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Abstract: The clamped plate problem describes the vibration of a clamped plate in the classical elastic
mechanics, and the Xin-Laplacian is an important elliptic operator for understanding the geometric
structure of translators of mean curvature flow(MCF for short). In this article, we investigate the
clamped plate problem of the bi-Xin-Laplacian on Riemannian manifolds isometrically immersed in
the Euclidean space. On one hand, we obtain some eigenvalue inequalities of the bi-Xin-Laplacian on
some important Riemannian manifolds admitting some special functions. Let us emphasize that, this
class of manifolds contains some interesting examples: Cartan-Hadamard manifolds, some types of
warp product manifolds and homogenous spaces. On the other hand, we also consider the eigenvalue
problem of the bi-Xin-Laplacian on the cylinders and obtain an eigenvalue inequality. In particular, we
can give an estimate for the lower order eigenvalues on the cylinders.
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1. Introduction

In elastic mechanics, a fundamental theme is to describe vibrations of a clamped plate. To this end,
we usually consider a clamped plate problem of bi-Laplacian ∆2 as follows:{

∆2u = Λu, in Ω,

u = ∂u
∂n = 0, on ∂Ω,

(1.1)

where ∆, Ωand n denote the Laplacian, the bounded domain on the Euclidean space Rn, and normal
vector field to the boundary ∂Ω, respectively. In 1956, Payne, Pólya and Weinberger [1] considered
eigenvalue problem (1.1) of biharmonic operator ∆2 and established an interesting universal inequality
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as follows:

Λk+1 − Λk ≤
8(n + 2)

n2

1
k

k∑
i=1

Λi. (1.2)

In 1984, Hile and Yeh [2] improved (1.2) to the following:

k∑
i=1

Λ
1/2
i

Λk+1 − Λi
≥

n2k3/2

8(n + 2)

 k∑
i=1

Λi

−1/2

, (1.3)

by virtue of an improved techniques due to Hile and Protter [3]. In 1990, Hook [4], Chen and Qian [5]
also studied eigenvalue problem (1.1), and they independently established

n2k2

8(n + 2)
≤

∑
i=1

Λ
1/2
i

Λk+1 − Λi

 k∑
i=1

Λ
1/2
i . (1.4)

In 2006, Cheng and Yang [6] made an affirmative answer to Ashbaugh’s problem proposed in a survey
paper [7], where he asked whether one can establish eigenvalue inequalities for the clamped plate
problem which are analogous inequalities of Yang in the case of the Dirichlet eigenvalue problem of the
Laplace operator. More precisely, they proved

Λk+1 −
1
k

k∑
i=1

Λi ≤

[
8(n + 2)

n2

]1/2 1
k

k∑
i=1

[Λi (Λk+1 − Λi)]1/2 , (1.5)

which improved a universe bound established by Payne, Pólya and Weinberger in [1]. In 2007, Xia and
Wang [8] made an important attribution to the universal inequality of Yang type. More concretely, they
proved

k∑
i=1

(Λk+1 − Λi)2 6
8
n

 k∑
i=1

(Λk+1 − Λi) Λ
3/2
i

1/2  k∑
i=1

(Λk+1 − Λi) Λ
1/2
i

1/2

.

Next, we suppose that X :Mn → Rn+p is an n-dimensional, isometrically immersed submanifold with
mean curvature H. In 2011, Wang and Xia [9] proved

k∑
i=1

(Λk+1 − Λi)2
≤

4
n

 k∑
i=1

(Λk+1 − Λi)2
[(n

2
+ 1

)
Λ

1/2
i + C0

]
1/2

×

 k∑
i=1

(Λk+1 − Λi)
(
Λ

1/2
i + C0

)
1/2

,

(1.6)

where C0 = 1
4 infσ∈Π maxΩ

(
n2H2

)
, and Π represents a set of all isometric immersions fromMn into

Rn+p. In 2013, Wang and Xia [10] considered the fourth order Steklov eigenvalue problems on the
compact Riemannian manifolds and obtained some interesting lower bounds of the first non-zero
eigenvalue.

In what follows, we assume that ν ∈ Rn+p is a vector field defined on Mn with |ν|g0 = constant,
where | · |2g0

is a Euclidean norm with respect to the standard inner product 〈·, ·〉g0 and g0 is a Euclidean
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metric on Rn+p. Also, we use the following notations: 〈·, ·〉g, | · |2g, ∇, ∆, div and ν> to denote the
Riemannian inner product associated with induced metric g, norm with respect to the inner product
〈·, ·〉g, gradient, Laplacian, divergence onMn and the projection of vector field ν on the tangent bundle
ofMn, respectively. Recently, Xin introduced [11] an elliptic differential operator defined by

Lν(·) = ∆(·) + 〈ν,∇(·)〉g0 = e−〈ν,X〉g0 div(e〈ν,X〉g0∇(·)), (1.7)

which is called the Xin-Laplacian. We refer the reader to the excellent survey [12] for detailed
introduction to this operator, where Xin reviewed briefly some important progress on singularities of
MCF. We note that the Xin-Laplacian is similar to the Witten Laplacian that appeared in [13–18] and L
operator introduced by Colding and Minicozzi in [19] (or see [20]), and all of those operators play a
critical role in understanding the singularities of geometric flows. In particular, Xin-Laplacian is a very
important elliptic differential operator for understanding the geometric structure of translator of MCF.
See [11, 21, 22] and the references therein. Let us emphasize that, from a more analytic perspective, just
like the Witten Laplacian and L operator, it is of great importance to prove some analytic properties of
the Xin-Laplacian. For example, we can prove some mean value inequalities and Liouville properties
by maximum principle in terms of the Xin-Laplacian. Of course, one can also consider Gauss maps,
heat kernel associated with the Xin-Laplacian and so on. It is the main task of this paper to study the
following eigenvalue problem of the bi-Xin-Laplacian on the complete Riemannian manifoldMn: L2

νu = Γu, in Ω,

u = ∂u
∂n = 0, on ∂Ω,

(1.8)

where n denotes the outward unit normal to the boundary ∂Ω. Let Γk be the kth eigenvalue according
to the eigenfunction uk. Moreover, we always assume that the boundary ∂Ω of bounded domain Ω is
piecewise smooth to avoid some possible technical difficulties. Clearly, eigenvalue problem (1.8) has
discrete and real spectrum satisfying the following connections:

0 ≤ Γ1 ≤ Γ2 ≤ · · · ↗ +∞,

where each Γi has finite multiplicity which is repeated according to its multiplicity. Recently, in the
separate papers [23,24], the second author investigated eigenvalue problem (1.8) of the bi-Xin-Laplacian
on the complete Riemannian submanifolds isometrically embedded into Rn+p with arbitrary codimension.
Specially, the author obtained some universal bounds in the case of translating solitons. Motivated by
the works done in [8, 9, 17], the present paper continues to contribute on the spectra of bi-Xin-Laplacian
on the Riemannian manifolds. Essentially, comparing the cases of Laplacian or its weighted version,
some of our results are intrinsic without considering the extra term.

The remainder of the paper is structured as follows. In Section 2, we recall some known results and
prove some key technical lemmas. In Section 3, we investigate the eigenvalues of bi-Xin-Laplacian
on the manifolds admitting some special functions. In fact, many important examples satisfy those
conditions in Theorem 3.1 and Theorem 3.5. As another important and interesting manifold, we discuss
the the eigenvalues on cylinders in Section 4.

2. Preliminaries

In this section, we would like to prove several key auxiliary lemmas.
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Let x1, x2, · · · , xn+1 be (n + 1) coordinate functions defined on the Euclidean space Rn+1. Then, for
any point x ∈ Ω (cf. [25, 26]),

n+1∑
p=1

〈∇xp,∇ui〉
2
g = |∇ui|

2
g. (2.1)

A direct calculation shows that (cf. [23]),

n+1∑
α=1

〈∇xα, ν〉2g0
= |ν>|2g0

. (2.2)

By making use of Cauchy-Schwarz inequality and (2.2), we have

n+1∑
α=1

〈∇xα,∇ui〉g 〈∇xα, ν〉g0 ≤ |∇ui|g |ν
>|g0 . (2.3)

Lemma 2.1. Let w be a smooth function defined onMn, then

〈ν,∇w〉g0 ≤ |ν
>|g0 |∇w|g. (2.4)

Proof. We choose a new coordinate system x̄ =
(
x̄1, · · · , x̄n+p

)
of Rn+p given by x − x(P) = x̄A,

such that, at the point P,
(
∂
∂x̄1

)
P
, · · · ,

(
∂
∂x̄n

)
P

span a tangent space TPM
n and 〈 ∂

∂x̄i ,
∂
∂x̄ j 〉g = δi j, where

A =
(
aαβ

)
∈ O(n + p) is an orthogonal matrix of (n + p) × (n + p) type. Let ν =

∑n+p
θ=1 νθ

∂
∂x̄θ ∈ R

n+p, and

g0αβ = 〈 ∂
∂x̄α ,

∂
∂x̄β 〉g0 . Let w ∈ C∞(Mn), and x̄ =

(
x̄1, · · · , x̄n

)
be a local coordinate system. On one hand,

under this coordinate system, a straightforward computation shows that

ν> =

n∑
θ=1

νθ
∂

∂x̄θ
, (2.5)

and

〈ν,∇w〉2g0
=

 n∑
i, j=1

νi
∂w
∂x̄ j 〈

∂

∂x̄i ,
∂

∂x̄ j 〉g0


2

=

 n∑
i, j=1

n+p∑
α,β=1

νi
∂w
∂x̄ j 〈

∂xα

∂x̄i

∂

∂xα
,
∂xβ

∂x̄ j

∂

∂xβ
〉g0


2

=

 n∑
i, j=1

n+p∑
α=1

νi
∂w
∂x̄ j

∂xα

∂x̄i

∂xα

∂x̄ j


2

=

 n∑
i, j=1

n+p∑
α,β,γ=1

aαβaαγνi
∂w
∂x̄ j

∂x̄β

∂x̄i

∂x̄γ

∂x̄ j


2

.

(2.6)

On the other hand, we have
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 n∑
i, j=1

n+p∑
α,β,γ=1

aαβaαγνi
∂w
∂x̄ j

∂x̄β

∂x̄i

∂x̄γ

∂x̄ j


2

=

 n∑
i, j=1

n+p∑
α,β,γ=1

aαβaαγνi
∂w
∂x̄ j δβiδγ j


2

=

 n∑
i, j=1

n+p∑
α=1

aαi aαj νi
∂w
∂x̄ j


2

=

 n∑
i, j=1

νi
∂w
∂x̄ j

n+p∑
α=1

aαi aαj




2

=

 n∑
i=1

νi
∂w
∂x̄i

2

.

(2.7)

From (2.6) and (2.7), it holds that

〈ν,∇w〉2g0
=

 n∑
i=1

νi
∂w
∂x̄i

2

. (2.8)

Furthermore, Cauchy-Schwarz inequality implies that n∑
θ=1

νθ
∂w
∂x̄θ

2

≤

 n∑
θ=1

ν2
θ

 · n∑
θ=1

(
∂w
∂x̄θ

)2

. (2.9)

Combining (2.8), (2.5) and (2.9), we get (2.4). This ends the proof.

In addition, we need the following lemma, which was proved in [23].

Lemma 2.2. (General Formula) Let Mn be an n-dimensional, complete, Riemannian manifold
equipped with smooth metric g, and Ω a bounded domain onMn. Assume that h is a function defined
on Ω̄, i.e., Ω ∪ ∂Ω), with h ∈ C4(Ω) ∩C3(∂Ω), and

L2
νui = Γiui, in Ω,

ui = ∂ui
∂n = 0, on ∂Ω,∫

Ω
uiu je〈ν,X〉g0 dv = δi j, ∀i, j = 1, 2, . . . ,

where n denotes the outward normal vector field to the boundary ∂Ω. For any k ∈ Z+ and any δ > 0, it
holds that

k∑
i=1

(Γk+1 − Γi)2
∫

Ω

u2
i |∇h|2ge〈ν,X〉g0 dv ≤

k∑
i=1

δ (Γk+1 − Γi)2
∫

Ω

Ψi(h)e〈ν,X〉g0 dv

+

k∑
i=1

(Γk+1 − Γi)
δ

∫
Ω

Θi(h)e〈ν,X〉g0 dv,

(2.10)

where

Ψi(h) = −2|∇h|2guiLνui + 4uiLνh 〈∇h,∇ui〉g + 4 〈∇h,∇ui〉
2
g + u2

i (Lνh)2 , (2.11)
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and

Θi(h) =

(
〈∇h,∇ui〉g +

uiLνh
2

)2

. (2.12)

Lemma 2.3. Under the same assumption of Lemma 2.2, we have∫
Ω

|∇ui|
2
g e〈ν,X〉g0 dv ≤ Γ

1/2
i , (2.13)

and

−

∫
Ω

ui 〈∇ui, ν〉g0 e〈ν,X〉g0 dv ≤ C1Γ
1/4
i , (2.14)

where C1 = maxΩ |ν
>|g0 .

Proof. Utilizing Cauchy-Schwarz inequality, the divergence theorem and the condition ∂ui
∂n = 0 on ∂Ω,

since Lν is self-adjoint with respect to the weighted measure e〈ν,X〉g0 dv, we obtain∫
Ω

|∇ui|
2
g e〈ν,X〉g0 dv = −

∫
Ω

uiLνuie〈ν,X〉g0 dv

≤

{∫
Ω

u2
i e〈ν,X〉g0 dv

}1/2 {∫
Ω

(Lνui)2 e〈ν,X〉g0 dv
}1/2

= Γ
1/2
i ,

and

−

∫
Ω

ui 〈∇ui, ν〉g0 e〈ν,X〉g0 dv ≤
∫

Ω

|ui|a |∇ui|g |ν
>|g0e

〈ν,X〉g0 dv

≤ C1

(∫
Ω

u2
i e〈ν,X〉g0 dv

)1/2 (∫
Ω

|∇ui|
2
g e〈ν,X〉g0 dv

)1/2

≤ C1Γ
1/4
i .

Thus, we finish the proof of this lemma.

Next, we assume that Mn is an n-dimensional unit round cylinder Rn−m × Sm(1) and denote the
position vector of Rn−m × Sm(1) in (n + 1)-dimensional Euclidean space Rn+1 by

x = (v, w) = (x1, x2, . . . , xn−m, xn−m+1, xn−m+2 · · · , xn, xn+1),

where v = (x1, x2, . . . , xn−m),w = (xn−m+1, xn−m+2 · · · , xn, xn+1). A simple calculation shows that

n+1∑
α=n−m+1

(xα)2 = 1,
n+1∑
α=1

|∇xα|2g = n. (2.15)

By (2.15), it is easy to verify four expressions as follows:

n+1∑
β=n−m+1

|∇xβ|2g = −

n+1∑
α=1

xα∆xα = m. (2.16)

Noticing that equation (2.16) implies that n2H2 = m2, the following lemmas are some immediately
consequences of Lemma 3.2 and Lemma 3.3 in [23].
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Lemma 2.4. Let x1, x2, . . . , xn+1 be (n + 1) coordinate functions of Rn+1. For any i = 1, 2, · · · k and
α = 1, 2, · · · , n + 1, where k is an arbitrary positive integer, let

Ψ̂i,α :=
∫

Ω

Ψi(xα)e〈ν,X〉g0 dv,

where function Ψi is given by (2.11). Then,

n+1∑
α=1

Ψ̂i,α ≤

∫
Ω

[
−2nuiLνui + 4 |∇ui|

2
g + u2

i

(
m2 + |ν>|2g0

)]
e〈ν,X〉g0 dv

+ 4Γ
1/4
i

(∫
Ω

u2
i |ν
>|2g0

e〈ν,X〉g0 dv
)1/2

.

(2.17)

Lemma 2.5. Let x1, x2, . . . , xn+1 be (n+1)the standard coordinate functions ofRn+1. For any i = 1, 2, · · · k
and α = 1, 2, · · · , n + 1, where k is an arbitrary positive integer, let

Θ̂i,α :=
∫

Ω

Θi(xα)e〈ν,X〉g0 dv,

where function Θi is given by (2.12). Then,

n+1∑
α=1

Θ̂i,α ≤

∫
Ω

[
|∇ui|

2
g +

1
4

u2
i

(
m2 + |ν>|2g0

)]
e〈ν,X〉g0 dv + Γ

1/4
i

[∫
Ω

(ui|ν
>|g0)

2e〈ν,X〉g0 dv
]1/2

. (2.18)

3. Eigenvalues on manifolds admitting special functions

In this section, we consider the eigenvalue problem on some manifolds admitting certain special
function. Next, let us establish the first theorem.

Theorem 3.1. Assume thatMn is an n-dimensional, isometrically immersed, complete submanifold of
the Euclidean space Rn+p and g is a induced metric from the immersed map X :Mn → Rn+p. Let Ω be
a bounded domain onMn with piecewise smooth boundary ∂Ω. Provided that there exist a function
ϕ : Ω→ R and a positive constant D1 satisfy

|∇ϕ|g = 1, and |∆ϕ|a ≤ D1, (3.1)

where |w|a denotes the absolute value of w. Then, the eigenvalues Γk of the eigenvalue problem (1.8),
where k = 1, 2, · · · , satisfy

k∑
i=1

(Γk+1 − Γi)2
≤

 k∑
i=1

(Γk+1 − Γi)2
[
6Γ

1/2
i + 4 (C1 + D1) Γ

1/4
i + (C1 + D1)2

]
1/2

×

 k∑
i=1

(Γk+1 − Γi)
[
4Γ

1/2
i + 4 (C1 + D1) Γ

1/4
i + (C1 + D1)2

]
1
2

,

(3.2)

where C1 = maxΩ |ν
>|g0 .
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Remark 3.2. We further suppose that Ricci curvature of Mn is bounded from below by a uniform
nonnegative constant −(n − 1)κ2(κ ≥ 0), i.e., RicMn ≥ −(n − 1)κ2, κ ≥ 0. If there exists a function
ϕ ∈ C∞(Mn) such that |∇ϕ|g = 1, then, by Remark 3.6 in [27], |∆ϕ|a ≤ (n − 1)κ2. Let ξ : [0,+∞)→ M
be a normal geodesic ray, namely a unit speed geodesic with d(ξ(s), ξ(t)) = t − s for any t > s > 0.
Then, Busemann function bξ w.r.t. geodesic ray ξ is defined as bξ(q) := limt→+∞(d(q, ξ(t)) − t). Under
the assumption thatMn is an Hadamard manifold, bξ is a convex function of class C2 with |∇bξ |g ≡ 1
and these conditions characterize Busemann functions. Here, we refer the reader to [28, 29] for more
detailed information. Obviously, Busemann functions defined on Cartan-Hadamard manifolds, whose
Ricci curvature is bounded from below, satisfy those conditions in Theorem 3.1.

Remark 3.3. We assume that Nn−1 is complete Riemannian manifold with Ricci curvature bounded
below andMn = Nn−1 × R is the product of N and R with the product metric, and then the function
f :Mn → R given by f (p, t) = t satisfies the conditions of Theorem 3.1.

Remark 3.4. LetMn = R × Nn−1 be an n-dimensional complete manifold with warped product metric
ds2
M

= dt2 + exp(2t)ds2
N , where Nn−1 is an (n − 1)-dimensional complete Riemannian manifold with

RicNn−1 ≥ 0. Then, it is easy to verify that RicMn ≥ −(n − 1). We refer the readers to [30] for details.
Therefore, the function ϕ :Mn → R given by ϕ(p, t) = t satisfies conditions |∇ϕ|g = 1 and |∆ϕ|a ≤ n − 1.

Proof of Theorem 3.1. Substituting h = ϕ into (2.10), we get

k∑
i=1

(Γk+1 − Γi)2
∫

Ω

u2
i |∇ϕ|

2
ge〈ν,X〉g0 dv

≤

k∑
i=1

δ (Γk+1 − Γi)2
∫

Ω

(
−2|∇ϕ|2guiLνui + 4uiLνϕ 〈∇ϕ,∇ui〉g

+4 〈∇ϕ,∇ui〉
2
g + u2

i (Lνϕ)2
)

e〈ν,X〉g0 dv

+

k∑
i=1

(Γk+1 − Γi)
δ

∫
Ω

(
〈∇ϕ,∇ui〉g +

uiLνϕ

2

)2

e〈ν,X〉g0 dv,

(3.3)

where δ is any positive constant. According to (2.4), (3.1) and Cauchy-Schwarz inequality, we obtain

Lνϕ 〈∇ϕ,∇ui〉g = (∆ϕ + 〈ν,∇ϕ〉g0) 〈∇ϕ,∇ui〉g

≤ |∆ϕ|a|∇ϕ|g |∇ui|g + |∇ϕ|2g|ν
>|g0 |∇ui|g

≤ (C1 + D1) |∇ui|g ,

(3.4)

(Lνϕ)2 = (∆ϕ + 〈ν,∇ϕ〉g0)
2 ≤ (|∆ϕ|a + |ν>|g0 |∇ϕ|g)2 ≤ (C1 + D1)2 , (3.5)

and (
〈∇ϕ,∇ui〉g +

uiLνϕ

2

)2

= 〈∇ϕ,∇ui〉
2
g + 〈∇ϕ,∇ui〉g uiLνϕ +

1
4

u2
i (Lνϕ)2

≤ |∇ui|
2
g + (C1 + D1)

∣∣∣∇ui|g|ui

∣∣∣
a

+
1
4

(C1 + D1)2 u2
i .

(3.6)

Substituting (3.4)-(3.6) into (3.3), we infer that,
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k∑
i=1

(Γk+1 − Γi)2

≤

k∑
i=1

δ (Γk+1 − Γi)2
∫

Ω

[
−2uiLνui + 4 (C1 + D1) |∇ui|g |ui|a

+4 |∇ui|
2
g + u2

i (C1 + D1)2
]

e〈ν,X〉g0 dv

+

k∑
i=1

(Γk+1 − Γi)
δ

∫
Ω

[
|∇ui|

2
g + (C1 + D1) |∇ui|g |ui|a +

1
4

(C1 + D1)2 u2
i

]
e〈ν,X〉g0 dv.

Furthermore, inserting (2.13) and (2.14) into the above inequality, we derive

k∑
i=1

(Γk+1 − Γi)2
≤

k∑
i=1

δ (Γk+1 − Γi)2
[
6Γ

1/2
i + 4 (C1 + D1) Γ

1/4
i + (C1 + D1)2

]
+

k∑
i=1

(Γk+1 − Γi)
δ

[
Γ

1/2
i + (C1 + D1) Γ

1/4
i +

1
4

(C1 + D1)2
]
.

Therefore, to get (3.2), the undetermined positive constant δ could be taken by

δ =

{∑n
i=1 (Γk+1 − Γi)

[
Γ

1/2
i + (C1 + D1) Γ

1/4
i + 1

4 (C1 + D1)2
]}1/2{∑n

i=1 (Γk+1 − Γi)2
[
6Γ

1/2
i + 4 (C1 + D1) Γ

1/4
i + (C1 + D1)2

]}1/2 > 0,

since the eigenvalues are monotonically increasing and the first eigenvalue is simple. This completes
the proof of Theorem 3.1.

The second part of this section is to establish the following theorem.

Theorem 3.5. Assume that Ω is a bounded domain with piecewise smooth boundary in an n-dimensional
complete Riemannian manifoldMn isometrically immersed into the Euclidean space Rn+p via a map
X :Mn → Rn+p. Let Γi be the i-th eigenvalue of the problem (1.8). If the bounded domain Ω admits an
eigenmap f = ( f1, f2, . . . , fm+1) from Ω to the unit sphere Sm(1) corresponding to an eigenvalue η, that
is,

∆ fα = −η fα, where α = 1, . . . ,m + 1, (3.7)

and
m+1∑
α=1

f 2
α = 1. (3.8)

Then,
k∑

i=1

(Γk+1 − Γi)2
≤

 k∑
i=1

(Γk+1 − Γi)2
(
6Γ

1/2
i + 4C1Γ

1/4
i +

(
C2

1 + η
))

1/2

×

 k∑
i=1

(Γk+1 − Γi)
(
4Γ

1/2
i + 4C1Γ

1/4
i +

(
C2

1 + η
))

1/2

,

(3.9)

where Sm(1) is a unit sphere with dimension m and C1 = maxΩ |ν
>|g0 .
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Remark 3.6. Assume that Riemannian manifoldMn is compact and homogeneous, and then it admits
eigenmaps to some unit spheres for the first positive eigenvalue of the Laplacian (cf. [31, Corollary 4]),
which means that all conditions presented in Theorem 3.5 are satisfied for any compact homogeneous
Riemannian manifold.

Proof of Theorem 3.5. It follows by taking h = fα in (2.10) and summing over α that

k∑
i=1

m+1∑
α=1

(Γk+1 − Γi)2
∫

Ω

u2
i |∇ fα|2g e〈ν,X〉g0 dv

≤

k∑
i=1

m+1∑
α=1

δ (Γk+1 − Γi)2
∫

Ω

[
− 2 |∇ fα|2g uiLνui

+ 4uiLν fα 〈∇ fα,∇ui〉g + 4 〈∇ fα,∇ui〉
2
g + u2

i (Lν fα)2
]
e〈ν,X〉g0 dv

+

k∑
i=1

m+1∑
α=1

(Γk+1 − Γi)
δ

∫
Ω

(
〈∇ fα,∇ui〉g +

uiLν fα
2

)2

e〈ν,X〉g0 dv.

(3.10)

Taking the Laplacian of the equation (3.8) and noticing that ∆ fα = −η fα, α = 1, . . . ,m + 1, a straightfor-
ward calculation shows that

m+1∑
α=1

|∇ fα|2g = η. (3.11)

Computing the gradient of two sides of equation (3.8), we assert that

m+1∑
α=1

fα∇ fα = 0. (3.12)

Synthesizing (3.11), (3.12), Lemma 2.1 and the Cauchy-Schwarz inequality, we derive

m+1∑
α=1

Lν fα 〈∇ fα,∇ui〉g =

m+1∑
α=1

(
∆ fα + 〈ν,∇ fα〉g0

)
〈∇ fα,∇ui〉g

≤

m+1∑
α=1

(
−η fα 〈∇ fα,∇ui〉g + |∇ fα|2g |ν

>|g0 |∇ui|g

)
≤ C1η |∇ui|g ,

(3.13)

m+1∑
α=1

(Lν fα)2 =

m+1∑
α=1

(
∆ fα + 〈ν,∇ fα〉g0

)2

=

m+1∑
α=1

(
(∆ fα)2 + 2∆ fα 〈ν,∇ fα〉g0

+ 〈ν,∇ fα〉2g0

)
≤ ηC2

1 + η2,

(3.14)

and
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m+1∑
α=1

(
〈∇ fα,∇ui〉g +

uiLν fα
2

)2

=

m+1∑
α=1

[
〈∇ fα,∇ui〉

2
g + 〈∇ fα,∇ui〉g uiLν fα +

1
4

u2
i (Lν fα)2

]
≤ η |∇ui|

2
g + C1η

∣∣∣∇ui|g|ui

∣∣∣
a

+
1
4

(
ηC2

1 + η2
)

u2
i .

(3.15)

Furthermore, substituting (3.7), (3.11)-(3.15) into (3.10), with the aid of (2.13) and (2.14), we arrive at

η

k∑
i=1

(Γk+1 − Γi)2
≤

k∑
i=1

δ (Γk+1 − Γi)2
∫ 2

Ω

[
−2ηuiLνui + 4C1ηui |∇ui|g

+4η |∇ui|
2
g + u2

i

(
ηC2

1 + η2
)]

e〈ν,X〉g0 dv +

k∑
i=1

(Γk+1 − Γi)
δ

×

∫
Ω

[
η |∇ui|

2
g + C1η

∣∣∣∇ui|g|ui

∣∣∣
a

+
1
4

(
ηC2

1 + η2
)

u2
i

]
e〈ν,X〉g0 dv

≤

k∑
i=1

δ (Γk+1 − Γi)2
[
6ηΓ1/2

i + 4C1ηΓ
1/4
i +

(
ηC2

1 + η2
)]

+

k∑
i=1

(Γk+1 − Γi)
δ

[
ηΓ1/2

i + C1ηΓ
1/4
i +

1
4

(
ηC2

1 + η2
)]
.

(3.16)

Finally, we put

δ =

{∑k
i=1 (Γk+1 − Γi)

[
ηΓ1/2

i + C1ηΓ
1/4
i + 1

4

(
ηC2

1 + η2
)]}1/2{∑k

i=1 (Γk+1 − Γi)2
[
6ηΓ1/2

i + 4C1ηΓ
1/4
i +

(
ηC2

1 + η2
)]}1/2 > 0,

and insert it into (3.16) to obtain desired inequality (3.9).

4. Eigenvalues on cylinders

In this section, we investigate eigenvalue problem (1.8) on an n-dimensional cylinder Rn−m × Sm.

Theorem 4.1. Let Mn be an n-dimensional cylinder Rn−m × Sm(1) equipped with smooth metric
g = 〈, 〉Rn−m + 〈, 〉Sm(1) and Ω a bounded domain on this product manifold. Let Γi be the i-th eigenvalue of
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the problem (1.8). Then,

k∑
i=1

(Γk+1 − Γi)2

≤
4
n

 k∑
i=1

(Γk+1 − Γi)2
[(n

2
+ 1

)
Γ

1/2
i + 4C3Γ

1/4
i + 4C2

3 +
m2

4

]
1/2

×

 k∑
i=1

(Γk+1 − Γi)
(
Γ

1/2
i + 4C3Γ

1
4
i + 4C2

3 +
m2

4

)
1/2

,

(4.1)

where C1 = maxΩ |ν
>|g0 .

Remark 4.2. In fact, inequality (4.1) can be regard as a bound of Yang type, and also be compared
with the following eigenvalue inequality for the version of drifting Laplacian:

k∑
i=1

(Λk+1 − Λi)2
≤

4
n

 k∑
i=1

(Λk+1 − Λi)2
[(n

2
+ 1

)
Λ

1/2
i + C0

]
1/2

×

 k∑
i=1

(Λk+1 − Λi)
(
Λ

1/2
i + C0

)
1/2

,

established by Wang and Xia in [8].

Proof of theorem 4.1. For each α ∈ {1, 2, · · · , n + 1}, applying h = xα to Lemma 2.2, we assert that

k∑
i=1

(Γk+1 − Γi)2
∫

Ω

u2
i |∇xα|2e〈ν,X〉g0 dv ≤

k∑
i=1

δ (Γk+1 − Γi)2 Ψ̂i,α

+

k∑
i=1

(Γk+1 − Γi)
δ

Θ̂i,α.

(4.2)

Utilizing (2.15), we arrive at ∫
Ω

u2
i

n+1∑
α=1

|∇xα|2g e〈ν,X〉g0 dv = n.

Hence, summing over α from 1 to n + 1 for (4.2), one has

n
k∑

i=1

(Γk+1 − Γi)2
≤

k∑
i=1

n+1∑
α=1

δ (Γk+1 − Γi)2 Ψ̂i,α +

k∑
i=1

n+1∑
α=1

(Γk+1 − Γi)
δ

Θ̂i,α

=

k∑
i=1

δ (Γk+1 − Γi)2
n+1∑
α=1

Ψ̂i,α +

k∑
i=1

(Γk+1 − Γi)
δ

n+1∑
α=1

Θ̂i,α.

(4.3)

Next, let us estimate the upper bounds for Ψ̂i,α and Θ̂i,α. Letting C1 = maxΩ |ν
>|g0 , from (2.17) and

(2.18), using (2.13) and proceeding as in the proof of Theorem 3.1, we conclude that
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n+1∑
α=1

Ψ̂i,α ≤ (2n + 4)Γ1/2
i +

(
16C1Γ

1
4
i + 16C2

1 + m2
)
, (4.4)

and

n+1∑
α=1

Θ̂i,α ≤ Γ
1/2
i +

1
4

(
16C1Γ

1/4
i + 16C2

1 + m2
)
. (4.5)

Thus, substituting (4.4) and (4.5) into (4.3) yields

n
k∑

i=1

(Γk+1 − Γi)2
≤

k∑
i=1

δ (Γk+1 − Γi)2
[
(2n + 4)Γ1/2

i + 4C3

]
+

k∑
i=1

Γk+1 − Γi

δ

(
Γ

1/2
i + C3

)
, (4.6)

where C3 = 1
4

(
16C1Γ

1
4
i + 16C2

1 + m2
)
. The remainder step is to take

δ =

[∑k
i=1 (Γk+1 − Γi)

(
Γ

1/2
i + C3

)]1/2[∑k
i=1 (Γk+1 − Γi)2

(
(2n + 4)Γ1/2

i + 4C3

)]1/2 > 0,

and insert it into (4.6), which gets desired inequality (4.1).

�

Remark 4.3. Recall that the second author proved another general formula. See Lemma 2.2 in [24].
According to this formula and slightly modifying the proof of Theorem 4.1, we can give the following
estimate for the eigenvalues with lower order of L2

ν operator on the round cylinder Rn−m × Sm(1):

n∑
i=1

(Γi+1 − Γ1)
1
2 ≤ 4

{[(n
2

+ 1
)
Γ

1/2
1 + 4C1Γ

1/4
1 + 4C2

1 +
m2

4

] (
Γ

1/2
1 + 4C1Γ

1
4
1 + 4C2

1 +
m2

4

)}1/2

,

where C1 = maxΩ |ν
>|g0 .
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