aAZ(A), aAF(A,Z),
and aZF(A,Z) are bounded smooth functions satisfying the following conditions:

aAZ(0) = 0, a′AZ(A) > 0, and a′′AZ(A) < 0 for A > 0.

aAF(0,Z) = 0,
∂aAF(A,Z)
∂A

> 0,
∂2aAF(A,Z)
∂2A

< 0, and
∂aAF(A,Z)
∂Z

< 0 for A > 0, Z > 0.

aZF(A, 0) = 0,
∂aZF(A,Z)
∂A

< 0,
∂aZF(A,Z)
∂Z

> 0, and
∂2aZF(A,Z)
∂2Z

< 0 for A > 0, Z > 0.

Based on the above model, the time is discretized, and a discrete stoichiometry model is established.
There are several approaches to deriving discrete-time dynamical systems that correspond to continu-
ous time [27, 28]. We discretize Eq (2.1) using the method developed by Fan [25]. This method em-
ploys differential equations with piecewise constant arguments by assuming that the per capita growth
rate remains constant on a given time interval [t, t + 1]. Then Eq (2.1) turns to the following system:

1
A(t)

dA(t)
dt
= r

(
1 −

A[t]
min{K, (PT − θZZ[t] − θF F[t])/q}

)
−

aAZ(A[t])Z[t]
A[t]

−
aAF(A[t],Z[t])F[t]

A[t]
,

1
Z(t)

dZ(t)
dt
= eAZ min

{
1,

PT − θZZ[t] − θF F[t]
θZA[t]

}
aAZ(A[t]) −

aZF(A[t],Z[t])F[t]
Z[t]

− dZ, (2.2)

1
F(t)

dF(t)
dt
= eAF min

{
1,

PT − θZZ[t] − θF F[t]
θF A[t]

}
aAF(A[t],Z[t]) + eZF min

{
1,
θZ
θF

}
aZF(A[t],Z[t]) − dF ,

t , 0, 1, 2, ...

where [t] denotes the integer part of t ∈ (0,+∞). Then, we integrate both sides of Eq (2.2) on any
interval [n, n + 1), n = 0, 1, 2, ..., and obtain, for n ≤ t < n + 1, n = 0, 1, 2, ...,
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A(t) =A(n) exp
{[

r
(
1 −

A(n)
min{K, (PT − θZZ(n) − θF F(n))/q}

)
−

aAZ(A(n))Z(n)
A(n)

−
aAF(A(n),Z(n))F(n)

A(n)

]
(t − n)

}
,

Z(t) =Z(n) exp
{[

eAZ min
{

1,
PT − θZZ(n) − θF F(n)

θZ A(n)

}
aAZ(A(n)) −

aZF(A(n),Z(n))F(n)
Z(n)

− dZ

]
(t − n)

}
,

F(t) =F(n) exp
{[

eAF min
{

1,
PT − θZZ(n) − θF F(n)

θF A(n)

}
aAF(A(n),Z(n)) + eZF min

{
1,
θZ
θF

}
aZF(A(n),Z(n)) − dF

]
(t − n)

}
.

Let t tends to n + 1, then we get the final discrete-time system

A(n + 1) = A(n) exp
{

r
(
1 −

A(n)
min{K, (PT − θZZ(n) − θF F(n))/q}

)
−

aAZ(A(n))Z(n)
A(n)

−
aAF(A(n),Z(n))F(n)

A(n)

}
,

Z(n + 1) = Z(n) exp
{

eAZ min
{

1,
PT − θZZ(n) − θF F(n)

θZ A(n)

}
aAZ(A(n)) −

aZF(A(n),Z(n))F(n)
Z(n)

− dZ

}
,

F(n + 1) = F(n) exp
{

eAF min
{

1,
PT − θZZ(n) − θF F(n)

θF A(n)

}
aAF(A(n),Z(n)) + eZF min

{
1,
θZ
θF

}
aZF(A(n),Z(n)) − dF

}
(2.3)

for n ∈ N.

Table 1. Parameters of Models (2.1) and (2.3).

Parameter Description Values Unit
PT Total phosphorus in system 0.33 mgPL−1

eAZ Conservation of algae to zooplankton 0.8 –
eAF Conservation of algae to fish 0.6 –
eZF Conservation of zooplankton to fish 0.6 –
r Maximal growth rate of algae 0.58 day−1

dZ Loss rate of zooplankton 0.25 day−1

dF Loss rate of fish 0.15 day−1

θZ Constant P : C of zooplankton 0.03 mgP/mgC
θF Constant P : C of fish 0.03 mgP/mgC
q Minimal P : C of algae 0.003 mgP/mgC
sAZ Search and attack rate of zooplankton on algae 0.085 day−1(mgC/m3)−1

hAZ Handing time of zooplankton feeding on algae 0.16 day/(mgC/m3)
sAF Search and attack rate of fish on algae 0.08 day−1(mgC/m3)−1

hAF Handing time of fish feeding on algae 0.4 day/(mgC/m3)
sZF Search and attack rate of fish on zooplankton 0.05 day−1(mgC/m3)−1

hZF Handing time of fish feeding on zooplankton 0.5 day/(mgC/m3)
K Carrying capacity of algae 0–120 mgCL−1
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Initial values should be considered in the biologically meaningful regions. Thus, we assume that
0 < A(0), 0 < Z(0) < PT/θZ, and 0 < F(0) < PT/θF . The meaning and values of most parameters are
selected from [26] and [22], and are listed in Table 1.

3. Boundedness and invariance

In this section, boundedness and positive invariance results are fully analyzed for Eq (2.3) using
arguments similar to those in Theorems 3.1 and 3.2 of [25]. It is easy to show that solutions of Eq (2.3)
remain nonnegative when they exist.

For convenience, we assume that aAZ(A) = A fAZ(A), aAF(A,Z) = A fAF(A,Z), and aZF(A,Z) =
Z fZF(A,Z). From [29], we have

lim
A→0

fAZ(A) = a′AZ(0) < ∞, and f ′AZ(A) < 0 for A > 0.

lim
A→0

fAF(A,Z) =
∂aAF(0,Z)
∂A

< ∞,
∂ fAF(A,Z)
∂A

< 0 and
∂ fAF(A,Z)
∂Z

< 0 for A > 0, Z > 0.

lim
Z→0

fZF(A,Z) =
∂aZF(A, 0)
∂Z

< ∞,
∂ fZF(A,Z)
∂A

< 0 and
∂ fZF(A,Z)
∂Z

< 0 for A > 0, Z > 0.

Theorem 3.1. For System (2.3), the following statements hold for all n > 0;

A(n) ≤ max
{
A(0),K/r exp (r − 1)

}
≡ S ,

Z(n) ≤ max {Z(0), g} exp (2eAZaAZ(S ) − 2dZ) ≡ G,

F(n) ≤ max {F(0), h} exp (2eAFaAF(S , 0) + 2eZFaZF(0,G) − 2dF) ≡ H,

where g and h satisfy

eAZaAZ(exp (r − fAZ(S )g)) < dZ and
eAFaAF(S exp (r − fAZ(S )g − fAF(S ,G)h), 0) + eZFaZF(0,G exp (eAZaAZ(S ) − fZF(S ,G)h − dZ)) < dF .

Proof. Note that all components of the solution to Eq (2.3) are non-negative when they exist. It is easy
to find that R(A) = A exp r(1 − A/K) attains its maximum value at A = K/r. We obtain

A(n + 1) < A(n) exp
{

r −
rA(n)

K

}
≤

K
r

exp (r − 1) ≡ s.

Then

A(n) ≤ max {A(0), s} ≡ S

for all non-negative integers n.
If eAZaAZ(S ) ≤ dZ, it is easy to show that Z(n) ≤ Z(0) for all n > 0. Thus, it is assumed that

eAZaAZ(S ) > dZ. Let g be sufficiently large such that

eAZaAZ(exp (r − fAZ(S )g)) < dZ.

We claim that

Z(n) ≤ max {Z(0), g} exp (2eAZaAZ(S ) − 2dZ) ≡ G

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12750–12771.
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for all non-negative integers n. This holds for n = 1, 2. Let us assume that this claim is false. We
consider two cases.

(I) Z(0) ≤ g. Then for some n1 > 2, g < Z(n1 − 2) ≤ G, g < Z(n1 − 1) ≤ G, and Z(n1) > G. In this
case, we get

A(n1 − 1) ≤ A(n1 − 2) exp (r − fAZ(A(n1 − 2))Z(n1 − 2) − fAF(A(n1 − 2),Z(n1 − 2))F(n1 − 2))
≤ A(n1 − 2) exp (r − fAZ(A(n1 − 2))Z(n1 − 2))
≤ S exp (r − fAZ(S )g).

This implies that

Z(n1) < Z(n1 − 1) exp
{
eAZaAZ(S exp (r − fAZ(S )g)) − dZ

}
< Z(n1 − 1) < G,

which is a contradiction, implying that the claim is true for this case.
(II) Z(0) > g. In this case, we have

A(1) < S exp (r − fAZ(S )g),

which indicates that

Z(2) < Z(1).

That is, as long as Z(n) > g, then Z(n + 2) < Z(n + 1). Then, there exists two cases: (i) Z(n∗) ≤ g for
some n∗ > 0 or (ii) Z(n) > g for all n > 0. In case (ii), we have that Z(n) is strictly decreasing for n > 1,
and the claim is obviously true. In case (i), from the proof of case (I), we find that Z(n) < G for n > n∗,
and hence the claim is again true.

If eAFaAF(S , 0) + eZFaZF(0,G) ≤ dF , then it is clear that, for all n > 0, we have F(n) ≤ F(0). Thus,
we assume that eAFaAF(S , 0) + eZFaZF(0,G) > dF . Let g, h be sufficiently large such that

eAFaAF(S exp (r − fAZ(S )g − fAF(S ,G)h), 0) + eZFaZF(0,G exp (eAZ − fZF(S ,G)h − dZ)) < dF .

We conclude that, for all non-negative integers n,

F(n) ≤ max {F(0), h} exp (2eAFaAF(S , 0) + 2eZFaZF(0,G) − 2dF) ≡ H.

This holds for n = 1, 2. Let us assume that this claim is not true. We consider two cases
(I′) F(0) ≤ h. Then, for some n1 > 2, h < F(n1 − 2) ≤ H, h < F(n1 − 1) ≤ H, and F(n1) > H. In

this case, we have

F(n1) < F(n1 − 1) exp
{
eAFaAF(S exp (r − fAZ(S )g − fAF(S ,G)h), 0)

+ eZFaZF(0,G exp (eAZaAZ(S ) − fZF(S ,G)h − dZ)) − dF

}
< F(n1 − 1) < H,

which is a contradiction, implying that the claim is true for this case.
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(II′) F(0) > h. In this case, we have

A(1) < S exp (r − fAZ(S )g − fAF(S ,G)h),
Z(1) < G exp (eAZaAZ(S ) − fZF(S ,G)h − dZ),

which implies that

F(2) < F(1).

In other words, as long as F(n) > h, then F(n + 2) < F(n + 1). Hence, there are two possibilities: (i′)
F(n∗) ≤ h for some n∗ > 0 or (ii′) F(n) > h for all n > 0. In case (ii′), we have that F(n) is strictly
decreasing for n > 1, and the claim is obviously true. In case (i′), from the proof of case (I′), we see
that F(n) < H for n > n∗, and then the claim is again true.

From the above theorem, we obtain the conclusion that

△ =

{
(A,Z, F) : 0 < A <

K
r

exp (r − 1), 0 < Z < g, 0 < F < h
}

is positively invariant. Indeed, we have the following theorem.

Theorem 3.2. △ is globally attractive for System (2.3) with initial values satisfying A(0) > 0,
0 < Z(0) < PT/θZ and 0 < F(0) < PT/θF .
Proof. From the above theorem, it is apparent that, for large values of n, 0 < A(n) < (K/r) exp(r − 1).
Note that if Z(n) > g for n ≫ 0, then Z(n) tends to Z∗ ≥ g. Hence, for n ≫ 0, we obtain

Z(n) < Z(n − 1) exp
{
eAZaAZ(S exp (r − fAZ(S )g)) − dZ

}
.

Letting n→ ∞ yields

Z∗ ≤ Z∗ exp
{
eAZaAZ(S exp (r − fAZ(S )g)) − dZ

}
< Z∗.

This contradicts Z∗ > g > 0. Then, for n ≫ 0, 0 < Z(n) < g. Note that if F(n) > h for any n > 0, then
F(n) tends to F∗ ≥ h. Hence, for n ≫ 0, we obtain

F(n) < F(n − 1) exp
{
eAFaAF(S exp (r − fAZ(S )g − fAF(S ,G)h), 0) + eZFaZF(0,G exp (eAZ − fZF(S ,G)h − dZ)) − dF

}
.

Letting n→ ∞ yields

F∗ ≤ F∗ exp
{
eAFaAF(S exp (r − fAZ(S )g − fAF(S ,G)h), 0) + eZFaZF(0,G exp (eAZ − fZF(S ,G)h − dZ)) − dF

}
< F∗.

This contradicts F∗ > h > 0, proving the theorem.

4. Equilibria

For convenience, we rewrite Eqs (2.1) and (2.3) as

dA
dt
= AL(A,Z, F),

dZ
dt
= ZM(A,Z, F),

dF
dt
= FN(A,Z, F),
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and

A(n + 1) = A(n) exp {L(A(n),Z(n), F(n))} ,

Z(n + 1) = Z(n) exp {M(A(n),Z(n), F(n))} ,

F(n + 1) = F(n) exp {N(A(n),Z(n), F(n))} ,

respectively, where

L(A,Z, F) = r
(
1 −

A
min{K, (PT − θZZ − θF F)/q}

)
− fAZ(A)Z − fAF(A,Z)F,

M(A,Z, F) = eAZ min
(
1,

PT − θZZ − θF F
θZA

)
aAZ(A) − fZF(A,Z)F − dZ,

N(A,Z, F) = eAF min
{

1,
PT − θZZ − θF F

θF A

}
aAF(A,Z) + eZF min

{
1,
θZ
θF

}
aZF(A,Z) − dF .

To find equilibria of Eqs (2.1) and (2.3), we solve the following equations

AL(A,Z, F) = 0, ZM(A,Z, F) = 0, FN(A,Z, F) = 0, (4.1)

and

A[1 − exp {L(A,Z, F)}] = 0, Z[1 − exp {M(A,Z, F)}] = 0, F[1 − exp {N(A,Z, F)}] = 0, (4.2)

respectively. (4.1) and (4.2) both lead to

A = 0 or L(A,Z, F) = 0,
Z = 0 or M(A,Z, F) = 0,
F = 0 or N(A,Z, F) = 0,

which shows that Systems (2.3) and (2.1) share exactly the same equilibria.
After some straightforward algebraic calculations, the variational matrix of Systems (2.1) and (2.3)

lead

J(A,Z, F) =


L + ALA ALZ ALF

ZMA M + ZMZ ZMF

FNA FNZ N + FNF


and

J(A,Z, F) =


eL + AeLLA AeLLZ AeLLF

ZeM MA eM + ZeM MZ ZeM MF

FeN NA FeN NZ eN + FeN NF

 ,
Mathematical Biosciences and Engineering Volume 20, Issue 7, 12750–12771.
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respectively, where

LA =
∂L
∂A
= −

r
min{K, (PT − θZZ − θF F)/q}

− f ′AZ(A)Z −
∂ fAF(A,Z)
∂A

F.

LZ =
∂L
∂Z
=


− fAZ(A) − ∂ fAF (A,Z)

∂Z F, qK + θZZ + θF F < PT ,

−
rqθZ A

(PT−θZZ−θF F)2 − fAZ(A) − ∂ fAF (A,Z)
∂Z F, qK + θZZ + θF F > PT .

LF =
∂L
∂F
=


− fAF(A,Z) < 0, qK + θZZ + θF F < PT ,

−
rqθF A

(PT−θZZ−θF F)2 − fAF(A,Z) < 0, qK + θZZ + θF F > PT .

MA =
∂M
∂A
=


eAZa′AZ(A) − ∂ fZF (A,Z)

∂A F > 0, θZA + θZZ + θF F < PT ,

eAZ
PT−θZZ−θF F

θZ
f ′AZ(A) − ∂ fZF (A,Z)

∂A F, θZA + θZZ + θF F > PT .

MZ =
∂M
∂Z
=


−
∂ fZF (A,Z)
∂Z F > 0, θZA + θZZ + θF F < PT ,

−eAZ fAZ(A) − ∂ fZF (A,Z)
∂Z F, θZA + θZZ + θF F > PT .

MF =
∂M
∂F
=


− fZF(A,Z) < 0, θZA + θZZ + θF F < PT ,

−eAZ
θF
θZ

fAZ(A) − fZF(A,Z) < 0, θZA + θZZ + θF F > PT .

NA =
∂N
∂A
=


eAF

∂aAF (A,Z)
∂A + eZF min

{
1, θZ
θF

}
∂aZF (A,Z)
∂A , θF A + θZZ + θF F < PT ,

eAF
PT−θZZ−θF F

θF

∂ fAF (A,Z)
∂A + eZF min

{
1, θZ
θF

}
∂aZF (A,Z)
∂A < 0, θF A + θZZ + θF F > PT .

NZ =
∂N
∂Z
=


eAF

∂aAF (A,Z)
∂Z + eZF min

{
1, θZ
θF

}
∂aZF (A,Z)
∂Z , θF A + θZZ + θF F < PT ,

−eAF fAF(A,Z) θZ
θF
+ eAF

PT−θZZ−θF F
θF

∂ fAF (A,Z)
∂Z

+ eZF min
{
1, θZ
θF

}
∂aZF (A,Z)
∂Z , θF A + θZZ + θF F > PT .

NF =
∂N
∂F
=


0, θF A + θZZ + θF F < PT ,

−eAF fAF(A,Z) < 0, θF A + θZZ + θF F > PT .

4.1. Boundary equilibria

System (2.3) has four possible boundary equilibria: E0(0, 0, 0), E1(k, 0, 0), E2(Ā, Z̄, 0), and
E3(Ã, 0, F̃), where k = min(K, PT/q). The equilibrium E0(0, 0, 0) represents the extinction of all
species; The equilibrium E1(k, 0, 0) denotes the extinction of zooplankton and fish and the persis-
tence of algae; The equilibrium E2(Ā, Z̄, 0) represents the extinction of fish and persistence of algae
and zooplankton; The equilibrium E3(Ã, 0, F̃) denotes the extinction of zooplankton and persistence of
algae and fish.

Theorem 4.1. For System (2.3), E0 is always unstable. E1 is locally asymptotically stable if

0 < r < 2, eAZ min
{

1,
PT

kθZ

}
aAZ(k) < dZ and , eAF min

{
1,

PT

kθF

}
aAF(k, 0) < dF;
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E1 is unstable if

r > 2 or eAZ min
{

1,
PT

kθZ

}
aAZ(k) > dZ or eAF min

{
1,

PT

kθF

}
aAF(k, 0) > dF .

Proof. At the extinction equilibrium E0(0, 0, 0), the form of Jacobian matrix is as follows

J(E0) =


er 0 0
0 e−dZ 0
0 0 e−dF

 .
Obviously, the characteristic roots e−dZ and e−dF are less than 1, while the other characteristic root er is
greater than 1. Therefore, the extinction equilibrium E0 is always unstable.

At E1(k, 0, 0) the Jacobian is

J(E1) =


1 − r kLZ(k, 0, 0) kLF(k, 0, 0)

0 exp {M(k, 0, 0)} 0
0 0 exp {N(k, 0, 0)}

 ,
where

M(k, 0, 0) = eAZ min
{

1,
PT

kθZ
aAZ(k)

}
− dZ,

N(k, 0, 0) = eAF min
{

1,
PT

kθF
aAF(k, 0)

}
− dF .

Let λ1, λ2 and λ3 denote the characteristic roots of J(E1), then the following inequalities

0 < r < 2, eAZ min
{

1,
PT

kθZ

}
aAZ(k) < dZ and , eAF min

{
1,

PT

kθF

}
aAF(k, 0) < dF

ensure that |λi| < 1, i = 1, 2, 3. While the following inequalities

r > 2 or eAZ min
{

1,
PT

kθZ

}
aAZ(k) > dZ or eAF min

{
1,

PT

kθF

}
aAF(k, 0) > dF

imply λi > 1 for some i.
The equilibrium E2(Ā, Z̄, 0) represents the extinction of fish. So, E2 is the internal equilibrium of

a two-dimensional system in which only algae and zooplankton exist. E2(Ā, Z̄, 0) can be explored in
the A − Z phase plane. Since both Eqs (2.1) and (2.3) share the same equilibria, from [29], we can
conclude that E2 in Eq (2.3) possibly contains multiple equilibria.

Theorem 4.2. If N(Ā, Z̄, 0) < 0, then the following hold.
• In region i (i.e., Z̄ < PT/θZ − Ā), if the algae’s nullcline is decreasing at E2(i.e., LA < 0), and

1
2

ĀZ̄LZ MA − 2 < ĀLA < ĀZ̄LZ MA, (4.3)

then E2 is locally asymptotically stable.
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• In region ii (i.e., Z̄ > PT/θZ − Ā), if the slope of the zooplankton’s nullcline at E2 is greater than
the algae’s (i.e.,−MA/MZ > −LA/LZ), and

1
2

ĀZ̄[LZ MA − LAMZ] − 2 < ĀLA + Z̄MZ < ĀZ̄[LZ MA − LAMZ], (4.4)

then E2 is locally asymptotically stable.
Proof. In order to study local stability of E2, the Jacobian at E2(Ā, Z̄, 0) can be described as

J(E2) =
Jsub(E2) J1

0 exp
{
N(Ā, Z̄, 0)

}
where

Jsub(E2) =
(
1 + ĀLA ĀLZ

Z̄MA 1 + Z̄MZ

)
and J1 =

(
ĀLF

Z̄MF

)
.

N(Ā, Z̄, 0) < 0 ensures that one characteristic root has a magnitude less than 1. Then we focus on the
characteristic roots of Jsub(E2). The trace and determinant of Jsub(E2) are

Tr(Jsub(E2)) = 2 + ĀLA + Z̄MZ

and
Det(Jsub(E2)) = Tr(Jsub(E2)) − 1 + ĀZ̄[LAMZ − LZ MA].

We discuss the stability of E2 in region i and region ii, respectively.
Suppose E2 lies in region i. Then LZ < 0, MA > 0, MZ = 0. Note that,

Tr(Jsub(E2)) = 2 + ĀLA = 2 + A
(
−

LA

LZ

)
(−LZ),

where −(LA/LZ) is the slope of the algae’s nullcline. Assume that the algae’s nullcline is increasing at
E2, i.e., LA > 0. Then Tr(Jsub(E2)) > 2 and E2 is unstable. If the algae’s nullcline is decreasing at E2,
i.e., LA < 0, and Eq (4.3) holds, then one can prove that 2 > 1 + Det(Jsub(E2)) > |Tr(Jsub(E2))|. From
Jury Test in [25], E2 is stable. On the contrary, if Eq (4.3) does not hold, then E2 is unstable.

Suppose E2 is in region ii. Then at E2, LZ < 0, MA < 0, MZ < 0. Note that

Det(Jsub(E2)) = 1 + ĀLA + Z̄MZ + ĀZ̄LZ MZ

[(
−

MA

MZ

)
−

(
−

LA

LZ

)]
.

If the slope of the algae’s nullcline at E2 is greater than the zooplankton’s, i.e., −MA/MZ < −LA/LZ,
then 1 + Det(Jsub(E2)) < |Tr(Jsub(E2))|, which means that E2 is unstable. If the slope of the zooplank-
ton’s nullcline at E2 is greater than the algae’s, then −LA/LZ < −MA/MZ < 0. If Eq (4.4) holds, then
2 > 1+Det(Jsub(E2)) > |Tr(Jsub(E2))| holds and E2 is stable. On the contrary, if Eq (4.4) does not hold,
then E2 is unstable.

Similarly, the boundary equilibrium E3(Ã, 0, F̃) indicates the extinction of zooplankton. E3(Ã, 0, F̃)
can be considered the internal equilibrium of a simple two-dimensional system with only fish and algae.
E3(Ã, 0, F̃) can be explored in the A − F phase plane. The Jacobian at E3(Ã, 0, F̃) can be described as

J(E3) =
Jsub(E3) J2

0 exp
{
M(Ã, 0, F̃)

}
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where

Jsub(E3) =
(
1 + ÃLA ÃLF

F̃NA 1 + F̃NF

)
and J2 =

(
ÃLZ

F̃NZ

)
The trace and determinant of Jsub(E3) are

Tr(Jsub(E3)) = 2 + ÃLA + F̃NF

and
Det(Jsub(E3)) = Tr(Jsub(E3)) − 1 + ÃF̃[LANF − LF NA].

We find that the Jacobian matrixes of E2(Ā, Z̄, 0) and E3(Ã, 0, F̃) take similar forms. The locally
asymptotic stabilities of E2 and E3 can both be studied with the help of the stability of internal equilibria
of a stoichiometric predator-prey system in discrete time scale [25]. Due to the similarity between the
stability conditions of E2 and E3 and the similar argument in [25], we only provide the conclusion on
the stability of E3. Therefore, details of proofs will be skipped here.

Theorem 4.3. If M(Ã, 0, F̃) < 0, then the following are true.
• In region i(i.e., F̃ < PT/θF − Ã), if algae’s nullcline is decreasing at E3 (i.e., LA > 0), and

1
2

ÃF̃LF NA − 2 < ÃLA < ÃF̃LF NA, (4.5)

then E3 is locally asymptotically stable.
• In region ii (i.e., F̃ > PT/θF − Ã), if the slope of the fish’s nullcline at E3 is greater than algae’s

(i.e.,−NA/NF > −LA/LF), and

1
2

ÃF̃[LF NA − LANF] − 2 < ÃLA + F̃NF < ÃF̃[LF NA − LANF], (4.6)

then E3 is locally asymptotically stable.
Through theoretical analysis, we present Table 2 to better summarize stability conditions of bound-

ary equilibria between continuous model and discrete model.

4.2. Internal equilibria

The coexistence equilibrium E∗(A∗,Z∗, F∗) can be solved by

L(A∗,Z∗, F∗) = 0, M(A∗,Z∗, F∗) = 0 and N(A∗,Z∗, F∗) = 0.

To determine the species interactions of intraguild predation, it is necessary to explore the Jacobian
matrix of continuous model (System (2.1)) and discrete model (System (2.3)) at E∗, which present as
follows,

J(A∗,Z∗, F∗)|(2.1) =


A∗LA A∗LZ A∗LF

Z∗MA Z∗MZ Z∗MF

F∗NA F∗NZ F∗NF

 =

A∗ 0 0
0 Z∗ 0
0 0 F∗



∂L
∂A

∂L
∂Z

∂L
∂F

∂M
∂A

∂M
∂Z

∂M
∂F

∂N
∂A

∂N
∂Z

∂N
∂F
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Table 2. Comparison of stability conditions of boundary equilibria.

Equilibria Discrete model System (2.3) Continuous model System (2.1) Results

E0(0, 0, 0) Always unstable. Always unstable. Same

E1(k, 0, 0) M(k, 0, 0) < 0, N(k, 0, 0) < 0, M(k, 0, 0) < 0, N(k, 0, 0) < 0. Eq (2.3) Stronger
0 < r < 2.

E2(Ā, Z̄, 0) N(Ā, Z̄, 0) < 0. N(Ā, Z̄, 0) < 0. Eq (2.3) Stronger
Region i: LA < 0 and Eq (4.3); Region i: LA < 0;
Region ii: −MA/MZ > −LA/LZ and Eq (4.4). Region ii: −MA/MZ > −LA/LZ .

E3(Ã, 0, F̃) M(Ã, 0, F̃) < 0. M(Ã, 0, F̃) < 0. Eq (2.3) Stronger
Region i: LA < 0 and Eq (4.5); Region i: LA < 0;
Region ii: −NA/NF > −LA/LF and Eq (4.6). Region ii: −NA/NF > −LA/LF .

and

J(A∗,Z∗, F∗)|(2.3) =


1 + A∗LA A∗LZ A∗LF

Z∗MA 1 + Z∗MZ Z∗MF

F∗NA F∗NZ 1 + F∗NF


=


1 0 0
0 1 0
0 0 1

 +

A∗ 0 0
0 Z∗ 0
0 0 F∗



∂L
∂A

∂L
∂Z

∂L
∂F

∂M
∂A

∂M
∂Z

∂M
∂F

∂N
∂A

∂N
∂Z

∂N
∂F

 .
Define

M(A∗,Z∗, F∗) =


∂L
∂A

∂L
∂Z

∂L
∂F

∂M
∂A

∂M
∂Z

∂M
∂F

∂N
∂A

∂N
∂Z

∂N
∂F


as the ecosystem matrix of Systems (2.1) and (2.3) at E∗.

The ecological matrix of the continuous model and discrete model take the same form. We can use
the ecosystem matrix to study the interactions between species in intraguild predations. In this matrix,
the i j-th term measures the effect of the j-th species on the i-th species’ per capita growth rate [30].
That is, the positive sign in the ecological matrix means that the j-th species is favorable to the growth
of the i-th species, and the negative sign means that the j-th species is adverse to the growth of the i-th
species. According to the relationship between the P:C ratio in the three species, the symbol of the
ecological matrix is determined. The differences in P:C ratio of the three species affect the system. We
study the matrix in two cases: θZ > θF and θZ < θF . The different cases on the ecological matrix can
be shown in Table 3.

When the P:C ratio in algae is bigger than those in zooplankton and fish, the algae quality is good for
both zooplankton and fish. The ecological matrices for both cases take the same form. The relationship
between algae and zooplankton is (+,+/−). The increase in algae is certainly positive for zooplankton.
Due to the existence of fish, the effect of zooplankton on algae is unconcern. The interactions of
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algae–fish and zooplankton–fish take the form (+/−,−). The effect of algae and zooplankton on fish
is unconcern. When the P:C ratio in algae changes between the P:C ratio of zooplankton (θZ) and the
P:C ratio of fish (θF), something shows different. 1) When θZ > θF , the quality of the algae is good
for the fish but bad for the zooplankton. The interaction between algae and zooplankton has changed
from (+,+/−) to (+/−,+/−). The increase of algae is uncertain for zooplankton due to the decline in
food quality. 2) When θZ < θF , the quality of the algae is good for the zooplankton but bad for the fish.
The increase of algae is positive for zooplankton. The relationship between algae and fish has changed
from traditional (+/−,−) to (−,−). The increase in algae is certainly negative for fish due to poor food
quality. When the P:C ratio in algae is smaller than those in zooplankton and fish, the algae quality
is bad for both zooplankton and fish. The ecological matrices for both cases take the same form. The
algae-zooplankton relationship is (+/−,+/−). And algae-fish interactions take the form (−,−). The
symbols of ecological matrixes reveal that the increase in algae has an uncertain effect on zooplankton,
but can have a certain negative impact on fish.

In summary, with the decline of algae food quality, the relationship between algae and fish changes
from positive correlation (+,+/−) to uncertainty (+/−,+/−). The relationship between algae and fish
changes from uncertainty (+/−,−) to negative correlation (−,−). The interaction of zooplankton – fish
takes (+/−,−) form. The impact of the increase of zooplankton on fish is uncertain. The interaction
between fish and zooplankton is not only predation but also competition. Predation in accompanies
by competition jointly affects the interaction between fish and zooplankton. In general, the decline in
food quality has a negative impact on the flow of energy.

Table 3. The ecosystem matrix of model (2.3).

Conditions θZ > θF θZ < θF

Q∗ = (PT − θZZ∗ − θF F∗)/A∗ > max{θZ, θF}


+/− +/− −

+ + −

+/− +/− 0



+/− +/− −

+ + −

+/− +/− 0


min{θZ, θF} < Q∗ < max{θZ, θF}


+/− +/− −

+/− +/− −

+/− +/− 0



+/− +/− −

+ + −

− +/− −


Q∗ < min{θZ, θF}


+/− +/− −

+/− +/− −

− +/− −



+/− +/− −

+/− +/− −

− +/− −


5. Numerical simulations

Numerical simulations on the continuous model and discrete model can be conducted to verify
and deepen the results of our analysis. We will compare the two models with intraguild structure by
choosing Holling type II functional response, which has been used in [22]. Let

aAZ(A) =
sAZA

1 + sAZhAZA
, aAF(A,Z) =

sAF A
1 + sAFhAF A + sZFhZFZ

, aZF(A,Z) =
sZFZ

1 + sAFhAF A + sZFhZFZ
,
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where the meanings of the related parameters have been listed in Table 1. The three functional response
functions mean that the predations in the intraguild structure are saturated. We numerically study the
following models:

A(n + 1) = A(n) exp
{

r
(
1 −

A(n)
min{K, (PT − θZZ(n) − θF F(n))/q}

)
−

sAZZ(n)
1 + sAZhAZ A(n)

−
sAF F(n)

1 + sAFhAF A(n) + sZFhZFZ(n)

}
,

Z(n + 1) = Z(n) exp
{

eAZ min
{

1,
PT − θZZ(n) − θF F(n)

θZ A(n)

}
sAZ A(n)

1 + sAZhAZ A(n)
−

sZF F(n)
1 + sAFhAF A(n) + sZFhZFZ(n)

− dZ

}
, (5.1)

F(n + 1) = F(n) exp
{

eAF min
{

1,
PT − θZZ(n) − θF F(n)

θF A(n)

}
sAF A(n)

1 + sAFhAF A(n) + sZFhZFZ(n)

+ eZF min
(
1,
θZ
θF

)
sZFZ(n)

1 + sAFhAF A(n) + sZFhZFZ(n)
− dF

}
,

and

dA
dt
= rA

(
1 −

A
min{K, (PT − θZZ − θF F)/q}

)
−

sAZ AZ
1 + sAZhAZ A

−
sAF AF

1 + sAFhAF A + sZFhZFZ
,

dZ
dt
= eAZ min

(
1,

PT − θZZ − θF F
θZ A

)
sAZ AZ

1 + sAZhAZ A
−

sZFZF
1 + sAFhAF A + sZFhZFZ

− dZZ,

dF
dt
= eAF min

{
1,

PT − θZZ − θF F
θF A

}
sAF AF

1 + sAFhAF A + sZFhZFZ
+ eZF min

{
1,
θZ
θF

}
sZFZF

1 + sAFhAF A + sZFhZFZ
− dF F.

(5.2)

The main parameters are selected from [26] and [22] for numerical simulation of the two mod-
els at different initial conditions, as shown in Table 1. For convenience, we record four typical ini-
tial conditions. 1st initial conditions is (A(0),Z(0), F(0)) = (58.5, 1.07, 1.6); 2nd initial conditions is
(A(0),Z(0), F(0)) = (0.5, 0.5, 0.5); 3rd initial conditions is (A(0),Z(0), F(0)) = (5, 5, 5); and 4th initial
conditions is (A(0),Z(0), F(0)) = (0.1, 0.05, 0.01). The carrying capacity of the primary producer, K, is
an indirect index to evaluate the light intensity or energy input of the system. Bifurcation diagrams can
intuitively show the equilibrium of a dynamical model changing with a parameter. The bifurcation di-
agrams in Figure 1 reveal how the dynamics of the populations in Systems (5.1) and (5.2) change with
K. To facilitate intuitive analysis, Figure 2 fully reflects the dynamic behavior differences between the
discrete model and the continuous model along the gradient of light levels K from 0 to 120 mg CL−1

with different initial values.

5.1. Low carrying capacity

When the carrying capacity varies at the low level (e.g., 0 < K < 18.2 in Figure 1), both discrete
model and continuous model show similar dynamic behaviors. When the carrying capacity is extremely
low (e.g., 0 < K < 3.4 in Figure 1 and K = 3 in Figure 2a1,b1), the zooplankton and the fish of discrete
model and continuous model cannot be sustained due to starvation and the equilibrium E1(k, 0, 0) is
stable. When carrying capacity further increases (e.g., 3.4 < K < 18.2 in Figure 1), the algae and fish
persist but the lack of food and the pressure of predator still can’t maintain the survival of fish, which
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Figure 1. The bifurcation curves versus carrying capacity for the discrete model (ai, i =
1, 2, 3) and continuous model (bi, i = 1, 2, 3). The red, blue, and black lines represent the
bifurcation diagrams of algae, zooplankton, and fish, respectively.

implies that E3(Ã, 0, F̃) is stable. Figure 2a2,b2 show the typical case with K = 10. Space trajectories
with different initial values tend to steady state.

Figure 2. Phase plot for discrete model (ai, i = 1, 2, ..., 6) and continuous model (bi, i =
1, 2, ..., 6). The red points and cycles denote the stable equilibria and limit cycle, respectively.

5.2. Intermediate carrying capacity

When K varies in the intermediate level, a clear difference between the continuous and discrete
models appears for the first time, as shown in 18.2 < K < 55.6 in Figure 1. When K = 18.2,
Hopf bifurcation appears in the discrete model, and a limit cycle is generated. But the continuous
model is always in a stable state (e.g., K = 20 in Figure 2a3,b3). This region shows that, compared
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with the continuous model, the discrete model is more prone to oscillations. We notice that when
37.2 < K < 42.2, different types of bistability appeared in the discrete model and continuous model.
For the discrete model, one stable state maintains the previous periodic oscillation. Another stable state
ends the oscillation, and the system is in a stable equilibrium state (e.g., K = 40 in Figure 2a4); For the
continuous model, two local stable steady states coexist (e.g., K = 40 in Figure 2b4). With the further
increase of K (42.2 < K < 55.6), the continuous model still admits two local stable steady states.
While the discrete model shows one global stable state. As K increases in this region, the density of
algae increases while the density of fish decreases due to poor food quality. The stoichiometric effect
can be found in this region.

5.3. High carrying capacity

When carrying capacity varies at the high level (e.g., 55.6 < K < 120 in Figure 1), models with
different initial values show different dynamic behaviors. Some differences in dynamical behaviors
between the continuous model and discrete model can also be observed in this region. During this
interval, different from the previous, due to the abundance of food and the reduction of predation
pressure, the zooplankton can persist. Three species can coexist in this interval. That is the equilibrium
E∗(A∗,Z∗, F∗) is stable. Especially, for the discrete model, E∗(A∗,Z∗, F∗) is globally asymptotically
stable (e.g., 55.6 < K < 97.5 in Figure 1); for the continuous model, the model exhibits bistable
states (e.g., 55.6 < K < 101.5 in Figure 1). E∗(A∗,Z∗, F∗) together with E3(Ã, 0, F̃) are both locally
asymptotically stable. The survival of the zooplankton in the continuous model will be affected by
different initial values, while the survival of the zooplankton in the discrete model will not be affected
by the initial values. Figure 2a5,b5 show the typical cases with K = 80.

When carrying capacity varies at an extremely high level, rich dynamic behaviors show in this
region. The discrete model exhibits bistable states (e.g., 97.5 < K < 120 in Figure 1), while the
continuous model shows tristable states (e.g., 101.5 < K < 120 in Figure 1). For the discrete model,
the limit set can be a stable equilibrium and a strange attractor (e.g., K = 120 in Figure 2a6); For the
continuous model, the limit set can be two local stable equilibria and a strange attractor (e.g., K = 120
in Figure 2b6).

80 90 100 110 120

K

-5

0

5

10
(a) MLE for discrete model

80 90 100 110 120
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4
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8
(b) MLE for continuous model

Figure 3. Spectrum of the maximum Lyapunov exponent (λ) with respect to carrying capac-
ity (K) for the discrete-time model (a) and continuous-time model (b).
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6. Discussion

The continuous stoichiometric model with intraguild structure can be used to explore interactions
of the species with overlapping generations. However, when facing the situation of non-overlapping
generations of herbivores, annuals, and regularly collected experimental data, we need to consider
the impact of time discretization on the model. In this paper, discrete intraguild predation models
with biological stoichiometry are developed and analyzed. The continuous model and discrete model
share the same ecological matrix, which helps us study the interspecific relationship under different
food qualities. In comparing the dynamic behaviors of the continuous model and discrete model, we
conduct numerical simulations and mainly focus on the following aspects: the stoichiometric effects
of food quality, multistability, coexistence, and chaos.

Figure 4. Bifurcation diagram of the densities of algae, zooplankton, and fish plotted against
food quality for Model (2.3). The red curve, the blue curve, and the black curve represent
the density of algae, zooplankton, and fish with respect to food quality, respectively. The
red vertical dashed lines represent the algae minimal P:C (q). The blue vertical dashed line
represents the zooplankton constant P:C (θZ) and fish constant P:C (θF), here θZ = θF = 0.03.

Nutrient recycling rates have a significant impact on ecosystem-level nutrient availability. Figure
4 shows the density of algae, zooplankton, and fish with respect to food quality (P : C). When the
carrying capacity is low, the transfer efficiency of zooplankton and fish can reach their maximum value.
As K increases, the food quality of algae shows a decreasing trend (Figure 4a). When the food quality
varies in (q, θF), the density of algae increases, but the density of fish decreases (Figure 4b). Poor food
quality causes negative effects on fish. Due to the combined effects of food quality and high trophic
level predation, the impact of increased algae on zooplankton is uncertain. Due to the combined effects
of interspecific competition and high trophic level predation, the impact of increased zooplankton on
fish is also uncertain. This phenomenon is consistent with the results of the ecological matrix.

In some parameter intervals, the attractors of continuous and discrete models differ. When the
carrying capacity varies at an intermediate level, the steady state of the continuous model is a stable
equilibrium, and the steady state of the discrete model is a stable limit cycle. When the carrying
capacity is at a high level, there exist three and two stable states in the continuous model and discrete
model, respectively. The reason why the steady state of the continuous model is more than that of the
discrete model is that the stability condition of the equilibrium point of the discrete model is stronger
than that of the continuous model [31].

The coexistence regions of three species in continuous and discrete models are the same, which
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both persist when the carrying capacity is high. When the carrying capacity is high, both types of
models exhibit chaos. Figure 3 shows the spectrum of the maximum Lyapunov exponent (MLE) for
K, revealing the presence of chaotic behavior for both discrete and continuous models. The difference
point is that the interval of existence of chaotic behavior of the continuous model is smaller than that
of the discrete model.

In comparison, the continuous model has a high level of robustness to time discretization. The
population changes of continuous and discrete models show similar trends as parameters are changed.
Some interesting dynamical features can be simulated in both continuous and discrete models, ac-
cording to the numerical simulations. There are also distinctions to be made between continuous and
discrete models. The results show that we should pay close attention to the selection of time scale in
the research of intraguild system model prediction.

In summary, our analytical and numerical analysis suggest the following similarities and differences
between continuous model and discrete model, which have been listed in Table 4.

Table 4. Comparisons between continuous model (2.1) and discrete model (2.3).

Similarities Differences
1) The equilibria and the ecological matrix take
the same forms. A negative effect of poor food
quality on top predator can be observed.

1) The stability conditions of equilibria in the
discrete model are stronger than those in the
continuous model.

2) The coexistence regions of populations in
continuous and discrete models are the same
and occur under high carrying capacity condi-
tions.

2) The coexistence of populations in continu-
ous models depends on initial values, while in
discrete models, the coexistence of populations
does not depend on initial values.

3) Chaos phenomena can be observed in both
types of model dynamics.

3) The chaos interval of the discrete model is
larger than that of the continuous model.

4) Multistability can be observed in both types
of model dynamics.

4) There are more types of multistabilities in the
continuous model than in the discrete model.

Models on algae-zooplankton-fish have been widely studied from many perspectives, like bifur-
cation [32, 33], chaos [34], toxicity [35], and fear effect [33, 34]. The effect of discretization on the
dynamic behavior of these models is worth studying. Because of the difference in dynamic behavior
between continuous and discrete models, we can try to fit the predictions of the two types of models
with the collected experimental data. The comparisons can be used to test which model is more suitable
for prediction. This question can be used as a subject for future research.
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