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Abstract: In this work, the initial-boundary value problem for the global dynamical properties of
solutions to a class of finite degenerate fourth-order parabolic equations with mean curvature nonlinearity
is studied. With the help of the Nehari flow and Levine’s concavity method, we establish some sharp-like
threshold classifications of the initial data under sub-critical, critical and supercritical initial energy
levels, that is, we describe the size of an initial data set. It requires the presumption that the initial data
starting from one region of phase space have uniform global dynamical behavior, which means that the
solution exists globally and decays via energy estimates that ultimately result in the solution tending
to zero in the forward time. For the case in which the initial data corresponds to another region, we
prove that the solutions related to these initial data are subject to blow-up phenomena in a finite time. In
addition, we estimate the corresponding upper bound of the lifespan of the blow-up solution.
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1. Introduction

1.1. Setting of the problem

This paper focuses on the global dynamical behavior of solutions to a class of finite degenerate
fourth-order parabolic equations with mean curvature nonlinearity on Ω ⊂ R2, i.e.,

ut + ∆
2
Xu − ∇X ·

 ∇Xu√
1 + |∇Xu|2

 = |u|p−2u, x ∈ Ω, t > 0, (1.1)

u =
∂u
∂ν
= 0, x ∈ Ω, t > 0, (1.2)

u(0, x) = u0(x), x ∈ Ω, (1.3)
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where Ω is a bounded open domain with C4 boundary ∂Ω or a bounded convex polygonal, which
satisfies that Ω ⊂⊂ Ω′ and Ω′ is an open bounded domain of R2. ν is the unit outward normal on ∂Ω
and u0 ∈ H2

X,0(Ω). X = (X1, X2) is a system of C∞ smooth linearly independent vector fields defined on
Ω′ with X∗j = −X j, and ∆X :=

∑2
j=1 X2

j is a subelliptic operator. Moreover, 1 < p < 2
µ−2 and µ is the

generalized Métivier index of X on Ω. In addition, we give the following assumptions:

(H1) There exists a family of (non-isotropic) dilations {δλ}λ>0 of the form

δλ : R2 → R2, δλ(x) = (λσ1 x1, λ
σ2 x2),

where 1 = σ1 ≤ σ2 represents integers satisfying that Xi is δλ-homogeneous of degree 1* :

X j( f ◦ δλ) = λ(X j f ) ◦ δλ, ∀λ > 0, f ∈ C∞(R2), j = 1, 2.

Next, we define by µ :=
2∑

j=1
σ j the so-called pointwise homogeneous dimension or non-isotropic

dimension of (R2, δλ).
(H2) X fulfills Hörmander’s condition [1] in Ω′, i.e., X that is commuted as follows:

X j = [X j1, [X j2, ...[X jk−1 , X jk]...]], 1 ≤ ji ≤ 2,

up to a certain fixed length k ≤ Q, span the tangent space at each point of Ω′ and X1, X2 satisfy
Hörmander’s rank condition at 0, that is, dim{Y(0) | Y ∈ Lie(x)} = 2, where Lie(x) is the smallest
Lie sub-algebra of the Lie algebra of the smooth vector fields containing X on R2. Note that Q > 1
is called the Hörmander’s index of X on Ω′, which is regarded as the smallest positive integer for
the Hörmander’s condition being fulfilled.

The global well-posedness and finite time blow-up of the solution to a nonlinear fourth order
parabolic equation with mean curvature nonlinearity have been garnering widespread interest and arise
in various applications in many fields, especially in mathematical biology and fluid dynamics [2, 3].
Indeed, many of the studies on epitaxial film growth have shown that it is characterized with mean
curvature nonlinearities that occur mainly on the surfaces of materials, including studies on crystal
growth, catalytic reactions and the production of nanostructures. One of the earliest models to apply a
fourth-order parabolic differential equation to describe the growth of epitaxial films is given by

ut = −K1∆
2u + K2 det(D2u) + ξ(x, t), (1.4)

where u = u(x, t) describes the height of the growth interface at the spatial point x ∈ Ω at time t ≥ 0, K1

and K2 are positive constants and the term −K1∆
2u is used to describe the random adatom† dispersal

which attempts to minimize the system’s chemical potential. One of the main reasons for this interest is
that the suppression of the growth of epitaxial films of materials has a wide range of applications in
material process manufacturing. For example, during the design of semiconductor-coated films (see [4]
and the references therein), epitaxial film growth of some compositions reduces superconductivity at high

*The linear independence of the Xi is meant with respect to the vector space of the smooth vector fields on R2; this must not be
confused with the linear independence of the vectors X1(x), X2(x) in R2.

†adatom-atoms that are adsorbed onto the surface but have not yet become part of the crystal; they diffuse on a terrace and likely hit a
terrace boundary.
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temperatures. Therefore, the material’s service life can be effectively increased by constructing a film on
the substrate via chemical vapor deposition. Although the process is very complex, several descriptions
and simulations of atomic models and continuum models exist for such problems [5]. A significant
challenge in the construction of these models is understanding these growth processes qualitatively and
quantitatively to formulate control laws that optimize specific properties of the films, such as flatness
and electrical conductivity. Based on dynamical mean-field theory and phenomenological theory [5, 6],
another model that can describe epitaxial growth related to problem (1.1) is given by

ut = −∆
2u − λ∇ · (|∇u|p−2∇u) + g(x, t, u), (1.5)

where u : Ω × [0,∞) → R describes the height of the growing interface at the spatial location
x = (x1, x2) ∈ Ω ⊂ R2 at the temporal instant t ∈ [0,∞), under the conditions that λ = 1 or −1, p > 2.
The model focuses on describing the particle dynamics on the thin film at the microscopic level [6, 7].
Specifically, each term in the model reflects the corresponding physical significance of the particle,
i.e., the term −∆2u represents the Euler-Lagrange equation corresponding to the Willmore functional,
which is subject to the fact that, with the increase of chemical bonds between atoms and the crystal
structure, the random dispersion of atoms will minimize the chemical potential of the system. The term
−λ∇ · (|∇u|p−2∇u) describes the jumping of atoms, and the sign of λ represents the jumping direction
(upward or downward ) of atoms; and g(x, t, u) represents the linear or the nonlinear noise. Among the
many models describing epitaxial growth, there is a model containing mean curvature that can be used
to describe the crystal surface growth process given by

ut = −∆
2u − λ∇ · (

∇u
1 + |∇u|2

) (1.6)

in a two-dimensional bounded domain Ω ⊂ R2. This model is based on the BCF theory proposed by
Burton, Cabrera and Frank [8]. And, it is primarily established on the two-dimensional bounded field
Ω ⊂ R2, where the mean curvature term is regarded as a degenerate operator to describe the mean
curvature. It plays a central role in the analysis of the fundamental mathematics of a few physical
and geometric issues, including the described mean curvature questions for Cartesian surfaces in the
Euclidean space [9,10], the capillarity phenomenon for incompressible fluids [11] and reaction-diffusion
processes where the flux features saturation at the interface regimes. In particular, u : Ω × [0,∞)→ R
describes the height of the growing interface at the spatial location x = (x1, x2) ∈ Ω ⊂ R2 at the temporal
instant t ∈ [0,∞). The term −∆2u denotes the surface diffusion, which is caused by the difference of the
chemical potential that is proportional to the curvature of the surface. In the meantime, −λ∇ · ( ∇u

1+|∇u|2 )
denotes the effect of surface roughening. Such roughening is caused by Schwoebel barriers [12].

The finite degenerate elliptic operators have been an active field of many investigations since the
celebrated Hörmander’s work on hypoellipticity [1, 13]. Nonlinear equations and systems involving
degenerate vector fields have been widely applied in many different areas, such as Lewy’s example [14],
the ∂̄-Neumann problem in complex geometry [15], the stochastic differential equations [16], the Kohn
Laplacian on the Heisenberg group Hn in quantum mechanics [17] and nonholonomic mechanics, etc.,
many of which can be written as a specific mathematical models that include the form of the Hörmander
vector field sum of squares operators [18, 19]. As a pioneer in micro-local theory of partial differential
equations, Hörmander [1] has proven a fundamental conclusion about vector fields: if a family of
smooth vector fields satisfies the finite rank condition, i.e., X1, X2, ..., Xm, and its commutators up to
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order r have a great rank at every point on the manifold, then the corresponding sum of squares operator
is hypoelliptic and the associated subelliptic estimates have been admitted. Hence, ∆X is regarded
as the subelliptic operator, and the corresponding Harnack inequality and maximum principle of ∆X

have been investigated in [20]. Later, with the help of the celebrated lifting and approximating theory,
Rothschild and Stein [21] obtained the sharp regularity estimates of the subelliptic operator ∆X. At
the same time, by applying Métivier’s condition, Métivier [22] studied the eigenvalue problem for the
subelliptic operator ∆X. Furthermore, in order to define a Carnot-Carathéodory metric related to vector
fields, which appears both in PDEs and sub-Riemannian geometry [23], Hörmander’s condition plays
an indispensable and important role. In addition, hypoelliptic structures are very common in degenerate
equations with geometric problems. For instance, in typical cases of Heisenberg groups [24], groups of
the Heisenberg type and even general Carnot groups [25], their Lie algebras have a family of smooth
vector fields that satisfy Hörmander’s rank condition; thus, the sub-Laplacian constructed by those
vector fields is hypoelliptic. In particular, as long as X satisfies Hörmander’s condition, one can claim
that X and the corresponding subelliptic operator ∆X represent the finite degenerate vector fields and the
finitely degenerate operator, respectively.

For the vector fields X = (∂x1 , ∂x2 , · · · , ∂xn), ∆X is exactly the usual Laplacian operator ∆, and the
corresponding equation (1.1) has received a lot of attention in this case; for instance, King et al. [26]
investigated the growth of nanoscale thin films, which is modeled by equations of the following form

ut + ∆
2 − ∇ · ( f∇u)) = g,

where f ∈ C1(Rn,Rn) and g ∈ L2((0,T ) ×Ω), and they displayed the existence, uniqueness, positivity
and asymptotic behavior of solutions in an appropriate functional space. In fact, there are many more
equations induced by operator ∆X to describe the epitaxial thin film model with a degenerate fourth-order
parabolic equation. In [27], by means of energy and entropy estimates, the authors obtained some results
on well-posedness in higher spatial dimensions for degenerate parabolic equations of fourth order with
nonnegative initial data; they also give the positivity and asymptotic behavior of solutions for equations
of the form

ut + ∆
2 + ∇ · (m(u)∇u)) = g,

where m is a specific function. Furthermore, when the diffusion operator contains exponential nonlinear-
ity, the fourth-order equation has more degeneration; in [28], they obtained the existence of the solution
for the equation

ut + ∇ ·
(
|∇∆u|p(x)−2∇∆u

)
= f (x, u),

where p and f are specific functions. Such a model may describe some properties of medical magnetic
resonance images in space and time. In the particular case in which the nonlinear source is given by
f (x, u) = u(x, t)−a(x), the function u and a(x) represent a digital image and its observation, respectively.
Recently, Zhang and Zhou [29] studied the well-posedness and dynamic properties of solutions to the
initial-boundary value problem of the following form of fourth-order parabolic equations with mean
curvature nonlinearity:

ut + ∆
2u − ∇ ·

 ∇u√
1 + |∇u|2

 = |u|p−2u.

With the help of the semigroup method and potential well method, they showed the existence and
uniqueness of strong solutions, and then they obtained several conditions for the global existence and
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finite time blow-up of the solution with different initial energies. Meanwhile, for the global solution,
they proved the exponential decay and ω-limit set of the global solutions, while, for the blow-up solution,
they give the estimate of the blow-up time. For further research results on the global dynamical behavior
of solutions related to the fourth-order parabolic equations for the epitaxial thin film model, one can
see [30, 31] and the references therein. Regarding the vector fields X = (X1, X2, · · · , Xn) with a general
finite degenerate characteristic, Chen and Xu [32] carried out an earlier study on degenerate parabolic
equations with finite degenerate characteristic; through the use of the potential well method, they showed
the existence theorem for global solutions with exponential decay. Moreover, the finite time blow-up of
solutions for the finite degenerate parabolic problem

ut − ∆Xu = |u|p−1u

was obtained. Recently, for a class of the following finite degenerate semilinear parabolic equations
with a singular potential term:

ut − ∆Xu − µV(x)u = g(x)|u|p−1u,

Xu [33] established the local existence and uniqueness of the weak solution via the Galerkin method
and Banach fixed-point theorem. Moreover, by constructing a family of potential wells, the global
existence, the decay estimate and the finite time blow-up of solutions with subcritical or critical initial
energy were also obtained. Indeed, the vector fields X = (X1, X2, · · · , Xn) can also encompass many
degenerate cases, such as the gradient operator ∇B = (x1∂x1 , ∂x2 , · · · , ∂xn) with singularity on a manifold
with conical singularities. Studies of nonlinear parabolic equations corresponding to such degenerate
vector fields can be found in [34–37].

A novelty of this paper is that the concerned system is assumed to be a system with dynamic
Hörmander-type diffusion with mean curvature nonlinearity, so the differential operators generated in the
system are degenerate, i.e., the second-order operators are not elliptic, but subelliptic. Roughly speaking,
this means that the operator is elliptical only in certain directions of the derivative. Nevertheless, the
Hörmander condition guarantees that the Laplacian function resulting from these selected derivatives is
quasi-elliptic. From the point of view of a single particle, this means that the state cannot change in all
directions, and that the particle can only move in the allowed direction, which is the subspace of the
tangential space. This subspace depends on the state (position) of the particle. Similarly, the growth
conditions of the Hamiltonian are restricted to some selected direction of the derivative. This extension
is not trivial, and it relies on recent profound achievements in the development of Hörmander operators
and the theory of subellipsoidal quasi-linear equations. When the known regularity of the result is not
enough to proceed, we shall use the method of energy estimation to overcome the problem. In addition,
the technique used here differs from the standard elliptic case and can be used in other situations to
obtain similar existential results.

In particular, if we pay attention to the influence of the initial data on the long-term dynamical
behavior of the solution, we can observe that a large body of papers often make assumptions about initial
data with different scales being applied in different situations for the purpose of a discussion of the global
existence and nonexistence of solutions for the nonlinear fourth-order parabolic equations. Specifically,
when studying the global existence of solutions to nonlinear fourth-order parabolic equations, the initial
data are often restricted to be sufficiently small under the defocusing setting; yet, the discussion of
the finite time blow-up of solutions often requires the initial data to be sufficiently large, which means
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that the initial data corresponding to the negative initial energy can be arbitrarily large in this direction.
These phenomena that exert vastly different constraints on the scale of initial data are of great interest to
us. More precisely, the question we should now focus on is what is the size requirement for the so-called
large initial data to ensure that the blow-up phenomenon of the solution occurs? Or , what is the size
requirement of the small initial data that can ensure that the solution still exists as a global one? Hence,
a more detailed division of initial data is necessary to clearly understand the role that initial data play in
the study of the global existence and nonexistence of solutions for the nonlinear fourth-order parabolic
equations. Indeed, we know that the potential well method may be a powerful technique for treating
the problem (1.1), which was first established by Payne and Sattinger [38] in 1975; also see [39–41].
Therefore, our main task in this paper is to clarify which mechanism of influence exists between the
initial data and the global dynamical behavior of the solution. Further, we expect to find some threshold
conditions about the initial data that can portray the existence and nonexistence of the solution as a
whole picture, as well as clearly elucidate the part of the set of the initial data that corresponds to the
global solutions and the part that corresponds to the blow-up solutions.

1.2. Statement of the H s
X,0(Ω) space theory

Our main task is to reveal the relation between the dynamical behavior of solutions for finite
degenerate fourth-order parabolic equations with mean curvature nonlinearity based on the initial data.
However, before this, we need to clarify some necessary theories about the phase space, and this
preparatory work plays an important role in our subsequent research and demonstration.

Definition 1.1. [Métivier condition [13]] Let the system of vector fields X satisfy Hömander’s condition
on Ω′ with the Hömander index Q. Suppose that V j(x) (1 ≤ j ≤ Q), spanned by all commutators of
X1, X2 with length ≤ j, denotes be the subspaces of the tangent space at each x ∈ Ω′. If µ j = dim V j(x)
is constant in a neighborhood of each x ∈ Ω̄ ⊂ Ω′, then we claim that the vector field X satisfies the
Métivier condition on Ω. We call the Métivier index

µ :=
Q∑

j=1

(µ j − µ j−1), µ0 := 0,

the Hausdorff dimension or homogeneous dimension of Ω, as related to the subelliptic metric, which is
induced by the vector field X.

The Métivier condition is a crucial condition on the research on finite degenerate elliptic operators.
However, there is a large number of vector fields that do not satisfy Métivier’s condition, e.g., Grushin-
type vector fields. Hence, one can give the general case below.

Definition 1.2. [Generalized Métivier index [22]] For Definition 1.1, let

µ(x) :=
Q∑

j=1

(µ j(x) − µ j−1(x)), µ0(x) := 0,

where µ j(x) is the dimension of V j(x) for x ∈ Ω′. Considering Ω ⊂⊂ Ω′, we set

ν = max
x∈Ω
µ(x),
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i.e., the non-isotropic dimension of Ω related to X, which can be done as the generalized Métivier index
of Ω; see [32]. In addition, µ(x) is regarded as the pointwise homogeneous dimension or non-isotropic
dimension at x.

In consideration of the system of vector fields X = (X1, X2), we introduce the following weighted
Sobolev space [42].

Definition 1.3 (The space Mk,p(Ω)). For any integer k ≥ 1, p ≥ 1 and Ω ⊂ R2, we denote

Mk,p(Ω) =
{
f ∈ Lp(Ω) | XJ f ∈ Lp(Ω),∀J = ( j1, j2), |J| ≤ k

}
,

where XJ f = X j1 X j2 f , |J| = s and we define the norm in Mk,p(Ω) to be

∥ f ∥Mk,p(Ω) =

∑
|J|≤k

∥XJ f ∥pLp(Ω)


1
p

< ∞.

Definition 1.4 (The space H s
X(Ω′)). For n = 2, the system of real smooth vector fields X = (X1, X2) is

defined on an open domain Ω in R2, where Xk =
∑2

i=1 aki
∂
∂xi

(1 ≤ k ≤ 2). Assume that X∗k = −Xk, where
X∗k is, formally, a skew-adjoint operator of Xk, i.e., for any u, v ∈ C∞0 (Ω), (Xku, v) = −(u, Xkv). We show
the following weighted Sobolev space H s

X(Ω), s ∈ N+:

H s
X(Ω) =

{
u ∈ L2(Ω) | XJu ∈ L2(Ω), |J| ≤ s

}
,

where J = ( j1, j2) (1 ≤ ji ≤ 2) is a multi-index, and | j| = l denotes the length of J. We denote the vector
field XJ as XJ = X j1 X j2; thus, if |J| = 0, then XJ = id. It is well known that H s

X(Ω) is a Hilbert space
with the norm ∥u∥2Hs

X(Ω) =
∑
|J|≤s ∥XJu∥2L2(Ω).

Proposition 1 (Weighted Poincaré inequality [43]). Let the system of vector fields X satisfy Hörmander’s
condition on Ω and ∂Ω be C∞-smooth and non-characteristic for X. Then, the first eigenvalue λ∗1 of the
operator −∆X is strictly positive and satisfies

λ∗1∥u∥2 ≤ ∥Xu∥2, for u ∈ H1
X,0(Ω).

In consideration of Proposition 1, we employ ∥Xu∥2 =
(∑2

j=1 ∥X ju∥22
) 1

2 as the an equivalent of H1
X,0(Ω).

Proposition 2 (Weighted Sobolev embedding theorem [42]). Suppose that the system of vector fields X
satisfies Hörmander’s condition on Ω with the Hörmander index Q > 1; also, ∂Ω is C∞-smooth and
non-characteristic for X. Thus, for all u ∈ C∞(Ω̄), we claim that

∥u∥p∗ ≤ C(∥Xu∥p + ∥u∥p),

where C > 0 is constant, 1
p∗ =

1
p −

1
ν

for p ∈ [1, ν) and ν ≥ 1 + Q > 2 is the generalized Métivier index
of X on Ω.

This paper is organized as follows. In Section 2, we consider the local existence and uniqueness of
the solution to the initial-boundary value problem (1.1) by using the semigroup method and give the
proof of Theorem 2.2. In Section 3, we collect some well-known properties of the ground state solution
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and show the existence of the ground state solution for problem (3.3) in Theorem 3.2. In Section 4,
we give the results on the global existence and finite time blow-up of solutions with subcritical initial
energy (i.e., E(0) < d) and give the proofs of Theorem 4.3. In Section 5, we discuss the ground state
solutions for problem (1.1) and study the elements of ω-limit set ω(u0); we then display the proofs
of Theorem 5.1 and Theorem 5.2. Moreover, we present the conclusions on the global existence and
blow-up with critical initial energy (i.e., E(0) = d) and give the proofs of Theorem 5.3 and Theorem 5.4.
Finally, in Section 6, we investigate the global existence and nonexistence of the solution to problem
(1.1) with supercritical initial energy (i.e., E(0) > d) and successively outline the proofs of Theorem
6.1, Theorem 6.2 and Theorem 6.4 (for E(0) > 0).

1.3. Notation conventions

We denote the standard Lq(Ω) norm by ∥ · ∥q for 1 ≤ q ≤ ∞ and abbreviate the L2(Ω) norm to ∥ · ∥.
The inner product in L2(Ω) is denoted by (v,w) :=

∫
Ω

vwdx for all v,w ∈ L2(Ω). H2
X,0(Ω) is a Hilbert

space with the inner product (·, ·)H2 given by (w, v)H2 = (X2w, X2v) for all w, v ∈ H2
X,0(Ω). For simplicity,

we denote by S the optimal constant of H2
X,0(Ω) ↪→ Lq(Ω); then, for any v ∈ H2

X,0(Ω), it follows that

∥v∥q ≤ S ∥X2v∥. (1.7)

For simplicity, the duality pairing between H−2
X (Ω) and H2

X,0(Ω) is denoted by ⟨·, ·⟩.
We define the energy functional E : H2

X,0(Ω)→ R by

E(v) =
1
2
∥X2v∥2 +

∫
Ω

( √
1 + |Xv|2 − 1

)
dx −

1
p
∥v∥pp, (1.8)

and the Lyapunov function E(t) := E(u(t)) is applied for any solution u to problem (1.1).

Definition 1.5. The function u = u(t, x) is said to be the solution for the problem (1.1) over [0,T ],
provided that u ∈ L∞(0,T ; H2

X,0(Ω)) with ut ∈ L2(0,T ; L2(Ω)) such that u(0) = u0 ∈ H2
X,0(Ω) and it

satisfies

(ut(t), v) + (X2u(t), X2v) +

 Xu(t)√
1 + |Xu(t)|2

, Xv

 = (|u(t)|p−2u(t), v) (1.9)

for any v ∈ H2
X,0(Ω) and a.e. t ≥ 0; also,∫ t

s
∥ut(τ)∥2dτ + E(t) = E(s) for 0 ≤ s < t < T. (1.10)

According to the definition of E(t) and I(u) (see (3.2)), it follows that

E(t) =
p − 2
2p
∥X2u(t)∥2 +

∫
Ω

 p + (p − 1)|Xu(t)|2

p
√

1 + |Xu(t)|2
− 1

 dx +
1
p

I(u(t)). (1.11)

Remark 1. Since p > 2, it is easy to verify that p+(p−1)|Xu(t)|2

p
√

1+|Xu(t)|2
> 1. Hence, we obtain from (1.11) that

E(t) >
p − 2
2p
∥X2u(t)∥2 +

1
p

I(u(t)). (1.12)

Communications in Analysis and Mechanics Volume 15, Issue 4, 658–694.



666

Finally, we set

λ1 := inf
u∈H2

0 (Ω)\{0}

∥X2u∥2

∥u∥2
. (1.13)

As shown in [43], λ1 is the principal eigenvalue of the operator X2 with homogeneous Dirichlet
boundary conditions.

1.4. Potential well

Now, let us state the following lemmas concerning the properties of E(t) and I(u), which are useful
for subsequent proofs of the global dynamical behavior of the solution for problem (1.1).

Lemma 1.6. Assume that u ∈ H2
X,0(Ω)\{0}; then,

(i) lim
λ→0+

E(λu) = 0 and lim
λ→+∞

E(λu) = −∞;
(ii) there exists a unique λ∗ = λ∗(u) > 0 such that

d
dλ

E(λu) |λ=λ∗= 0

and E(λu) is increasing for 0 ≤ λ < λ∗, decreasing for λ > λ∗ and takes its maximum at λ = λ∗;
(iii) I(λu) > 0 for 0 ≤ λ < λ∗, I(λu) < 0 for λ > λ∗ and I(λ∗u) = 0.

Lemma 1.7. Assume that u ∈ H2
X,0(Ω)\{0} and r = S

p
2−p ; then,

(i) if 0 ≤ ∥X2u∥ ≤ r, then I(u) ≥ 0;
(ii) if I(u) < 0, then ∥X2u∥ > r;

(iii) if I(u) = 0, then ∥X2u∥ = 0 or ∥X2u∥ ≥ r.

Remark 2. The proofs of Lemma 1.6 and Lemma 1.7 are similar, as shown in [39] with a simple
modification; hence, we chose to omit it.

Lemma 1.8. Assume that u ∈ H2
X,0(Ω); then,

(i) it follows that E(u) > 0 as long as u ∈ N+;
(ii) for each κ > 0, if u ∈ N+ satisfies that E(u) < κ, then ∥X2u∥ is bounded in H2

X,0(Ω) and

sup
u∈{E(u)<κ}∩N+

∥X2u∥ ≤

√
2pκ
p − 2

;

(iii) for any u ∈ N−, we conclude that dist(0,N ∪N−) := inf
u∈N ∪N−

∥X2u∥ > 0.

Proof. (i) Given that u ∈ N+, which means that I(u) > 0 and ∥X2u∥ , 0, we obtain from (1.12) that

E(u) >
p − 2
2p
∥X2u∥2 +

1
p

I(u) ≥
p − 2
2p
∥X2u∥2 > 0.

(ii) Following from I(u) > 0, and by the proof of (i) with E(u) < κ, we know that κ > E(u) ≥
p−2
2p ∥X

2u∥2 > 0, which yields ∥X2u∥2 < 2κp
p−2 .
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(iii) As long as u ∈ N−, that is, I(u) < 0, we deduce that ∥X2u∥ , 0. From the definition of N− and the
Sobolev embedding inequality, we get

∥Xu∥2 < ∥u∥pp ≤ S p∥Xu∥p, (1.14)

which gives ∥X2u∥ > S −
p

p−2 .

Lemma 1.9. Assume that u ∈ H2
X,0(Ω); then, d ≥ p−2

2p S −
2p
p−2 .

Proof. For any u ∈ N , we know that I(u) = 0. Then, from (1.12) and (iii) in Lemma 1.6, we have

E(u) ≥
p − 2
2p
∥X2u∥2 ≥

p − 2
2p

dist(0,N ) ≥
p − 2
2p

S −
2p
p−2 .

Lemma 1.10. Assume that u ∈ H2
X,0(Ω) satisfies that I(u) < 0; then,

(i) there exists a unique constant λ∗ ∈ (0, 1) such that λ∗u ∈ N ;
(ii) I(u) < p(E(t) − d).

Proof. (i) Fix any u ∈ H2
X,0(Ω) satisfying that I(u) < 0, and for any λ > 0; we define

i(λ) := I(λu) = λ2∥X2u∥2 +
∫
Ω

λ2|Xu|2√
1 + λ2|Xu|2

dx − λp∥u∥pp;

then, i′(λ) = λh(λ), where

h(λ) =2∥X2u∥2 +
∫
Ω

2|Xu|2 + λ2|Xu|4

(1 + λ2|Xu|2)
3
2

dx − pλp−2∥u∥pp

=2∥X2u∥2 +
∫
Ω

|Xu|2

(1 + λ2|Xu|2)
3
2

dx +
∫
Ω

|Xu|2

(1 + λ2|Xu|2)
1
2

dx − pλp−2∥u∥pp.

One can find that h(λ) is strictly decreasing in λ > 0; also, by (iii) in Lemma 1.8 and p > 2, we have

h(0) = I(λu) ≥ 2∥X2u∥2 ≥ 2S −
2p
p−2 > 0 and lim

λ→∞
h(λ) = −∞.

Thus, there exists a unique λ0 > 0 that yields h(λ0) = 0, h(λ) > 0 for any 0 < λ < λ0 and h(λ) < 0
for any λ > λ0. In addition, it infers that h′(λ0) = 0, and h(λ) is strictly increasing in λ0 > 0 and
strictly decreasing in λ > λ0. Then, it follows that there exists a unique λ∗ > 0 satisfying that h(λ∗) = 0.
Moreover, since h(1) = I(u) < 0, it implies that λ∗ < 1.

(ii) Set g(λ) := pE(λu) − I(λu), λ > 0. By (1.12), we know that

g(λ) =
p − 2

2
λ2∥X2u∥2 +

∫
Ω

 p + (p − 1)λ2|Xu|2√
1 + λ2|Xu|2

− p

 dx.

Thus, g(λ) is strictly increasing for λ0 > 0. Let λ∗ ∈ (0, 1) be the constant given in (i); then, it follows
from λ∗u ∈ N and the definition of d that

pE(u) − I(u) > pE(λ∗u) − I(λ∗u) = pE(λ∗u) ≥ pd,

which confirms the result.
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To discuss the finite time blow-up of solutions above the critical initial energy, we define

λκ = inf{∥u∥2 | u ∈ N , E(u) < κ} and Λκ = sup{∥u∥2 | u ∈ N , E(u) < κ}

for all κ > d. Obviously, we derive the monotonicity properties as

κ 7→ λκ is non-increasing and κ 7→ Λκ is non-decreasing.

Furthermore, we can show the properties of λκ and Λκ as follows.

Lemma 1.11. Assume that λκ and Λκ are two constants parameterized by κ; then,

(i) λκ ≥ θ−
p
2 S −

p(4−p)
2(p−2) if p ∈ (1, 3] and λκ ≥ θ−

p
2

(
2pκ
p−2

)− p(4−p)
2(p−2) if p ∈ (3,+∞);

(ii) Λκ ≤
(

2pκ
λ1(p−2)

) 1
2 ,

where S and λ1 are the constants given in (1.7) and (1.13), respectively. And, θ is the best constant of
the Galiardo-Nirenberg’s inequality ∥v∥p ≤ θ∥X2v∥

p−2
p ∥v∥

2
p .

Proof. To begin, we estimate the lower bound of λκ. Fix any u ∈ N ∩ {E(u) < κ}; we deduce that u ∈ N ,
which means that

I(u) = ∥X2u∥2 +
∫
Ω

|Xu|2√
1 + |Xu|2

dx − ∥u∥pp = 0;

together with Galiardo-Nirenberg’s inequality, one can infer that ∥X2u∥2 ≤ ∥u∥pp ≤ θp∥X2u∥p−2∥u∥2.
Thus, we obtain that ∥u∥ ≥ θ−

p
2 ∥X2u∥

4−p
2 . If p ≤ 4, then it is easy to confirm from the definition of λκ and

Lemma 1.7 that

λκ = inf
u∈N∩{E(u)<κ}

∥u∥ ≥ inf
u∈N
∥u∥ ≥ θ−

p
2

(
inf
u∈N
∥X2u∥

) 4−p
2
≥ θ−

p
2 S −

p(4−p)
2(p−2) .

Besides that, for p > 4, one can infer from the definition of λκ and Lemma 1.8 that

λκ = inf
u∈N∩{E(u)<κ}

∥u∥ ≥ θ−
p
2

(
sup
u∈N
∥X2u∥

) 4−p
2

≥ θ−
p
2 θ−

p
2

(
2pκ
p − 2

)− p(4−p)
2(p−2)

.

Next, we estimate the upper bound of Λκ. For every u ∈ N ∩ {E(u) < κ}, by (1.13) and the inequality
p+(p−1)|Xu(t)|2

p
√

1+|Xu(t)|2
> 1, we get

∥u∥ ≤ λ−
1
2

1 ∥X
2u∥ ≤

(
2pκ

λ1(p − 2)

) 1
2

;

then, (ii) follows from the definition of Λκ.

Lemma 1.12. Assume that a positive and twice-differentiable function Φ(t) satisfies the following
inequality:

Φ′′(t)Φ(t) − (1 + δ)(Φ′(t))2 ≥ 0 for all t > 0,

where δ > 0 is a positive constant, together with Φ(0) > 0 and Φ′(0) > 0; then, it follows that there
exists a time 0 < t∗ ≤

Φ(0)
δΦ′(0) such that Φ(t) approaches infinity as t → t∗.
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2. Local existence and uniqueness

In this section, we describe problem (1.1) as a class of abstract Cauchy problems by citing some
relevant important conclusions. In consideration of the classical semigroup method, we briefly show the
local existence and uniqueness of the solution to problem (1.1).

Definition 2.1 (Sectorial operators). Assume that P(M, θ) with M ≥ 1 and θ ∈ [0, π) is the class of all
closed densely defined linear operators A in X0, which satisfies the following:

(i) S θ = {λ ∈ C | | arg(λ)| ≤ θ} ∪ {0} ⊂ ρ(−A),
(ii) (1 + |λ|)∥(A + λ)−1∥L(X0) ≤ M for λ ∈ S θ.

The elements in P(θ) = ∪M≥1P(M, θ) are called sectorial operators of the angle θ. If A ∈ P(θ), then any
M ≥ 1 such that A ∈ P(M, θ) is called a sectorial bound of A.

Theorem 2.2 (Local existence). Assume that u0 ∈ H2
X,0(Ω); then, there exists T > 0 such that problem

(1.1) possesses a unique weak solution u on [0,T ] ×Ω, which satisfies

u ∈ C([0,T ]; H2
X,0(Ω)) ∩C1((0,T ); L2(Ω))

with u(0) = u0. Moreover, if Tmax := Tmax(u0) = sup{T > 0 : u = u(t) exists on [0,T ]} < ∞, then
lim

t→Tmax
∥X2u(t)∥ = ∞.

Proof. Indeed, according to the results in [44], we know that the operator A = ∆X can be seen as an
unbounded operator in X0 = L2(Ω) with the domain X1 = H4

X(Ω) ∩ H2
X,0(Ω). Hence, the operator A,

which is the realization of the biharmonic operator ∆2
X in L2(Ω) under Dirichlet boundary conditions

∂u
∂ν
= 0, is a sectorial operator in L2(Ω) with angle θA and thus the infinitesimal generator of the analytic

semigroup eAt. The scale of the fractional power space {D(Aα)}α∈[0,1) associated with A satisfies the
following conditions:

D(A) = H4
X(Ω) ∩ H2

X,0(Ω) and ∥ · ∥H4∩H2
0
≤ C∥A(·)∥,

D(Aα) = H4α
X (Ω) ∩ H2

X,0(Ω) for any α ∈
(
1
2
, 1

)
and ∥ · ∥H4α∩H2

0
≤ C∥Aα(·)∥,

D(A
1
2 ) = H2

X,0(Ω) and ∥ · ∥H2
0
≤ C∥A

1
2 (·)∥,

where C is a generic constant that may be different for different lines. Moreover, the realization
Aα : X1 = D(Aα)→ X0 = L2(Ω) is an isometry. Thus, by using the notations given above, the problem
(1.1) is reduced to the following abstract Cauchy problem: ut + Au = Φ(u),

u(0) = u0,
(2.1)

where Φ(u) := ∇X ·

(
∇Xu√

1+|∇Xu|2

)
+ |u|p−2u is a map relative to the pair (X1, X0). Indeed, given that

1 ≤ p < N+2
N−2 , Ω ⊂ R2 and Proposition 2, we know that

D(Aη) = H4η
X (Ω) ∩ H2

X,0(Ω) ↪→ L2p(Ω),
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where η = p−1
4p +

3
4 ∈ ( 1

2 , 1). Thus, for any u, v ∈ D(Aη), a simple calculation shows that

∥Φ(u) − Φ(v)∥

=

∥∥∥∥∥∥∥
∇X ·

 ∇Xu√
1 + |∇Xu|2

 + |u|p−2u

 − ∇X ·

 ∇Xv√
1 + |∇Xv|2

 + |v|p−2v


∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
∇X ·

 ∇Xu√
1 + |∇Xu|2

 − ∇X ·

 ∇Xv√
1 + |∇Xv|2


∥∥∥∥∥∥∥ − ∥∥∥|u|p−2u − |v|p−2v

∥∥∥ .
(2.2)

For the terms on the right-hand side of (2.2), by using a similar argument as that for Lemma 3.1 in [29],
we finally obtain

∥Φ(u) − Φ(v)∥ ≤ C
(
1 + ∥A

1
2 u∥ + ∥A

1
2 v∥

)2
(∥Aηu∥ + ∥Aηv∥)∥A

1
2 u − A

1
2 v∥.

Hence, it follows from Lemma 3.1 in [29] that, for each u0 ∈ X1, there exists a T > 0, which only
depends on ∥X2u0∥ ≤ C, such that the problem (2.1) has a unique solution u ∈ C([0,T ]; H2

X,0(Ω)) ∩
C1((0,T ); L2(Ω)), satisfying

u(t) = eAtu0 +

∫ t

0
eA(t−s)Φ(u(s))ds.

Thus, the solution of problem (1.1) has local existence and uniqueness; in addition, it satisfies that

u ∈ C([0,T ]; H2
X,0(Ω)) ∩C1((0,T ); L2(Ω)).

Not only that, the local existence time T only depends on the initial datum. Hence, by employing a
similar idea as shown in [29], as long as ∥X2u∥ remains bounded, we can also conclude that the local
solution obtained above can be continued. Thus, if Tmax = Tmax(u0) < ∞, we conclude the following:

lim
t→Tmax

∥X2u(t)∥ = ∞.

3. Basic properties of the ground state solution

To begin in this subsection, we display some well-known properties of the ground state solution Q.
First, it is established by using the direct variational method for constrained minimization:

E(Q) = inf{E(v) | v ∈ H2
X,0(Ω)\{0}, I(v) = 0}, (3.1)

where I(·) : H2
X,0(Ω)→ R is the Nehari functional, defined by

I(u) := ⟨E′(u), u⟩ = ∥X2u∥2 +
∫
Ω

 |Xu|2√
1 + |Xu|2

 dx − ∥u∥pp, (3.2)

which also helps us to characterize the Nehari manifolds N = {u ∈ H2
X,0(Ω)\{0} | I(u) = 0}, as well as

the corresponding order-preserving manifolds

N+ = {u ∈ H2
X,0(Ω) | I(u) > 0} and N− = {u ∈ H2

X,0(Ω) | I(u) < 0},
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where E′(u) denotes the Fréchet derivative of E′(·) at u, which is a bounded linear operator from H2
X,0(Ω)

into R. Especially, the ground state solutions of the problem (1.1) can be shown as follows: ∆2
Xu − ∇X ·

(
∇Xu√

1+|∇Xu|2

)
= |u|p−2u, x ∈ Ω,

u = ∂u
∂ν
= 0, x ∈ Ω.

(3.3)

Indeed, the functional I(u) is well defined on H2
X,0(Ω). A function u ∈ H2

X,0(Ω) is called a week solution
of (3.3) if

(∆Xu,∆Xv) −

 ∇Xu√
1 + |∇Xu|2

,∇Xv

 = (|u|p−2u, v), v ∈ H2
X,0(Ω).

In addition, all weak solutions of problem (3.3) is denoted by the set

Σ := {u | u is a weak solution of the problem (3.3)},

and we know that Σ\{0} ⊂ N immediately. Thus, the mountain pass level can be denoted by

d := E(Q) = inf
u∈N

E(u)

and the ground state solution of the problem (3.3) can be regarded as u ∈ Σ with E(u) = d. As we
all know, the existence of ground-state solutions of elliptic equations is an important research topic
that has attracted much attention. We refer the readers to [1, 18] and the corresponding research on
the ground state solutions of related elliptic equations. In order to obtain a ground state solution of
the corresponding Nehari manifold, we mainly use the Lagrange multiplier method. According to this
result, the instability of the ground state solution for the problem (3.3) is discussed, where the definition
of instability is displayed below.

Definition 3.1. Considering every ground state solution Q for the problem (3.3), we claim that Q is
unstable, if for any ε > 0, one can find a u0 ∈ H2

X,0(Ω) such that

∥u0 − Q∥H2
X,0(Ω) < ε,

and the corresponding solution of problem (1.1) with the initial datum u0 blows up in finite time.

Now, let us give the existence of the ground state solution for the problem (3.3) as follows.

Theorem 3.2. There exists an element Q ∈ N that satisfies the following conditions:

(i) E(Q) = inf
u∈N

E(u) = d;

(ii) Q is a ground-state solution to the problem (3.3).

Proof. (i) Due to the relationship between I(u) and E(t) in (6.8) and the definition of d, one can deduce
that

d = inf
u∈N

E(u) = inf
u∈N

 p − 2
2p
∥X2u∥2 +

∫
Ω

 p + (p − 1)|Xu|2

p
√

1 + |Xu|2
− 1

 dx

 ,
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which means that there exists a minimizing sequence {un}
∞
n=1 ⊂ N ⊂ H2

X,0(Ω) satisfying that

E(un) =
p − 2
2p
∥X2un∥

2 +

∫
Ω

 p + (p − 1)|Xun|
2

p
√

1 + |Xun|
2
− 1

 dx→ d as n→ ∞; (3.4)

then, the sequence {un}
∞
n=1 is bounded in H2

X,0(Ω). Given the fact that H2
X,0(Ω) is reflexive, H2

X,0(Ω) ↪→
H1

X,0(Ω) compactly; we derive from the boundedness that there exists a subsequence of {un}
∞
n=1, denoted

still by {un}
∞
n=1, and a function w ∈ H2

X,0(Ω) satisfying

un → w weakly in H2
X,0(Ω) as n→ ∞.

Recalling that the embedding H2
X,0(Ω) ↪→ Lp+1(Ω) satisfies the conditions for compactness with p > 1,

then, for n→ ∞, one can obtain that

Xun → Xw strongly in L2(Ω), (3.5)
un → w strongly in Lp+1(Ω). (3.6)

Next, one can deduce that w , 0. Otherwise, if w = 0, then we obtain from (3.5) that

un → 0 strongly in Lp+1(Ω). (3.7)

Recalling that {un}
∞
n=1 ⊂ N , we infer from the definition of N that

∥X2un∥
2 +

∫
Ω

 |Xun|
2√

1 + |Xun|
2

 dx = ∥un∥
p
p, (3.8)

which, combined with (3.7), implies that

∥X2un∥
2 +

∫
Ω

 |Xun|
2√

1 + |Xun|
2

 dx→ 0 as n→ ∞; (3.9)

this contradicts (3.4) due to the fact that d > 0; hence, we conclude that w , 0.
Let Q = ϵw, where

ϵ =


∥X2w∥2 +

∫
Ω

(
|Xw|2√
1+|Xw|2

)
dx

∥w∥pp


1

p−2

is a constant. Moreover, by (iii) in Lemma 1.6, we achieve that I(Q) = 0. Thus, Q ∈ N , and from the
definition of d, it follows that

E(Q) ≥ d. (3.10)

Given that un ∈ N , one can easily see that

E(un) = sup
λ≥0

E(λun), n = 1, 2, · · · . (3.11)
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Indeed, we easily obtain from (ii) in Lemma 1.6 that E(λun) achieves its maximum value at

λ = λn :=


∥X2un∥

2 +
∫
Ω

(
|Xun |

2
√

1+|Xun |2

)
dx

∥un∥
p
p


1

p−2

.

On the other hand, consider un ∈ N , i.e.,

∥X2un∥
2 +

∫
Ω

 |Xun|
2√

1 + |Xun|
2

 dx = ∥un∥
p
p,

which means that λ = 1 and (3.11) is satisfied. In consideration of the weak lower semicontinuity of the
norms, one can know that

∥X2w∥2 ≤ lim inf
n→∞

∥X2un∥
2. (3.12)

Thus, we derive, by using (3.11), the definition of E(u), (3.12) and (3.5), that

d = lim
n→+∞

E(un)

≥ lim
n→+∞

E(ϵun)

= lim
n→+∞

 p − 2
2p
∥X2ϵun∥

2 +

∫
Ω

 p + (p − 1)|Xϵun|
2

p
√

1 + |Xϵun|
2
− 1

 dx


≥ lim inf

n→∞
∥X2ϵun∥

2 + lim
n→+∞

∫
Ω

 p + (p − 1)|Xϵun|
2

p
√

1 + |Xϵun|
2
− 1

 dx

≥∥X2ϵw∥2 +
∫
Ω

 p + (p − 1)|Xϵw|2

p
√

1 + |Xϵw|2
− 1

 dx

=∥X2Q∥2 +
∫
Ω

 p + (p − 1)|XQ|2

p
√

1 + |XQ|2
− 1

 dx

=E(Q).

Hence, we can see from (3.10) and the above inequality that E(Q) = d. Moreover, in consideration of
(3.9), we can deduce that

lim
n→∞
∥X2un∥ = ∥X2w∥, (3.13)

which, together with (3.5) and the fact that H2
X,0(Ω) is a uniformly convex Banach space, shows that

un → w strongly in H2
X,0(Ω) as n→ ∞.

Then, we further have

E(w) =∥X2w∥2 +
∫
Ω

 p + (p − 1)|Xw|2

p
√

1 + |Xw|2
− 1

 dx
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= lim
n→∞

∥X2un∥
2 +

∫
Ω

 p + (p − 1)|Xun|
2

p
√

1 + |Xun|
2
− 1

 dx

 = d,

which means that E(w) = d = inf
u∈N

E(u).
(ii) Now, we show that Q is indeed the ground state solution of the problem (3.3), i.e., Q ∈ Σ and

E(Q) = inf
u∈Σ

E(u). According to the result in (i), one infers that

Q ∈ N =
{
u ∈ H2

X,0(Ω)\{0} | ⟨E′(u), u⟩ = I(u) = 0
}
,

and E(w) = d = inf
u∈N

E(u). Therefore, utilizing the theory of Lagrange multipliers, there exists a constant
η ∈ R such that

E′(Q) − ηI′(Q) = 0 in H−2
X (Ω). (3.14)

Thus, we achieve the following chains of equations by using the definition of N :

η⟨I′(Q),Q⟩ = ⟨E′(Q),Q⟩ = I(Q) = 0. (3.15)

On the other hand, for every Q ∈ H2
X,0(Ω), one can deduce that

⟨I′(Q),Q⟩ =
d
dτ

I(Q + τQ) |τ=0

= ∥X2Q∥2 − ∥Q∥pp︸             ︷︷             ︸
I1

+ ∥X2Q∥2 +
∫
Ω

 |XQ|2√
1 + |XQ|2

 dx − ∥Q∥pp︸                                             ︷︷                                             ︸
I2

−

∫
Ω

(
|XQ|4

(1 + |XQ|2)
3
2

)
dx − (p − 2)∥Q∥pp. (3.16)

Since (3.5)-(3.7) holds, by taking n→ ∞ in (3.9), we get

∥X2w∥2 +
∫
Ω

 |Xw|2√
1 + |Xw|2

 dx ≤ ∥w∥pp, (3.17)

which confirms that I1 < 0. Furthermore, by the definition of I(u), it follows that I2 = I(w) = 0. Then,
(3.16) becomes ⟨I′(Q),Q⟩ < 0, which, in combination with (3.15), yields η = 0. Then, we get from
(3.15) that E′(w) = 0 in H−2

X (Ω), i.e.,

⟨E′(Q), v⟩ :=
d
dτ

I(Q + τv) |τ=0

=(X2Q, X2v) +

 XQ√
1 + |XQ|2

, XQ

 − (|Q|p−2Q, v)

=0, v ∈ H2
X,0(Ω). (3.18)

Hence, Q is the weak solution of problem (3.3).
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4. Global dynamics analysis of solutions for problem (1.1) with subcritical initial energy E(0) < d

4.1. Uniform dynamics below the ground state

In this section, we demonstrate that all of the solutions with an initial energy less than the ground state
E(u0) < E(Q) = d are split into the decaying (for I(u0) > 0) and finite time blow-up (for I(u0) < 0). To
trace the behavior of the solutions obtained from some initial data, we need to establish the relationship
between the global dynamical behavior of solutions and the initial data. First, we discuss the threshold
classifications of the initial data for problem (1.1) under the condition of subcritical initial energy (i.e.,
E(0) < d) and give the following theorem on the global existence and finite time blow-up of the solution
in Theorem 4.3.

Lemma 4.1 (Invariant manifold with E(0) < d). Suppose that u is the solution obtained in Theorem 2.2;
then, for any initial data u0 satisfying that E(0) < d, we have the following:

(i) if I(u0) > 0, then u(t) ∈ N+ for any t ∈ [0,Tmax);
(ii) if I(u0) < 0, then u(t) ∈ N− for any t ∈ [0,Tmax).

Proof. In consideration of the respective definitions of E(t) and I(u), one can easily deduce that
E(t) ∈ C([0,Tmax)) and I(t) ∈ C([0,Tmax)). By (1.10), we obtain

E(u(t)) < d for any t ∈ [0,Tmax). (4.1)

For (i), given that I(u0) > 0, arguing by contradiction and using the continuity of I(u(t)) = 0 with respect
to t, then there exists a first t0 > 0 that yields I(u(t0)) = 0 and u(t0) , 0, i.e., u(t0) ∈ N , while we get
from the definition of d = E(Q) that E(u(t0)) ≥ d, which contradicts (4.1).

For (ii), we can similarly deduce that u(t) ∈ N− for any t ∈ [0,Tmax) by using a contradiction. let us
make the opposite assumption that there exists a t0 that yields I(u0) = 0 and I(u(t)) < 0 for all t ∈ [0, t0).
Thus, one can infer by (iii) of Lemma 1.8 that

∥X2u(t)∥ ≥ dist(0,N ∪N−) ≥ S −
2p
p−2 , 0 ≤ t < t0.

Then, by the continuity of ∥X2u(t0)∥, we get

∥X2u(t0)∥ ≥ S −
2p
p−2 ;

together with I(u0) = 0, it is easy to show that u(t0) ∈ N . Thus, one can deduce by the definition of d
that E(u(t0)) > d; obviously, it contradicts (4.1).

Lemma 4.2. Assume that u ∈ H2
X,0(Ω); then, we claim that

d
dt

E(u(t)) = −∥ut(t)∥2 for any t ∈ [0,Tmax) (4.2)

and

d
dt
∥u(t)∥2 = −2I(u(t)) for any t ∈ [0,Tmax). (4.3)
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Proof. The identity (4.2) follows by multiplying the equation (1.1) by ut and integrating by parts on
Ω ⊂ R2. Hence, t 7→ E(u(t)) is decreasing. Multiplying the equation (1.1) by u, we obtain

1
2

d
dt
∥u(t)∥2 = (u, ut)

= −∥X2u(t)∥2 −
∫
Ω

 |Xu(t)|2√
1 + |Xu(t)|2

 dx + ∥u(t)∥pp

= −I(u(t)), t ∈ [0,Tmax). (4.4)

Now, we will focus on our main results on a sufficient criterion for the global existence and finite
time blow-up of the solution, starting with the initial datum under subcritical initial energy as follows.

Theorem 4.3. Assume that u is the solution to the problem (1.1) with subcritical initial energy E(0) < d,
where u0 ∈ H2

X,0(Ω); then,

(i) If I(u0) > 0, then the solution u exists globally, i.e., Tmax = ∞, and it has the following boundedness
property:

∥X2u(t)∥2 +
∫ t

0
∥ut(τ)∥2dτ ≤

3p − 2
p − 2

d, t ∈ [0,∞). (4.5)

Moreover, there exists a positive constant C := 1 − S p
(

2p
λ1(p−2)d

) p−2
2 satisfying

∥u(t)∥2 ≤ ∥u0∥
2e−λ1Ct, t ∈ [0,∞).

(ii) If I(u0) < 0, then the solution u undergoes finite time blow-up, i.e., Tmax < ∞. Moreover, the
following holds:

Tmax ≤
3(p + 1)∥u0∥

2

2(p − 2)2(d − E(0))
.

Proof. As the conclusion is trivial for u0 = 0, we thus only focus on the case that u0 ∈ N+. From
Theorem 2.2, let u be the local solution to the problem (1.1) corresponding to the initial data u0; we first
show that Tmax = ∞. From (1.10) and (6.8), we deduce that

E(t) =
p − 2
2p
∥X2u(t)∥2 +

∫
Ω

 p + (p − 1)|Xu(t)|2

p
√

1 + |Xu(t)|2
− 1

 dx +
1
p

I(u(t)) (4.6)

and ∫ t

0
∥ut(τ)∥2dτ + E(u(t)) = E(0) (4.7)

for all 0 < t < Tmax. Thus, by Lemma 4.1, we obtain that u(t) ∈ N+ for any t ∈ [0,Tmax), which means
that

E(u(t)) ≤ E(0) < d, I(u(t)) ≥ 0, t ∈ [0,Tmax).
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Thus, the combination of (4.6) and (4.7) shows that

∥X2u(t)∥2 +
∫ t

0
∥ut(τ)∥2dτ ≤

3p − 2
p − 2

d, t ∈ [0,Tmax).

Hence, with the help of the continuation principle, we obtain that Tmax = ∞, that is, u ∈
L∞(0,∞; H2

X,0(Ω)) with ut ∈ L2(0,∞; L2(Ω)) means that the weak solution for the problem (1.1) is
global in time; it also satisfies the estimate (4.5) based on the initial data u0.

We next consider the decay estimate. Given that u is a global solution, by (4.3) in Lemma 4.2, we
know that

d
dt
∥u(t)∥2 = −2I(u(t)), t ∈ [0,∞). (4.8)

Since E(0) < d and I(u0) > 0, from Lemma 4.1, one can infer that u(t) ∈ N+ for all t ∈ [0,T ). Given
the fact that I(u(t)) is continuous with respect to t, one can get that I(u(t)) > 0 for any t ∈ [0,T ). Since
the energy functional E(u(t)) is non-increasing via the energy identity (4.2), we obtain

E(0) ≥E(u(t))

=
p − 2
2p
∥X2u(t)∥2 +

∫
Ω

 p + (p − 1)|Xu(t)|2

p
√

1 + |Xu(t)|2
− 1

 dx +
1
p

I(u(t))

>
p − 2
2p
∥X2u(t)∥2

>
λ1(p − 2)

2p
∥u(t)∥2, (4.9)

where λ1 is the best constant of the Sobolev embedding H2
X,0(Ω) ↪→ L2(Ω) in (1.13). On the other hand,

one can obtain from I(u(t)) > 0 that

∥u∥pp ≤ S p∥X2u∥p = S p
(
∥X2u∥2

) p−2
2
∥X2u∥2. (4.10)

Then, from (4.9), we can deduce that

S p
(
∥X2u∥2

) p−2
2
≤ S p

(
2p

λ1(p − 2)
E(0)

) p−2
2

< S p

(
2p

λ1(p − 2)
d
) p−2

2

:= η,

which, combined with Lemma 1.8, shows that η < 1. Hence, taking η∗ := 1 − η > 0, we obtain from
(4.10) that

∥u∥pp ≤ (1 − η)∥X2u∥2,

which immediately gives

λ1η
∗∥u(t)∥2 ≤ η∗∥X2u∥2 ≤ I(u(t)).

Therefore, utilizing the definition of I(u(t)) and (4.3) in Lemma 4.2, we conclude that
d
dt
∥u(t)∥2 = −2I(u(t)) ≤ −2λ1η

∗∥u(t)∥2. (4.11)

Then, by means of Gronwall’s inequality, it follows that

∥u(t)∥2 ≤ e−λ1η
∗

∥u0∥
2, t ∈ [0,∞).
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5. Global dynamics analysis of solutions for problem (1.1) with critical initial energy E(0) = d

5.1. Summary of the dynamics near the ground state

As shown in Theorem 4.3, we found that the global solution approaches zero asymptotically as
t → +∞. Obviously, it is easy to understand that zero is a trivial solution to the problem (3.3). Therefore,
we further want to know the following: Do all global solutions for the problem (1.1) eventually converge
to the general nontrivial solution? To address the question, we have the following result.

Let the solution obtained in Theorem 4.3 exist globally; then, the ω-limit set ω(u0) is defined by

ω(u0) =
⋂
t>0

⋃
s>t

{u(s)},

where the bar over a set refers to the closure, which is taken in H2
X,0(Ω). Meanwhile, we know that

ω(u0) = { u∞ ∈ H2
X,0(Ω) |∃{tn}

∞
n=1 ⊂ (0,∞), lim

n→∞
tn = ∞

such that lim
n→∞
∥X2(u(tn) − u∞)∥ = 0 } .

Theorem 5.1. Suppose that u is a global bounded solution for the problem (1.1), which implies that
w(u0) , ∅; then, there exist an increasing sequence {tn}

+∞
n=1, with tn → +∞ as n→ +∞, and a solution

w ∈ Σ to the problem (3.3) satisfying that

u(tn)→ w weakly in H2
X,0(Ω).

Moreover, ω(u0) = {0} if 0 ∈ ω(u0).

Proof. We take a monotonically increasing sequence {tn}
+∞
n=1 satisfying the condition that tn → +∞ as

n→ +∞, and we set un = u(tn). By the boundedness of the solution, we demonstrate that there exit a
subsequence of {un}

+∞
n=1, denoted still by {un}

+∞
n=1 and a function w ∈ H2

X,0(Ω), which satisfies that

um → w weakly in H2
X,0(Ω) and un → w a.e. in Ω. (5.1)

For every T̂ < +∞, one can choose two functions ϕ(x) and ι(s) that satisfy

ϕ(x) ∈ H2
X,0(Ω), ι(s) ∈ C2

0(0, T̂ ), ι(s) ≥ 0,
∫ T̂

0
ι(s)ds = 1,

and let

ρ(x, t) :=

ι(t − tn)ϕ(x), (x, t) ∈ Ω′ × (tn,+∞),
0, (x, t) ∈ Ω′ × [0, tn].

In consideration of the definition of the above functions, one can deduce that∫ tn+T̂

0

∫
Ω

ut(τ)ρdxdτ =
∫ tn+T̂

tn

∫
Ω

ut(τ)ι(τ − τn)ϕdxdτ
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=

∫
Ω

(
u(tn + T̂ )ι(T̂ )ϕ − u(tn)ι(0)ϕ

)
dx

−

∫ tn+T̂

tn

∫
Ω

u(τ)(ι(τ − τn)ϕ)tdxdτ

= −

∫ tn+T̂

tn

(
u(τ)ι′(τ − τn)ϕ

)
dxdτ.

Thus, choosing the test function v = ρ in (1.9), for the problem (1.1), it follows that∫ tn+T̂

tn

∫
Ω

(
ut(τ)ι′(τ − τn)ϕ − ι(τ − τn)X2u(τ)X2ϕ

− ι(τ − τn)

 Xu(τ)√
1 + |Xu(τ)|2

Xϕ

 + |u(τ)|p−2u(τ)ϕ
)
dxdτ = 0. (5.2)

Making a transformation s = t − tn in (5.2), one can derive∫ T̂

0

∫
Ω

(
ut(τn + s)ι′(s)ϕ − ι(s)X2u(τn + s)X2ϕ

− ι(s)

 Xu(τn + s)√
1 + |Xu(τn + s)|2

Xϕ

 + |u(τn + s)|p−2u(τn + s)ϕ
)
dxdτ = 0. (5.3)

In consideration of H2
X,0(Ω) ↪→ Lp(Ω) and (5.1), we know that, for any s ∈ [0, T̂ ], there exist a

subsequence of {un}
+∞
n=1, denoted still by {un}

+∞
n=1, and a function w̃ ∈ Lp(Ω) such that

u(tn + s)→ w̃ weakly in Lp(Ω) and u(tn)→ w weakly in Lp(Ω). (5.4)

We next confirm that w̃ = w almost everywhere in Ω. Indeed, by employing a contradiction argument,
we claim that E(u(t)) ≥ 0 for any t ≥ 0 via the assumption that the solution is global in time. In addition,
if there exist a t0 ∈ [0,∞) satisfying that E(u(t0)) < 0, then, from the relation in (1.12), we obtain that
I(u(t0)) < 0; thus, given the conclusion presented in Theorem 4.3, the solution undergoes the finite time
blow-up, which contradicts the assumption that the solution is global.

Given that 0 ≤ E(u(t)) ≤ E(0) for any t ∈ [0,∞) and the non-increasing property of E(u(t)) with
respect to t in (4.2), there exists a constant c > 0 satisfying

lim
t→∞

E(u(t)) = c.

Then, we infer from (1.10) that ∫ +∞

0
∥ut(τ)∥2dτ ≤ E(0) < +∞, (5.5)

thus, combining this with Hölder’s inequality and (5.5), we obtain∫
Ω

|u(tn + s) − u(tn)|2dx =
∫
Ω

(∫ tn+s

tn
ut(τ)dτ

)2

dx
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≤ s
∫ tn+s

tn

∫
Ω

(ut(t))2 dxdτ

≤ T
∫ tn+s

tn
∥ut(τ)∥2dτ→ 0

as tn → +∞, i.e.,

u(tn + s)→ u(tn) strongly in L2(Ω) as tn → +∞.

Therefore, w̃ = w almost everywhere in Ω, which confirms our claim. Taking n→ +∞ in (5.3), one
can deduce from the dominated convergence theorem, (5.1), (5.5) and the choice of ι that∫ T̂

0

∫
Ω

(
wι′(s)ϕ − ι(s)X2wX2ϕ − ι(s)

 Xw√
1 + |Xw|2

Xϕ

 + |w|p−2wϕ
)
dxdτ = 0. (5.6)

Since ι(0) = ι(T ) = 0, we deduce that∫ T̂

0

∫
Ω

wι′(s)ϕdxdτ =
∫
Ω

(
wι(T̂ ) − wι(0)ϕ

)
dx = 0.

Thus, from (5.6), we obtain∫
Ω

X2wX2ϕ −

 Xw√
1 + |Xw|2

Xϕ

 − |w|p−2wϕ

 dx

=
1

T̂

∫ T̂

0

∫
Ω

X2wX2ϕ −

 Xw√
1 + |Xw|2

Xϕ

 − |w|p−2wϕ

 dxdτ = 0.

Hence, by

⟨E(u(t)), ϕ⟩ = (X2u(t), X2ϕ) +

 Xu(t)√
1 + |Xu(t)|2

Xϕ

 − |u(t)|p−2u(t)ϕ

= −(u′(t), ϕ), (5.7)

we know that w is a weak solution of problem (1.1). Finally, we show that ω(u0) = {0} if 0 ∈ ω(u0).
Since 0 ∈ ω(u0), there exists an increasing sequence {tk}

∞
k=1, tk → ∞ as k → ∞ such that u(tk) → 0 in

H2
X,0(Ω) as k → ∞; together with (4.2) in Lemma 4.2, it follows that E(0) = 0 and E(t) is decreasing to

0 as t increases to∞. Therefore, there exists a constant t0 ≥ 0 such that

E(u(t0)) < d∗, (5.8)

where d∗ := p−2
2p S −

2p
p−2 ≤ d. Because d∗ < d and the solution exists globally, we obtain from Theorem

4.3 that I(u(t0) ≥ 0. For the case of I(u(t0) = 0, E(u(t0)) = d∗ < d = infw∈N E(w) implies that u(t0) = 0.
Thus, it follows that the uniqueness of solutions satisfies that u(t) ≡ 0 for all t ≥ t0, so ω(u0) = {0}. For
the case of I(u(t0) > 0, it follows from Theorem 4.3 that ∥X2u(t)∥ exponentially decays to 0 for t ≥ t0;
thus, ω(u0) = {0}.
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Theorem 5.2. Assume that Q is a ground state solution for the problem (3.3), and that u is the solution
to the problem (1.1); then, the following claims hold:

(i) For every ϵ > 0, there exists the initial data satisfying the property

∥X2u0 − X2Q∥ < ϵ,

leading to the solution u blows up in finite time.
(ii) If the initial data satisfies

∥X2u0∥
2 +

∫
Ω

 |Xu0|
2√

1 + |Xu0|
2

 dx = ∥Q∥pp,

then the solution u exists globally. Meanwhile, for any t ∈ [0,∞), the boundedness property is
obtained as shown in (4.5).

Proof. (i) For any constant η > 1, we let

u0 := ηQ; (5.9)

then, for any ε > 0, one can choose a suitable η > 1, which satisfies

∥X2(u0 − Q)∥ = (η − 1)2∥X2Q∥ < ε.

By (5.9), (iii) in Lemma 1.6 and Q ∈ N , we know that

I(u0) = I(ηQ) < I(Q) = 0.

Furthermore, we obtain from (ii) in Lemma 1.6 and (i) in Theorem 3.2 that

E(u0) = E(ηu0) < E(Q) = d.

Hence, for such a initial datum u0, the assumption in (ii) of Theorem 4.3 is satisfied; thus, the corre-
sponding solution we obtained here blows up in finite time.

(ii) To begin, let us recall the assumption on the initial data, i.e.,

∥X2u0∥
2 +

∫
Ω

 |Xu0|
2√

1 + |Xu0|
2

 dx <
p − 2

p
∥Q∥pp, (5.10)

where Q is a ground state solution for the problem (3.3). Given the fact that Q ∈ N , i.e., I(Q) = 0, one
can derive

∥X2Q∥2 +
∫
Ω

 |XQ|2√
1 + |XQ|2

 dx = ∥Q∥pp;

thus, it follows from the definition of E(t) that

d = E(Q) =
p − 2
2p
∥Q∥pp. (5.11)
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We conclude that I(u0) > 0 via contradiction. Regarding the contradiction, by (iii) in Lemma 1.6, we
deduce that there exists a constant µ ∈ (0, 1] satisfying that I(µu0) = 0, i.e., µu0 ∈ N ; thus, from the
definition of d, we get that E(µu0) ≥ d. Furthermore, for the fixed µ, we obtain from the definition of
E(t), (5.10) and (5.11) that

E(µu0) =
µ2

2

∥X2u0∥
2 +

∫
Ω

 |Xu0|
2√

1 + |Xu0|
2

 dx

 − p − 2
p
∥u0∥

p
p (5.12)

<
µ2

2

∥X2u0∥
2 +

∫
Ω

 |Xu0|
2√

1 + |Xu0|
2

 dx

 (5.13)

≤
1
2

∥X2u0∥
2 +

∫
Ω

 |Xu0|
2√

1 + |Xu0|
2

 dx

 (5.14)

<
p − 2
2p
∥Q∥pp = d, (5.15)

which yields a contradiction. Next, we prove that E(u0) < d, it is easy to obtain via the chains of
inequality in (5.12), i.e.,

E(0) =
1
2

∥X2u0∥
2 +

∫
Ω

 |Xu0|
2√

1 + |Xu0|
2

 dx

 − p − 2
p
∥u0∥

p
p

<
1
2

∥X2u0∥
2 +

∫
Ω

 |Xu0|
2√

1 + |Xu0|
2

 dx


<

p − 2
2p
∥Q∥pp = d.

Therefore, in consideration of (i) of Theorem 4.3, we conclude that the solution exists globally and the
estimate (4.5) holds.

5.2. Global existence and decay of solutions for problem (1.1) with E(0) = d

Theorem 5.3. Suppose that u0 ∈ H2
X,0(Ω) satisfies that E(0) = d and I(u0) ≥ 0; then, the solution u

obtained in Theorem 2.2 exists globally, i.e., Tmax = ∞. Moreover, the following holds:

(i) If I(u0) = 0, then u0 ∈ H2
X,0(Ω) is a ground state solution of problem (3.3) and u(t) ≡ u0 for all

t ≥ 0.
(ii) If I(u0) > 0, then the ω-limit set ω(u0) = {0}. Moreover, there exists a constant ξ ≫ 1 such that the

exponential decay estimates in (ii) of Theorem 4.3 holds for t ≥ ξ by replacing u0 with u(ξ).

Proof. We divide the proof into two cases.
Case 1: I(u0) = 0 with E(0) = d. Since E(0) = d > 0, it obvious that u0 . 0. By the proof of

Theorem 3.2, u0 ∈ H2
X,0(Ω) is a ground state solution of problem (3.3); then, by the uniqueness of the

solution, we have that u(t) ≡ u0 for all t ≥ 0.
Case 2: I(u0) > 0 with E(0) = d. Since u ∈ C([0,T ); H2

X,0(Ω)), we get that I(u(t)) ∈ C([0,T )) which,
together with I(u0) > 0, implies that there exists a constant t0 > 0 small enough such that I(u(t)) > 0 for
any t ∈ [0, t0]. Then, by (u, ut) = −I(u(t)), we get that ∥ut(t)∥ > 0 for any t ∈ [0, t0]. Thus, we obtain

E(u(t0) =E(0) −
∫ t

0
∥ut(τ)∥2dτ
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=d −
∫ t

0
∥ut(τ)∥2dτ < d.

Then, we conclude that I(u(t0)) > 0, and Theorem 4.3 tells us that u exists globally. By Theorem 3.2,
there exist a ũ in ω(u0) ∩ Σ and an increasing sequence {tk}

∞
k=1 such that lim

k→∞
tk = ∞ and lim

k→
∥X2u(tk) −

X2ũ∥ = 0. Then, it follows that E(u(t)) ∈ C([0,∞)), E(u(t)) is non-increasing with respect to t and
E(u(t0)) < d that

E(̃u) = lim
k→∞

E(u(tk)) ≤ E(u(t0)) < d.

Since ũ ∈ Σ, we get that I (̃u) = 0. Then, one can infer from the definition of d that ũ = 0, i.e., 0 ∈ ω(u0).
Hence, we infer from Theorem 3.2 that ω(u0) = {0}.

We next show the exponential decay of the solution for t ≫ 1. Indeed, since ω(u0) = {0}, there exists
{tk}
∞
k=1 such that lim

k→∞
tk = ∞ and u(tk)→ 0 in H2

X,0(Ω) as k → ∞. Since E(0) = 0 and E(v) is continuous

with v ∈ H2
X,0(Ω), there exists a constant ϵ ≫ 1 such that E(u(ϵ)) < d∗, where d∗ = p−2

2p S −
2p
p−2 ≤ d. Given

the sign of I(u(ϵ)), it follows that

(a) if I(u(ϵ)) < 0, because d∗ < d, we know from Theorem 4.3 that u blows up in finite time, which
contradicts the fact that u exists globally;

(b) if I(u(ϵ)) = 0, it infers that u(ϵ) = 0. Otherwise, if u(ϵ) , 0, then, by the definition of d, we get
that E(u(ϵ)) > d, which contradicts that E(u0) < d∗ ≤ d. Then, by the uniqueness of the solution,
we obtain that u(t) ≡ 0 for all t ≥ ϵ, and the conclusion holds;

(c) if I(u(ϵ)) < 0, in consideration of E(u(ϵ)) < d∗, the result follows from Theorem 4.3 immediately.

5.3. Finite time blow-up of solutions for problem (1.1) with E(0) = d

Theorem 5.4. Suppose that u0 ∈ H2
X,0(Ω) satisfies that E(0) = d and I(u0) ≥ 0; then, the solution u

obtained in Theorem 2.2 blows up in finite time, i.e., Tmax < ∞.

Proof. Let u be any local solution of problem (1.1) obtained by applying Theorem 2.2 with E(0) = d,
u0 ∈ N−. From the continuities of E(t) and I(u(t)) with respect to t, one can deduce that there exists a
sufficiently small t1 > 0, with t1 < Tmax satisfying that E(t1) > 0 and I(u(t1)) < 0 for any t ∈ [0, t1]. We
then have that (u(t), ut(t)) = −2I(u(t)) > 0 and ∥ut(t)∥ > 0 for t ∈ [0, t1]. From this and the continuity of∫ t

0
∥ut(τ)∥2dτ, we can choose a t1 such that

0 < E(u(t1)) = d −
∫ t1

0
∥ut(τ)∥2dτ = d1 < d. (5.16)

Multiplying equation (1.1) by ut in first and then integrating over (t1, t) gives

E(u(t)) +
∫ t

t1
∥ut(τ)∥2dτ = E(u(t1)). (5.17)

Taking v(t) = u(t + t1) as the new initial data, similar to the situation in which E(0) < d in Lemma 4.1,
it still holds that v(t) ∈ N− for all t ∈ [t1,Tmax); the remainder of the proof is similar to the proof in
Theorem 4.3; hence, it is omitted.
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6. Global dynamics analysis of solutions for problem (1.1) with supercritical initial energy
E(0) > d

6.1. A sharp-like threshold condition for problem (1.1) with supercritical initial energy E(0) > d

Theorem 6.1 (Sharp-like threshold condition). Assume that u0 ∈ H2
X,0(Ω). For any E(0) < κ with

κ ∈ (d,+∞), the following conclusions hold:

(i) If u0 ∈ N+ satisfies that ∥u0∥
2 ≤ λκ, then the solution u for the problem (1.1) exists globally in time

and u(t)→ 0 as t → +∞;
(ii) If u0 ∈ N− satisfies that ∥u0∥

2 ≥ Λκ, then the solution u for the problem (1.1) blows up in finite
time.

Proof. (i) Suppose that u0 ∈ N+ with E(0) < α and ∥u0∥
2 ≤ λα. Recalling that the non-increasing

property of λα, we know that ∥u0∥
2 ≤ λα ≤ λE(0). Then, we need to show that u(t) ∈ N+ for all

t ∈ [0,Tmax(u0)) provided that u0 ∈ N+. Arguing by contradiction, given the continuity of I(u(t)) with
respect to t, one can assume that there exists the first time t1 ∈ (0,Tmax(u0)) that yields u(t) ∈ N+ for
any t ∈ [0, t1) and u(t1) ∈ N . Combining u(t) ∈ N+ for any t ∈ [0, t1), ∥u0∥

2 ≤ λα ≤ λE(0) and (4.3) in
Lemma 4.2, we obtain

∥u(t1)∥2 < ∥u0∥
2 ≤ λE(0) (6.1)

and

E(u(t1)) < E(u0). (6.2)

Therefore, from u(t1) ∈ N and (6.2), one can deduce that u(t1) ∈ NE(0). Combining the definition of
λE(0) and u(t1) ∈ NE(0), one can conclude that ∥u(t1)∥2 ≥ λE(0), which contradicts (6.1); then, we obtain
u(t) ∈ N+ for any t ∈ [0,Tmax(u0)). Moreover, taking (6.2) together with (ii) of Lemma 1.8, ∥Xu∥2 is
bounded in H2

X,0(Ω), i.e., ∥Xu∥2 < 2pE(0)
p−2 , which tells us that the weak solution is global in time; this

means that Tmax(u0) = ∞.
In order to prove the asymptotic behavior of the solution as t → +∞, we need several of the results

proved above. For any u0 ∈ H2
X,0(Ω), there exists a maximal solution for the problem (1.1) on [0,T ),

denoted by S (t)u0 ≡ u(t, u0). Suppose that supt>0 ∥S (t)u0∥H1 ≤ M for some M > 0. Thus, {S (t)u0}t>0 is a
relatively compact set in H2

X,0(Ω), which is a consequence of the fact that the operator eiθ∆ has a compact
resolvent; therefore, we denote the ω-limit set of u0 ∈ N+ satisfying that E(0) < α and ∥u0∥

2 ≤ λα.
Because we know that u(t) ∈ N+ for any t ≥ 0, considering this together with (i) in Lemma 1.8, one

deduces from (4.2) in Lemma 4.2 that E(u(t)) > 0 is bounded below and decreasing in t, which means
that there exists a constant c ≥ 0 satisfying that lim

t→+∞
E(u(t)) = c. Obviously, for every u∗0 ∈ ω(u0), we

get that E(u∗(t)) = c for sufficiently large t ≥ 0, where u∗(t) denotes the semiflow for problem (1.1) with
the initial datum u∗0. At the same time, we obtain that u∗(t) = u∗0 for any t ≥ 0, which, together with (4.3)
in Lemma 4.2, shows that

−I(u∗(t)) = 0, t ∈ [0,∞). (6.3)

Thus, formula (6.3) implies that

ω(u0) ∈ N ∪ {0}. (6.4)
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However, if u∗0 ∈ ω(u0), given u∗0 ∈ N+ satisfying that E(u∗0) < α and ∥u∗0∥
2 ≤ λα, then we know that

u∗0 < N ∩ {E(u) < α} and

ω(u0) ∩N = ∅. (6.5)

Hence, from (6.4) and (6.5), it is easy to get that ω(u0) = {0}, which implies that the solution exists
globally and approaches 0 as t → +∞, as long as u0 ∈ N+ satisfies that E(0) < α and ∥u0∥

2 ≤ λα.
(ii) If u0 ∈ N− satisfies that E(0) < α and ∥u0∥

2 ≥ Λα, by employing a similar discussion in the proof
of (i), it yields that u(t) ∈ N− for any t ∈ [0,Tmax(u0)). To obtain the finite time blow-up, we assume
that Tmax(u0) = +∞. Given that (4.2) in Lemma 4.2 describes the non-increasing property of E(u(t)) in
t, one of the two cases below may exist:

(a) There is a constant C satisfying that lim
t→+∞

E(u(t)) = C;
(b) lim

t→+∞
E(u(t)) = −∞.

In what follows, we will explain that neither of these cases hold by applying the contradiction to
Tmax(u0) = +∞, which infers that Tmax(u0) < ∞.

Suppose that the case (a) happens; by (4.2) in Lemma 4.2 and lim
t→+∞

E(u(t)) = C, one can obtain

d
dt

E(u(t)) = −∥ut(t)∥2 → 0 as t → +∞,

which means that the solution u is trending to the stationary solution to the problem (1.1) as t → +∞,
that is, u(t) ∈ N or u(t) = 0 as t → +∞. Alternatively, u(t) ∈ N− for every t > 0 means that u(t) < N
for all t > 0, which yields that u(t) = 0 as t → +∞. From the other side, u(t) ∈ N−, together with (iii) in
Lemma 4.2, implies that u(t) , 0 as t → +∞, which contradicts that u(t) = 0 as t → +∞. Thus, the case
(a) cannot occur.

For the case (b), repeating what we did for the case (a), we assume that case (b) occurs; since there
is the continuity of E(t) in t, one can infer that there exists a first time t1 < Tmax(u0) satisfying that
E(t1) < 0. We have proved that u(t) ∈ N− for all t ∈ [0,Tmax(u0)); thus, u(t1) ∈ N−. Choosing u(t1) as
a new initial datum, Theorem 4.3 tells us that the corresponding solution U(t) = u(t1 + t) blows up in
finite time, which conflicts with our hypothesis that the solution u is global. Therefore, the case (b) also
cannot occur.

Totally, together with (a) and (b), one can deduce that Tmax(u0) < ∞, that is, the solution to the
problem (1.1) blows up in finite time provided that u0 ∈ N− satisfies that E(0) < α and ∥u0∥

2 ≥ Λα.

Theorem 6.2. Let u0 ∈ H2
X,0(Ω) satisfy that E(0) > d and

2p
λ1(p − 2)

|Ω|
p−2

2 E(0) ≤ ∥u0∥
p, (6.6)

where |Ω| is the volume of Ω; then, the solution obtained in Theorem 2.2 blows up in finite time, i.e.,
Tmax < ∞.

Proof. Let u be the solution obtained in Theorem 2.2. Given (6.6) and Hölder’s inequality, we have

2p
λ1(p − 2)

|Ω|
p−2

2 E(0) ≤ ∥u0∥
p ≤ ∥u0∥

p
p|Ω|

p−2
2 .
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On the other hand, the relationship between E(t) and I(u) tells us that

E(0) >
p − 2
2p
∥u0∥

p
p +

1
p

I(u0)

>E(0) +
1
p

I(u0),

which shows that I(u0) < 0. Recalling the assumption in Theorem 6.1, if we want to demonstrate that
the solution u blows up in finite time, we need to show that the initial data satisfies that ∥u0∥

2 ≥ ΛE(0).
Obviously, for any v ∈ N ∩ {E(v) < E(u0)}, i.e., I(v) = 0 with v , 0, and E(v) < E(u0), we obtain from
Hölder’s inequality that

∥v∥p ≤|Ω|
p−2

2 ∥v∥pp

=|Ω|
p−2

2

∥X2v∥2 +
∫
Ω

 |Xv|2√
1 + |Xv|2

 dx


=|Ω|

p−2
2

2p
p − 2

(1
2
−

1
p

)
∥X2v∥2 +

(
1
2
−

1
p

) ∫
Ω

 |Xv|2√
1 + |Xv|2

 dx


≤|Ω|

p−2
2

2p
p − 2

 p − 2
2p
∥X2v∥2 +

∫
Ω

 p + (p − 1)|Xv|2

p
√

1 + |Xv|2
− 1

 dx


=|Ω|

p−2
2

2p
p − 2

 p − 2
2p
∥X2v∥2 +

∫
Ω

 p + (p − 1)|Xv|2

p
√

1 + |Xv|2
− 1

 dx +
1
p

I(v)


<|Ω|

p−2
2

2p
p − 2

E(0),

which, together with the definition of ΛE(0), shows that

Λ
p
E(0) ≤ |Ω|

p−2
2

2p
p − 2

E(0).

Hence, by (6.6), we obtain that ∥u0∥
2 ≥ ΛE(0); we finally conclude the finite time blow-up results by

applying (ii) in Theorem 6.1 immediately.

6.2. A sufficient condition for the finite time blow-up solution for problem (1.1) with arbitrary positive
initial energy E(0) > 0

To begin, we prove the invariant lemma below, which provides key information for the proof of the
finite time blow-up result for arbitrary positive initial energy.

Lemma 6.3. Let u0 ∈ H2
X,0(Ω) satisfies that

2p
λ1(p − 2)

E(0) ≤ ∥u0∥
2; (6.7)

then, u(t) ∈ N− for any t ≥ 0, where λ1 is the optimal constant in (1.13).
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Proof. Given the definition of E(t) and I(u), it follows that

E(t) =
p − 2
2p
∥X2u(t)∥2 +

∫
Ω

 p + (p − 1)|Xu(t)|2

p
√

1 + |Xu(t)|2
− 1

 dx +
1
p

I(u(t)); (6.8)

then, combining this with the assumption (6.7), we have

E(0) =
p − 2
2p
∥X2u0∥

2 +

∫
Ω

 p + (p − 1)|Xu0|
2

p
√

1 + |Xu0|
2
− 1

 dx +
1
p

I(u0)

≥
p − 2
2p
∥X2u0∥

2 +
1
p

I(u0)

≥
λ1(p − 2)

2p
∥u0∥

2 +
1
p

I(u0),

which means that I(u0) < 0. To obtain u(t) ∈ N− for any t ∈ [0,T ), in consideration of the continuity of
I(u(t)) with respect to t, one can suppose that there exists a first time ι ∈ (0,T ) satisfying that u(t) ∈ N−
for all t ∈ (0, ι) and u(ι) ∈ N ; thus, from (4.3), it follows that

d
dt
∥u(t)∥2 = −2I(u(t)) > 0 for all t ∈ [0, ι), (6.9)

which shows that
∥u0∥

2 < ∥u(ι)∥2. (6.10)

From (4.2) in Lemma 4.2, it is easy to infer that

E(u(ι)) ≤ E(u0). (6.11)

Given the relationship between E(t) and I(u) in (1.12), that u(ι) ∈ N and the weighted the Sobolev
embedding inequality, it follows that

E(u(ι)) >
p − 2
2p
∥X2u(t)∥2 +

1
p

I(u(t))

≥
λ1(p − 2)

2p
∥u(t)∥2.

Combining (6.11) and (6.7), we get

λ1(p − 2)
2p

∥u(ι)∥2 ≤ E(0) <
λ1(p − 2)

2p
∥u0∥

2,

that is
∥u0∥

2 > ∥u(ι)∥2,

which contradicts (6.10). Therefore, this lemma has been proved.

Next, the blow-up of the solution for problem (1.1) is given below. In addition, the estimate of the
upper bound of the blow-up time is also discussed.
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Theorem 6.4 (Finite time blow-up and lifespan estimate). Assume that u0 ∈ H2
X,0(Ω) and E(0) > 0

satisfies (6.7); then, the local solution u for the problem (1.1) blows up in finite time. Moreover, there
exists a time Tmax satisfying

Tmax ≤
2c

(α − 1)∥u0∥
4

such that

lim
t→Tmax

∫ t

0
∥u(τ)∥2dτ = +∞,

where the constant c satisfies

c >
1
4
ρ−2∥u0∥

4 and 0 < ρ <
1

2α∥u0∥
2

(
ξ∥u0∥

2 − 4αE(0)
)
.

Proof. Arguing by contradiction, we begin to assume that the maximum existence time of the solution
satisfies that Tmax = +∞. From the definition of E(t), I(u) and (4.3), one can obtain

d
dt
∥u(t)∥2 = − 2I(u(t))

= − 2

∥X2u(t)∥2 +
∫
Ω

 |Xu(t)|2√
1 + |Xu(t)|2

 dx − ∥u(t)∥pp


= − 4

(
1
2
∥X2u(t)∥2 +

∫
Ω

( √
1 + |Xv|2 − 1

)
dx −

1
p
∥u(t)∥pp

)
+ 2

∫
Ω

 p + (p − 1)|Xu(t)|2

p
√

1 + |Xu(t)|2
− 1

 dx +
(
2 −

4
p

)
∥u(t)∥pp (6.12)

= − 4E(t) + 2
∫
Ω

 p + (p − 1)|Xu(t)|2

p
√

1 + |Xu(t)|2
− 1

 dx +
2(p − 2)

p
∥u(t)∥pp

≥ − 4E(t) +
2(p − 2)

p
∥u(t)∥pp.

Considering the sign of E(t), we divide the proof into the following two cases.
Case I. E(t) ≥ 0 for every t > 0. From (6.7), we choose α satisfying that

1 < α <
ξ∥u0∥

2

4E(0)
, (6.13)

where ξ := λ1(p−2)
2p . Substituting (4.2) into (6.12), and in consideration of E(u(t)) ≥ 0, we obtain

d
dt
∥u(t)∥2 ≥ 4(α − 1)E(u(t)) − 4αE(u(t)) +

2(p − 2)
p
∥u(t)∥pp

≥ −4αE(u(t)) +
2(p − 2)

p
∥u(t)∥pp

≥ −4αE(0) + 4α
∫ t

0
∥ut(τ)∥2dτ +

2(p − 2)
p
∥u(t)∥pp. (6.14)
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From Lemma 6.3 (i.e., I(u) < 0) and the weighted Sobolev embedding inequality, we have

∥u∥pp ≥∥X
2u∥2 +

∫
Ω

 |Xu(t)|2√
1 + |Xu(t)|2

 dx ≥ ∥X2u∥2 ≥ λ1∥u∥2,

which causes (6.14) to become

d
dt
∥u(t)∥2 ≥ −4αE(0) + 4α

∫ t

0
∥ut(τ)∥2dτ +

2λ1(p − 2)
p

∥u(t)∥2. (6.15)

Hence, we obtain the following differential inequality:

d
dt
∥u(t)∥2 − 4ξ∥u(t)∥2 ≥ −4αE(u0),

which yields

∥u(t)∥2 ≥ ∥u0∥
2e4ξt + 4αE(0)

(
1 − e4ξt

)
. (6.16)

Next, we denote F (t) :=
∫ t

0
∥u(τ)∥2dτ. Because the solution has already been assumed to be global, F (t)

is bounded for any t ∈ [0,∞). Hence, we derive

F ′(t) = ∥u(t)∥2 and F ′′(t) =
d
dt
∥u(t)∥2. (6.17)

Taking a constant ρ satisfies

0 < ρ <
1

2α∥u0∥
2

(
ξ∥u0∥

2 − 4αE(0)
)

; (6.18)

then, we derive

ξ∥u0∥
2 − 4αE(0) ≥ 2αρ∥u0∥

2. (6.19)

Substituting (6.16) into (6.15), it follows that

d
dt
∥u(t)∥2 >4α

∫ t

0
∥ut(τ)∥2dτ +

(
∥u0∥

2 − 4αE(0)
)

eξt. (6.20)

Thus, given (6.19) and that et ≥ 1, (6.20) becomes

F ′′(t) > 4α
∫ t

0
∥ut(τ)∥2dτ +

(
∥u0∥

2 − 4αE(0)
)

eξt

> 4α
∫ t

0
∥ut(τ)∥2dτ + 2αρ∥u0∥

2. (6.21)

Take

G(t) :=
(∫ t

0
∥u(τ)∥2dτ

)2

+ ρ−1∥u0∥
2
∫ t

0
∥u(τ)∥2dτ + c, (6.22)
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where

c >
1
4
ρ−2∥u0∥

4. (6.23)

According to the definition of G(t), it is easy to derive

G′(t) =
(
2
∫ t

0
∥u(τ)∥2dτ + ρ−1∥u0∥

2
)
∥u(t)∥2 (6.24)

and
G′′(t) =

(
2F (t) + ρ−1∥u0∥

2
)
F ′′(t) + 2(F ′(t))2. (6.25)

To obtain the following results, we define

δ := 4c − ρ−2∥u0∥
4 > 0,

where the positivity can be confirmed by (6.23); then, (6.24) gives

(G′(t))2 =
(
4F 2(t) + 4ε−1∥u0∥

2F (t) + ε−2∥u0∥
4
)

(F ′(t))2

=
(
4F 2(t) + 4ε−1∥u0∥

2F (t) + 4c − δ
)

(F ′(t))2 (6.26)

= (4F (t) − δ) (F ′(t))2,

which implies that
4G(t)(F ′(t))2 = (G′(t))2 + δ(F ′(t))2. (6.27)

Taking advantage of the inner product in L2(Ω), we have the following identity:

1
2

d
dt
∥u(t)∥2 = (u(t), ut(t)).

Integrating the above formula over [0, t] yields

∥u(t)∥2 = ∥u0∥
2 + 2

∫ t

0
(u(τ), ut(τ))dτ. (6.28)

Combining (6.17) with (6.28), and by applying Hölder’s and Cauchy’s inequalities, it follows that

∥u∥4 =
(
∥u0∥

2 + 2
∫ t

0
(u, ut)dτ

)2

≤

∥u0∥
2 + 2

(∫ t

0
∥u(τ)∥2dτ

) 1
2
(∫ t

0
∥ut(τ)∥2dτ

) 1
2


2

=∥u0∥
4 + 4∥u0∥

2
(∫ t

0
∥u(τ)∥2dτ

) 1
2
(∫ t

0
∥ut(τ)∥2dτ

) 1
2

+ 4
∫ t

0
∥u(τ)∥2dτ

∫ t

0
∥ut(τ)∥2dτ (6.29)

≤∥u0∥
4 + 2ε∥u0∥

2
∫ t

0
∥u(τ)∥2dτ + 2ε−1∥u0∥

2
∫ t

0
∥ut(τ)∥2dτ
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+ 4
∫ t

0
∥u(τ)∥2dτ

∫ t

0
∥ut(τ)∥2dτ

:=K(t).

From (6.25), (6.27) and (6.21), we obtain

2G(t)G′′(t) =2
((

2F (t) + ρ−1∥u0∥
2
)
F ′′(t) + 2(F ′(t))2

)
F (t)

=2
(
2F (t) + ρ−1∥u0∥

2
)
F ′′(t)G(t) + 4(F ′(t))2G(t) (6.30)

=2
(
2F (t) + ρ−1∥u0∥

2
)
F ′′(t)G(t) + (G′(t))2 + δ(F ′(t))2

>4αG(t)
(
2F (t) + ρ−1∥u0∥

2
) (

2 cos2 θ

∫ t

0
∥ut(τ)∥2dτ + ρ∥u0∥

2
)

+ (G′(t))2 + δ(F ′(t))2

=4αG(t)K(t) + (G′(t))2 + δ(F ′(t))2.

Combining (6.30), (6.26) and (6.29), it follows that

2G(t)G′′(t) − (1 + α)(G′(t))2 >4αG(t)K(t) + δ(F ′(t))2 − α(G′(t))2

=4αG(t)K(t) − α (4G(t) − δ) (F ′(t))2 + δ(F ′(t))2

=4αG(t)K(t) − 4αG(t)(F ′(t))2 + δ(1 + α)(F ′(t))2

≥4αG(t)K(t) − 4αG(t)K(t)
=0,

i.e.,

G(t)G′′(t) −
1 + α

2
(G′(t))2 > 0, t ∈ [0,+∞),

which yields (
G−β(t)

)′′
= −

β

Gβ+2(t)

(
G′′(t)G(t) − (β + 1)(G′(t))2

)
< 0, t ∈ [0,+∞),

where β = α−1
2 > 0. Given that G(0) = c > 1

4ε
−2∥u0∥

4 > 0 and G′(0) = ε−1∥u0∥
4 > 0, by Lemma 1.12, it

follows that

0 < T ≤
2G(0)

(α − 1)G′(0)
(6.31)

satisfies that limt→T G
−β(t) = 0, i.e., limt→T G(t) = +∞, which obviously contradicts with Tmax = +∞.

And, in consideration of the continuity property of both G(t) and F (t) in t, one deduces that F (t)→ +∞
as t approaches T , while the assumption is that Tmax = +∞.
Case II. There exists some t̃ such that E(t̃) < 0.

Because E(0) > 0, we can suppose from the continuity property of E(t) in t that there exists a first
time t0 > 0 satisfying that E(u(t0)) = 0 and E(u(t̂)) < 0 for some t̂ > t0. Choosing u(t̂) as a new initial
datum, together with Lemma 4.1, it follows that u(t) ∈ N− for any t > t̂. Following the argument in
Theorem 4.3, we similarly obtain that the solution for the problem (1.1) undergoes a the finite time
blow-up.

Based on the above two cases, one can deduce that the solution u blows up in finite time.
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4. L. Agélas, Global regularity of solutions of equation modeling epitaxy thin film growth in Rd,
d = 1, 2, J. Evol. Equ., 15 (2015), 89–106. https://doi.org/10.1007/s00028-014-0250-6

5. T. P. Schulze, R. V. Kohn, A geometric model for coarsening during spiral-mode growth of thin
films, Phys. D, 132 (1999), 520–542. https://doi.org/10.1016/S0167-2789(99)00108-6

6. M. Ortiz, E. A. Repetto, H. Si, A continuum model of kinetic roughening and coarsening in thin
films, J. Mech. Phys. Solids, 47 (1999), 697–730. https://doi.org/10.1016/S0022-5096(98)00102-1

7. T. J. Willmore, A survey on Willmore immersions, In Geometry and Topology of Submanifolds,
World Sci. Publ., IV (1991), 11–16.

8. W. K. Burton, N. Cabrera, F. C. Frank, The growth of crystals and the equilib-
num structure of their surfaces, Phil. Trans. Royal Soc. London, 243 (1951), 299–358.
https://doi.org/10.1098/rsta.1951.0006

9. C. Gerhardt, Boundary value problems for surfaces of prescribed mean curvature, J. Math. Pures
Appl., 58 (1979), 75–109.

10. D. Farrukh, On a boundary control problem for a pseudo-parabolic equation, Commun. Anal.
Mech., 15 (2023), 289–299. https://doi.org/10.3934/cam.2023015

11. C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean
curvature equation: Existence, uniqueness and regularity of solutions, J. Differential Equations,
260 (2016), 4572–4618. https://doi.org/10.1016/j.jde.2015.11.024

Communications in Analysis and Mechanics Volume 15, Issue 4, 658–694.

http://dx.doi.org/https://doi.org/10.1007/BF02392081
http://dx.doi.org/https://doi.org/10.1137/16M1093380
http://dx.doi.org/https://doi.org/10.1007/s11854-010-0002-7
http://dx.doi.org/https://doi.org/10.1007/s00028-014-0250-6
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(99)00108-6
http://dx.doi.org/https://doi.org/10.1016/S0022-5096(98)00102-1
http://dx.doi.org/https://doi.org/10.1098/rsta.1951.0006
http://dx.doi.org/https://doi.org/10.3934/cam.2023015
http://dx.doi.org/https://doi.org/10.1016/j.jde.2015.11.024


693

12. G. Ehrlich, F. G. Hudda, Atomic view of surface self-diffusion: Tungsten on tungsten, J. Chem.
Phys., 44 (1966), 1039–1049. https://doi.org/10.1063/1.1726787

13. G. Métivier, Fonction spectrale et valeurs propres d’une classe d’opŕateurs non elliptiques, Comm.
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