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1. Introduction

The growing interest in contact geometry is associated with its important role in mechanics in
explaining physical phenomena. In addition, many recent articles have been motivated by the question
of to what extent can self-similar solutions of the Ricci flow equation, i.e., Ricci solitons, be applicable
for contact metric geometry. Some of them have established the conditions for when a contact manifold
equipped with a Ricci-type soliton structure carries a canonical (e.g., Einstein or constant curvature)
metric, e.g.. [1-4].

K-contact manifolds (i.e., contact metric manifolds, whose Reeb vector field is Killing) have been
studied by several geometers, e.g., [5,6], and it can be seen that the K-contact structure is intermediate
between the contact and Sasakian structures. The Reeb vector field ¢ of the K-contact structure is a
unit Killing vector field, and the influence of constant-length Killing vector fields on the Riemannian
geometry has been studied by several authors from different points of view, e.g., [7-9]. An interesting
result related to the above question is that a K-contact manifold equipped with a generalized Ricci
soliton structure has an Einstein metric, e.g., [2].
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In [10], we introduced the “weakened” metric structures on a smooth manifold (replacing the com-
plex structure on the characteristic distribution with a nonsingular skew-symmetric tensor). This previ-
ous paper generalized the metric contact, K-contact, Sasakian and cosymplectic structures and allowed
for a new look at the classical theory. In [10], we build a retraction of weak structures with positive
partial Ricci curvature onto a set of classical structures. In [11] (where the definition of weak structures
is a bit more general than in [10]), we proved that the weak Sasakian structure is weak K-contact, and
that a weak almost contact metric manifold is weak Sasakian if and only if it is a Sasakian manifold.
In this article, we study weak K-contact manifolds using their sectional and Ricci curvature in the &-
direction. Our goal is to show that the weak K-contact structure can be a useful tool for studying unit
Killing vector fields on Riemannian manifolds, and that some results for K-contact manifolds can be
extended to the case of weak K-contact manifolds. For example, we answer the question of when a
weak K-contact manifold carries a generalized Ricci soliton structure, or just an Einstein metric.

The article is organized as follows. In Section 2, following the introductory Section 1, we recall the
basics of weak contact metric manifolds. Section 3 contains the main results. In Subsection 3.1, we
characterize (in Theorem 2) weak K-contact manifolds among all weak contact metric manifolds by
using the property ¢ = —V¢& (well known for K-contact manifolds), and we find (in Theorem 3) when
a Riemannian manifold endowed with a unit Killing vector field forms a weak K-contact structure.
In Subsection 3.2, for a weak K-contact manifold, we calculate (in Proposition 2) the Ricci curvature
in the &-direction, and then find (in Theorem 4) the sufficient condition for such a manifold with a
parallel Ricci tensor to be an Einstein manifold. In Subsection 3.3, we find (in Theorem 5) sufficient
conditions for a weak K-contact manifold admitting a generalized Ricci soliton structure to be an
Einstein manifold.

2. Preliminaries

Here, we recall the basics of some metric structures that generalize the almost contact metric struc-
ture (see [10], or, equivalently, [11] with v = 1). A weak almost contact structure on a smooth manifold
M1 is a set (¢, Q, &,17), where ¢ is a rank-(1,1) tensor, Q is a nonsingular (1, 1)-tensor, ¢ is the Reeb
vector field and 7 is a dual 1-form, i.e., (&) = 1, satisfying

¢ =-0+n®&  QE=E (2.1)

The form 7 determines a smooth 2n-dimensional distribution 9 := kern, which is the collection of
subspaces D,, = {U € T,,M : n(U) = 0} for m € M. We assume that D is ¢-invariant, i.e.,

pUecD, UeD, (2.2)

as in the theory of almost contact structure [5,6], where Q = id 7). By (2.1) and (2.2), our distribution
P is invariant for Q: Q(D) = D. If there is a Riemannian metric g on M such that

goU,¢V) = g(U,QV) —=nU)n(V), U,V e Xy, (2.3)

then (¢, Q,&,1, g) is called a weak almost contact metric structure on M, and g is called a compatible
metric. A weak almost contact manifold M(¢, O, £, n7) endowed with a compatible Riemannian metric
g is called a weak almost contact metric manifold and is denoted by M(¢, Q, &, 1, g). Some sufficient
conditions for the existence of a compatible metric on a weak almost contact manifold are given in [10].
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Putting V = ¢ in (2.3) and using Q& = &, we get, as in the classical theory, n(U) = g(&, U).
In particular, £ is g-orthogonal to D for any compatible metric g.

By (2.3), we get g(U,QU) = g(¢U,¢U) > 0 for any nonzero vector U € D; thus, Q is positive
definite. For a weak almost contact structure on a smooth manifold M, the tensor ¢ has rank 2n and

¢'§::07 77°¢:0’ 77°Q277a [Q’¢]:0;

moreover, for a weak almost contact metric structure, ¢ is skew-symmetric and Q is self-adjoint.

A weak contact metric structure is defined as a weak almost contact metric structure satisfying
® = dn (thus, d® = 0), where ©(U, V) = g(U, V) (U, V € X)) is called the fundamental 2-form, and

dn(U, V) = ;{UmV)) = V() —n((U, VD), U,V € Xy, (2.4)

— N =

do(U,V,Z2) = 3 {UDPWV,2)+ VD(Z,U)+ZD(U,V)
-O(U,V],Z)-D(Z, UL, V)-D(V,Z],U)}, U,V,Ze Xy. (2.5)

Remark 1. A differential k-form on a manifold M is a skew-symmetric tensor field w of type (0, k).
According to the conventions of, e.g., [12], the formula

do(Uy,..., Ur) = o7 DD Uy, Uy Ui)

A

+ Zi<j(_1)i+jw([Ui5 U]]’ Ul9 ey Ui’ ceey U]a e ey Uk+1)9 (2‘6)

where Uy, ..., Ui € X) and * denotes the operator of omission, defines a (k + 1)-form dw called the
exterior differential of w. Note that (2.4) and (2.5), as given in [5], correspond to (2.6) with k = 1 and
k=2.

For a weak contact metric structure, the distribution 9 is non-integrable (i.e., has no integral hyper-
surfaces), since g([U, U], &) = 2dn(¢U, U) = g(¢U, ¢U) > 0 for any nonzero U € D.
The Nijenhuis torsion [¢, ¢] of ¢ is given by

A weak almost contact structure (¢, Q, &, ) is called normal if the following tensor is zero:
NOW, V) =0, (U, V) + 2dn(U, V)€, U,V € ¥y. (2.7)

The following tensors N®, N® and N are well known in the classical theory; see [5, 6]:

NOW, V) = Ep n)(V) = Egv MUY B 2dn(¢U, V) = 2dn(¢V, U),
NOW) = (£ )U = [£, U] - ¢, U],
@4

NOWU) = E:p)(U) = €M) — (€, U = 2dn(&, U),

where £, is the Lie derivative in the &-direction.
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Remark 2. Let M(¢, O, &, n) be a weak almost contact manifold. Consider the product manifold M =
M x R, where R has the Euclidean basis d,, and define tensor fields ¢ and Q on M by putting

d(U, ady) = (pU — aé&, n(U)d,),

O, ady) = (QU, ad,),
where a € C®(M). Thus, ¢(U,0) = (¢U,0), Q(U,0) = (QU,0) for U L kere, ¢(£,0) = (0,0,),
0(&,0) = (£,0) and ¢(0,9,) = (=£,0), 0(0,8,) = (0,8,). By the above, ¢> = —Q. The tensors
N® (i = 1,2,3,4) appear when we derive the integrability condition [¢, ¢] = O (i.e., vanishing of the
Nijenhuis torsion of ¢ ) and express the normality condition N = 0 of (¢, O, &, 1) on M.
Theorem 1 (see [11] with v = 1). (a) For a weak almost contact metric structure (¢, Q,&,1n, g), the
vanishing of NV implies that N® and N® vanish and N®(U, V) = n([QU, ¢V]).

(b) For a weak contact metric manifold, the tensors N'® and N® vanish and the trajectories of &

are geodesics, i.e., V¢ € = 0; moreover, N® = 0 if and only if ¢ is a Killing vector field.

Definition 1 (see [11] with v = 1). Two weak almost contact structures (¢, Q, &, 1) and (¢’, Q’, €,17) on
M are said to be homothetic if the following is valid for some real A > O:
¢=Vag¢', (2.82)
Qlp=10p. (2.8b)

Two weak contact metric structures (¢, Q, &, 1, g) and (¢, Q’,&,1, ") on M are said to be homothetic if
they satisfy conditions (2.8a,b) and

glo=A"1glp, & ) =g ). (2.8¢)
Lemma 1 (see [11] with v = 1). Let (¢, Q,&,n) be a weak almost contact structure such that
Qlp = Aidp

for some real A > 0. Then, the following is true:

o (¢',&,m) is an almost contact structure, where ¢’ is given by (2.8a).

o If (¢, 0,&,1n,8) is a weak contact metric structure and @', g’ satisfy (2.8a,c), then (¢',&,n,8") is a
contact metric structure.

A weak K-contact manifold is defined as a weak contact metric manifold, whose Reeb vector field
¢ is Killing (or, infinitesimal isometry, such as in [12]), i.e.,

£, V) =&, V) - g(&, UL V) —g(U,[€,V]) = g(Vy &, V) + g(Vy £, U) = 0. (2.10)

Here, V is the Levi-Civita connection. A normal weak contact metric manifold is called a weak
Sasakian manifold. Recall that a weak Sasakian structure is weak K-contact; see [11, Proposition 4.1],
furthermore, a weak almost contact metric structure is weak Sasakian if and only if it is homothetic to
a Sasakian structure; see [11, Theorem 4.1].

The relationships between the different classes of weak structures (considered in this article) can be
summarized in the diagram (well known in the case of classical structures):

weak metric [ weak almost '\ ®=dy weak & Killing weak
almost contact contact metric contact metric K — contact
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A “small” (1,1)-tensor Q = Q —id is a measure of the difference between a weakly contact structure
and a contact one, and Q = 0 denotes the classical contact geometry. Note that [Q,¢] = 0and Q& = 0.

Lemma 2 ([11] with v = 1). For a weak contact metric manifold, we get
1 1
g((VupV.2) = 2 gINV(V,2),9U) + (U, oV) (Z) — g(@U, $Z) (V) + 3 NO(U,V,2), (2.11)

where the tensor N'9(U,V,Z) is skew-symmetric with respect to V and Z, given for a weak contact
metric manifold by the formula

N, V,Z) = ($2) (U, QV)) - (V) (8(U, 0Z))
+ g([U, ¢Z1, OV) — g([U, ¢V1, 0Z) + g(IV, ¢Z] - [Z, V] = ¢[V. Z], QU).

Remark 3. For a contact metric structure, (2.11) (with N® = 0) gives the result in [5, Corollary 6.1].
Note that only one new tensor N ©, which supplements the sequence of well-known tensors N@, i =
1,2,3,4, is needed for further study of a weak contact metric structure. In particular, by (2.11), we get
g(Vep)V.Z) = s NO(,V, Z) and

NO(,£2) = ONP(2),
NOEV,Z) = g€, ¢Z], OV) — g([&, ¢V, 02),
NOEEZ) = NOE V€ = 0. (2.12)

3. Results
The results are given in the following three subsections.

3.1. Unit Killing vector fields

Proposition 1. On a weak K-contact manifold, we get N\V(¢, -) = 0 and

NOE -, = NO(,&9)=0, 3.1
£§: Q = Vf Q = O, (32)

Proof. By (2.7) and dn(£, -) = ®(£, -) = 0, we get
NE V) = [, 91U, &) = ¢°[U, €] - ¢lpU, €] = gNP(U) = 0.
By [11,Lemma 3.1 withv=T1andh=3N® =0, we get NO(&, -, ) =0,£,0 =0 and
Q(QVE.2) = 67, 0U) - 3 NOWU,£,07).
By (2.12), with N® = 0, we get NO(-, £, -) = 0. We use [¢, Q] = 0 to obtain V; Q = 0:
£ QU = [, QU] - QI&, Ul = (VeQ)U + [¢, O1U = (VL Q)U.

This completes the proof of (3.1) and (3.2). Next, from (2.11) with U = &, we get (3.3).
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In the next theorem, we characterize weak K-contact manifolds among all weak contact metric
manifolds by using the following well-known property of K-contact manifolds; see [5]:

Vé=—¢. (3.4)

Theorem 2. A weak contact metric manifold is weak K-contact (that is, € is a Killing vector field) if
and only if (3.4) is valid.

Proof. Let a weak contact metric manifold satisfy (3.4). By the skew-symmetry of ¢, we get that
E:8)U,V)=g(Vy &, V)+g(Vy & U) = —g(oU, V) — g(¢V, U) = 0; thus, £ is a Killing vector field.

Conversely, let our manifold be weak K-contact. By (2.11) with V = ¢, using NV(&, ) = 0 and
NO(U,&,Z) = 0 (see (3.1)) we get

1 1
g((VU ¢) 67 Z) = E g(N(l)(‘f, Z)’ ¢U) - g(¢U’ ¢Z) + E N(S)(U’ fa Z) = g(¢2U7 Z)

Hence, (Vy ¢) & = ¢*U. From this and 0 = Vy (¢ &) = (Vy @) € + ¢V &, we obtain ¢(Vy € + ¢U) = 0.
Since Vi & + ¢U € D and ¢ is invertible when restricted on D, we get that Vi & = —¢U.

If a plane contains &, then its sectional curvature is called &-sectional curvature. 1t is well known
that the &-sectional curvature of a K-contact manifold is a constant equal to 1. Recall that a Riemannian
manifold with a unit Killing vector field and the property Ry, & = U (UL §) is a K-contact manifold,
e.g., [6, Theorem 3.1] or [5, Proposition 7.4]. We generalize this result below.

Theorem 3. A Riemannian manifold (M***', g) admitting a unit Killing vector field ¢ such that the
(1, 1)-tensor V& has constant rank 2n and &-sectional curvature is positive is a weak K-contact mani-
fold M(¢, Q,&,1n,8) withn = g(-,&) and the following structural tensors: ¢ = —V & (see (3.4)) and
QU =Ry & for U € kern.

Proof. Letn = g(-,€) and O = kern. Put oU = —Vy & and QU = Ry & for U € D. Since £is a
Killing vector field, we obtain the property dn = ® for ®(U, V) = g(U, ¢V):

1
dn(U.V) = 5 (8(Vu &, V) = g(Vy &, U)) = =g(Vy &, U) = g(U. 4V).

Since ¢ is a unit Killing vector field, we get that V. & = 0and Vi Vy E-Vy, v € = Ry V. Thus, ¢ & = 0,
¢ has constant rank 2n and

$’U =Vy,eé=Repé=-QU (UeD).

Put Q & = £. Therefore, (2.1) is valid and Q is positive definite; that completes the proof.

Example 1. By applying Theorem 3, we can search for examples of weak K-contact (not K-contact)
manifolds among Riemannian manifolds with positive sectional curvature that admit unit Killing vector
fields. Indeed, let M be a convex hypersurface (ellipsoid) with induced metric g of the Euclidean
space R?**? and

1 2n+1
_ m+2 . ntl oo 2 _
M—{(ul,...,u2n+2)€R : § ,lui+a§ i_n+2ui—1},

=
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where 0 < a = const # 1 and n > 1 is odd. The sectional curvature of (M, g) is positive. It follows that

'f = (_uza Uy e ooy —Upt1, Up, — \/EM,H_:;, \/(;U,H.z, <o —Valzg, \/auer_l)

is a Killing vector field on R**2, whose restriction to M has unit length. Since & is tangent to M (i.e., M
is invariant under the flow of &), £ is a unit Killing vector field on (M, g); see [8, p. 5]. Fora — 1, such
vector field £ converges to a unit Killing vector field & on a unit sphere, and rank(V&;) = 2n. Thus,
rank(V€) = 2n for a ~ 1. For n = 1, we get a weak K-contact manifold M* = {u? + u3 + au} + au} =
1} - R4 with é‘: = (—I/tz, up,— \/Eu4, \/Eug)

Other examples of weak K-contact (not K-contact) manifolds can be obtained from [7, Theo-
rem 12]: “On every sphere S>*"!, n > 2, for any & > 0, there exists a (real analytic) Riemannian
metric g of cohomogeneity 1 and a (real analytic) Killing vector field & of unit length on (S?*"!, g) such
that

1) all sectional curvatures of (S2*~!, g) differ from 1 by at most &;

2) the vector field & has both closed and non-closed integral trajectories’.

Corollary 1. A weak K-contact structure (¢, Q, &, 1, g) with constant positive &-sectional curvature,
K, U) = A > 0, for some A = const € R and all U € D, is homothetic to a K-contact structure
(¢',&,n, &) after the transformation described by (2.8a—c).

Proof. Note that K(§,U) = A (U € D) ifand only if Rys§ = AU (U € D). By QU = Ry ¢ (U € D)
(see Theorem 3) we get that QU = AU (U € D). By Lemma 1, (¢, £, 1, g') 1s a contact metric structure.
Using (2.10), we get that (£, ¢") (U, V) = A£:)(U,V) (U,V € D) and (£, g")(&, -) = 0. By applying
£:2 =0, we get that £, g’ = 0; thus, (¢', &, 7, g') is a K-contact structure.

3.2. The Ricci curvature in the characteristic direction

Denote by Ry Z the curvature tensor and by Ric the Ricci operator of g associated with the Ricci
tensor Ric and given by Ric(U, V) = g(RicN U,V) for all U,V € X,,. The Ricci curvature in the &-
direction is given by Ric(¢,&) = 32, g(R,, £ &, e;), where (e;) is any local orthonormal basis of D.

In the next proposition, we generalize three particular properties of K-contact manifolds to weak
K-contact manifolds.

Proposition 2. For a weak K-contact manifold, the following equalities are true:

R‘f,U = VU ¢, (35)
Ry € =—-¢°U, (3.6)
Ric(&,€) = trace Q = 2n + trace Q. 3.7

Proof. Using (3.4), we derive

Rz ué=Vy(Vyé)=Vy(VzE) = Vizu §)
= Vy(@Z) = Vz(oU) + ¢(IZ,U]) = (Vy $p)Z — (V7 ¢)U. (3.8)

Note that (Vy @)V, Z) = g(Vy $)Z, V) = —g((Vy ¢)V, Z). Using the condition that d® = d’n = 0, we
get
Vg o)V, Z) + (Vy D)Z,U) + (VL D)U,V) =0. 3.9)
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From (3.8), using (3.9) and the skew-symmetry of @, we get (3.5):

gReyV.Z) = g(Ryz&U) E (V,0) U, V) + (Vy D)NZ U)

2 _(Vy O)(V.2) = g(Vy $)V, 2).
By applying (3.5) with V = ¢, ¢ £ = 0 and (3.4), we find that

Repé=(Vyd)é=—¢Vyé=¢'U
This and (2.1); yield (3.6). By this, for any local orthonormal basis (e;) of D, we get

. (3;6) B 2n 2 (2;1) 2n o
Rict,8) = = )7 g@ee) = 17 2(Qeien.
By the above and the equality trace Q = 2n + trace Q, (3.7) is true.

Note that if a Riemannian manifold admits a unit Killing vector field &, then K(¢,U) > 0 (U L
&, U # 0); thus, Ric(é,€) > 0; moreover, Ric(£,€) = 0 if and only if £ is parallel: V& = 0, see for
example, [9]. In the case of K-contact manifolds, K(&, U) = 1; see [5, Theorem 7.2].

Corollary 2. For a weak K-contact manifold, the &-sectional curvature is positive:
K, U)=gQU,U)>0 (UeD, |IUl|=1), (3.10)

therefore, for the Ricci curvature, we get that Ric(&, &) > 0.

Proof. For any unit vector U € D, by (3.6), we get
0 < g(¢U,¢U) = ~g(¢°U, U) = g(QU, U);
thus, K(&, U) > 0 and trace Q > 0. Therefore, from (3.7), we obtain Ric(¢, &) > 0.

By Theorem 3 and Corollary 2, and using [10, Corollary 3], we conclude the following.

Corollary 3. A weak K-contact manifold M(¢p, Q, &, 1, o) admits a smooth family of metrics g, (t € R)
such that M(¢;, Oy, €,1, g:) are weak K-contact manifolds with certainly defined ¢, and Q,; moreover,
g: converges exponentially fast, as t — —oo, to a limit metric g that gives a K-contact structure.

The following theorem generalizes a well-known result, see, for example, [6, Proposition 5.1].

Theorem 4. A weak K-contact manifold with the conditions that (VRic)(&, -) = 0 (in particular,
the Ricci tensor is parallel) and trace Q = const is an Einstein manifold of scalar curvature (2n +
1) trace Q.

Proof. Differentiating (3.7) and using (3.4) and the above-mentioned conditions, we get

0 = Vy (Ric(¢,£)) = (Vv Rio)(£, &) + 2Ric(Vy £,8)) = =2 Ric(pV, £));

hence, Ric(V, &) = n(V) Ric(é, €) = n(V) trace Q. Differentiating this, and then using

Um(V)) = g(Vy&, V) = —g(oU, V) + g(Vy V. )
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and assuming V,V = 0 at x € M, gives
(trace Q) g(¢V,U) = Vy (Ric(V,£)) = (Vy Ric)(V,£) + 2Ric(V, Vy §) = =2 Ric(V, pU);
hence, Ric(V, pU) = (trace Q) g(V, ¢U). Therefore, we obtain
Ric(U, V) = (trace Q) g(U,V)

for any vector fields U and V on M, which means that (M, g) is an Einstein manifold. Using the
definition of scalar curvature, T = trace Ric, we find that 7 = (2n + 1) trace Q.

Remark 4. For a weak K-contact manifold, by (3.5) and V. ¢ = 1 N®(£,V, Z) = 0 (see Remark 3 and

(3.1)), we get the following equality (well known for K-contact manifolds, such as in [5]):

R = > (Vo d)en

where (e;) is any local orthonormal basis of 9, and for contact manifolds we have }; ffl (Ve p)e; =2né.
For K-contact manifolds, this gives Ricn(g) = 2né (see [5, Proposition 7.2]) and Ric(&,€) = 2n;
moreover, the last condition characterizes K-contact manifolds among all contact metric manifolds.
3.3. Generalized Ricci solitons on weak K-contact manifolds

The generalized Ricci soliton equation in a Riemannian manifold (M, g) is defined by [4], i.e.,

1
§£Ug:—clUb®Ub+c2Ric+/1g, (3.11)

for some smooth vector field U and real ¢y,c; and A. If U = Vf in (3.11) for some f € C*(M); then
by the definition Hess (U, V) = % (£vr ©)(U,V), we get the generalized gradient Ricci soliton equation

Hess; = —cidf ®df + c;Ric +4 g. (3.12)

Each equation above is a generalization of the Einstein metric, Ric+1g = 0. For different values
of ¢, ¢; and 4, (3.11) is a generalization of the Killing equation (¢; = ¢; = 4 = 0), equation for
homotheties (c; = ¢, = 0), Ricci soliton equation (¢; = 0, ¢; = —1) and vacuum near-horizon geometry
equation (c; = 1, ¢; = 1/2), such as in [2].

First, we formulate some lemmas.

Lemma 3. For a weak K-contact manifold, we get
EeEu NV, 6) =gWU, V) +8(VeV U V) + VE(Ve UL E)
for all smooth vector fields U,V with V orthogonal to &.

Proof. This uses the equalities V¢ = 0 and (3.6), and is the same as for [2, Lemma 3.1].

Lemma 4 (see, for example, [2]). Let (M;g) be a Riemannian manifold and f € C*(M). Then, the
following holds for each vector field £,V on M:

Ldf ®df)(V.&) = VE()ES) + V() EE)).
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Recall that the Ricci curvature of any K-contact manifold satisfies the following condition:
Ric(&,U)=0 (U € D). (3.13)

Lemma 5. Let a weak K-contact manifold satisfy (3.13) and admit the generalized gradient Ricci
soliton structure given by (3.12). Then,

VVf = (A+cptrace Q)& —cié(f) VS,

Proof. This uses (3.7) and (3.12) and is analogous to the proof of [2, Lemma 3.3]. By (3.7) and (3.13),
we get

An(V) + c; Ric(é, V) = (A + ¢y trace Q) n(V). (3.14)
Using (3.12) and (3.14), we get
Hessf(&,V) = —c1&(f) g(Vf, V) + (1 + ¢y trace Q)n(V). (3.15)

Thus, (3.15) and the condition (3.12) for the Hessian complete the proof.
The next theorem generalizes [2, Theorem 3.1].

Theorem 5. Let a weak K-contact manifold with trace Q = const satisfy the generalized gradient
Ricci soliton equation (3.12) with c¢1(A + cytrace Q) # —1. Suppose that the condition (3.13) is true.
Then, f = const. Furthermore, if c; # 0, then the manifold is an Einstein one.

Proof. Let V € D. Then, by Lemma 3 with U = V f, we obtain
2(£(Hessp))(V,8) = V() + g(VeVeVE V) + Vg(VAVE 6. (3.16)
Using Lemma 5 in (3.16) and the properties V& = 0 and g(¢&,&) = 1 yields

2 (£-(Hessy))(V. &) = V(f) + (A + ¢y trace Q) g(V: £, V)
—18(VENIVL), V) + (A + ey trace Q) V(8(€,€)) — et VE(S))

= V() — a1ig(V&(HV ), V) = el VIE)). (3.17)
Using Lemma 5 with V € D, from (3.17), it follows that
2 (£e(Hess)(V, &) = V(f) — a1&€() V() + i V) — al VES)). (3.18)

Since ¢ is a Killing vector field, £, g = 0, which implies that £, Ric = 0. Using the above fact and
applying the Lie derivative to (3.12), gives

2 (E¢(Hessp)(V.€) = —2ci(E(df ® df))(V, ). (3.19)
Using (3.18), (3.19) and Lemma 4, we obtain
V(L + c1&E(N) + 1 €()°) = 0. (3.20)
By Lemma 5, we get
Cl€E(f) = 1 E@E V) = 18, VeV f) = (A + ea trace Q) = ¢ (). (321)
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Using (3.20) in (3.21), we get that V(f)(ci(A + ¢, trace Q) + 1) = 0. This implies that V(f) = 0,
provided that ¢;(4d + ¢, trace Q) + 1 # 0. Hence, V£ is parallel to &. Taking the covariant derivative of
Vf =&(f) ¢ and using (3.4), we obtain

gVz VL V) =ZEMNnWV) - () g@Z V), Z Ve Xy.
From this, by symmetry of Hessy, i.e., g(Vz V[, V) = g(Vy Vf,Z), we get that £(f) g(¢Z, V) = 0. For
V = ¢Z for some Z # 0, since g(¢pZ, pZ) > 0, we get £(f) = 0; so, Vf = 0, i.e., f = const. Thus, from
(3.12) and ¢, # 0, we conclude that the manifold is an Einstein manifold.

Remark 5. The following generalization of the gradient Ricci soliton equation was given in [3]:
Hess;, = —cidf®df, + c;Ric+Ag (3.22)

for some functions fi, f, € C*(M) and real ¢y, ¢; and A. For f; = f5, (3.22) reduces to (3.12).
Let a weak K-contact manifold with trace Q = const satisfy (3.13) and admit the generalized Ricci
soliton structure given by (3.22) with ¢;(4 + ¢, trace Q) # —1. Then, similar to Lemma 5, we get

Vfol = (/1 + ¢, trace Q)é: — le(fz) Vfg (323)

Using (3.23) and Lemmas 3 and 4, and, slightly modifying the proof of Theorem 5, we find that the
vector field V f is parallel to &, where f = f; + ¢;(d + ¢, trace Q) f>. Thus,df =0, i.e.,

dfi = —c1(A + ¢y trace Q)df>.
Using this in (3.22) and denoting a := A + ¢, trace Q, we get
—ciaHessy, = —c;df ®df, + c;Ric+1g. (3.24)

Then we obtain the following assertions (with three cases) that generalizes Theorem 5.

1. If cia # 0, then (3.24) reduces to Hessy, = édfz ®df; — Ccl—za Ric—qia g. By Theorem 5, if
cia # —1, then f, = const; moreover, if ¢, # 0, then (M, g) is an Einstein manifold.

2. If a = 0 and ¢, # 0, then (3.24) reduces to

0=cRic—cdf,®df, + 1g.

If c; # 0 and f5 # const, then we get a gradient quasi-Einstein manifold. The concept of a

quasi-Einstein manifold was introduced in [13] based on the condition that Ric(U, V) = ag(U,V) +

b u(U) u(V) for all vector fields U, V, where a and b # 0 are real scalars and y is a 1-form of unit norm.
3. If ¢; = 0, then (3.24) reduces to 0 = ¢; Ric +1 g, and for ¢, # 0, we get an Einstein manifold.

4. Conclusion

It is shown that the weak K-contact structure is a useful tool for studying unit Killing vector fields
on Riemannian manifolds, and that some results for K-contact manifolds can be extended to the case of
weak K-contact manifolds. Inspired by [5, Theorems 7.1 and 7.2], the following question can be posed:
is the condition (3.10), or the weaker condition (3.7), sufficient for a weak contact metric manifold to
be weak K-contact? To answer the question, some well-known results for contact metric manifolds,
such as [5, Proposition 7.1], must be generalized for weak contact metric manifolds. In conclusion, we
pose the following questions (about “weak™ analogues of results mentioned in [2, Remark 3.2]): is a
compact weak K-contact Einstein manifold a Sasakian manifold? Thus, is a compact weak K-contact
manifold admitting a generalized Ricci soliton structure a Sasakian manifold?
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