Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Some estimates of multilinear operators on tent spaces

  • Let 0<α<mn and 0<r,q<. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces Tqr(Rn+1+), where these multilinear operators include multilinear Hardy–Littlewood maximal operator M, multilinear fractional maximal operator Mα, multilinear Calderón–Zygmund operator T, and multilinear fractional integral operator Iα. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.

    Citation: Heng Yang, Jiang Zhou. Some estimates of multilinear operators on tent spaces[J]. Communications in Analysis and Mechanics, 2024, 16(4): 700-716. doi: 10.3934/cam.2024031

    Related Papers:

    [1] Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012
    [2] Jizheng Huang, Shuangshuang Ying . Hardy-Sobolev spaces of higher order associated to Hermite operator. Communications in Analysis and Mechanics, 2024, 16(4): 858-871. doi: 10.3934/cam.2024037
    [3] Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu . Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups. Communications in Analysis and Mechanics, 2023, 15(3): 410-435. doi: 10.3934/cam.2023020
    [4] Xiaotian Hao, Lingzhong Zeng . Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds. Communications in Analysis and Mechanics, 2023, 15(2): 162-176. doi: 10.3934/cam.2023009
    [5] İrem Akbulut Arık, Seda İğret Araz . Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos. Communications in Analysis and Mechanics, 2024, 16(1): 169-192. doi: 10.3934/cam.2024008
    [6] Lovelesh Sharma . Brezis Nirenberg type results for local non-local problems under mixed boundary conditions. Communications in Analysis and Mechanics, 2024, 16(4): 872-895. doi: 10.3934/cam.2024038
    [7] Caojie Li, Haixiang Zhang, Xuehua Yang . A new $ \alpha $-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation. Communications in Analysis and Mechanics, 2024, 16(1): 147-168. doi: 10.3934/cam.2024007
    [8] Andrea Brugnoli, Ghislain Haine, Denis Matignon . Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint. Communications in Analysis and Mechanics, 2023, 15(3): 362-387. doi: 10.3934/cam.2023018
    [9] Siegfried Carl . Quasilinear parabolic variational-hemivariational inequalities in $ \mathbb{R}^N\times (0, \tau) $ under bilateral constraints. Communications in Analysis and Mechanics, 2025, 17(1): 41-60. doi: 10.3934/cam.2025003
    [10] Leandro Tavares . Solutions for a class of problems driven by an anisotropic $ (p, q) $-Laplacian type operator. Communications in Analysis and Mechanics, 2023, 15(3): 533-550. doi: 10.3934/cam.2023026
  • Let 0<α<mn and 0<r,q<. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces Tqr(Rn+1+), where these multilinear operators include multilinear Hardy–Littlewood maximal operator M, multilinear fractional maximal operator Mα, multilinear Calderón–Zygmund operator T, and multilinear fractional integral operator Iα. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.



    Tent spaces were first introduced by Coifman, Meyer, and Stein in [1] and started with the use of Lusin area functionals on harmonic functions. These spaces were extensively used in the recent theory of Hardy spaces associated with operators [2] and played an important role in harmonic analysis, as evidenced in [3]. They also appeared in the study of maximal regularity operators arising from some linear or nonlinear partial differential equations [4].

    Recently, Auscher and Prisuelos–Arribas [5] showed how extrapolation allows us to conclude the boundedness of some operators on tent spaces, such as the Hardy–Littlewood maximal operator, the Calderón–Zygmund operator, the Riesz potential, the fractional maximal function, and the Riesz transform of elliptic operator. Moreover, many interesting results were also extensively investigated on tent spaces; we refer the readers to see [6,7] and therein references. The purpose of this paper is to extend the boundedness of multilinear operators on tent spaces.

    In the 1970s, Coifman and Meyer were among the first to adopt the multilinear point of view in their study of certain singular integral operators (see; for example, [8,9]). The study of multilinear operators is not motivated by a mere quest to generalize the theory of linear operators but rather by their natural appearance in harmonic analysis. A series of papers on this topic enrich this theory, see [10,11] and so on. In particular, we want to understand how some multilinear operators act on tent spaces. We assume T be a multilinear operator and F1(x,t),,Fm(x,t) be measurable functions on Rn+1+ and define T by the setting, for any (x,t)Rn+1+,

    T(F1,,Fm)(x,t):=Tt(F1(,t),,Fm(,t))(x).

    The following definition of tent spaces, Tqr(Rn+1+), can be found in [1].

    Definition 1.1. For a measurable function F:Rn+1+:=Rn×(0,)C and 0<r<, let

    Ar(F)(x):=(0B(x,t)|F(y,t)|rdydttn+1)1r,xRn.

    Tent space Tqr:=Tqr(Rn+1+),0<q,r<, is defined as the set of all measurable functions F such that Ar(F)Lq(Rn).

    For an m-tuple locally integrable function f=(f1, , fm), the multilinear Hardy–Littlewood maximal operator M is defined by, for any xRn,

    M(f)(x):=supBxmj=11|B|B|fj(yj)|dyj,

    where the supremum is taken over all the balls B containing x.

    Lerner, Ombrosi, Pérez, Torres, and Trujillo–González [12] first introduced the multilinear Hardy–Littlewood maximal operator and further obtained some mapping properties of the multilinear Hardy–Littlewood maximal operator on weighted Lebesgue spaces. In 2014, Iida [13] proved the boundedness of the multilinear Hardy–Littlewood maximal operator on weighted Morrey spaces.

    Our first result can be stated as follows:

    Theorem 1.1. Let M be the multilinear Hardy–Littlewood maximal operator. If 1<r,r1,,rm<, 1<q,q1,,qm<, 1r=1r1++1rm and 1q=1q1++1qm, then, there exists a constant C>0, such that for all F=(F1,,Fm)Tq1r1××Tqmrm,

    ||M(F)||TqrCmj=1FjTqjrj.

    Let T be a multilinear operator initially defined on the m-fold product of Schwartz spaces and taking values into the space of tempered distributions,

    T:S(Rn)××S(Rn)S(Rn).

    We say that T is the m-linear Calderón–Zygmund operator, if for some 1qj<, it extends to a bounded multilinear operator from Lq1××Lqm to Lq, where 1q=1q1++1qm, and if there exists a function K, defined off the diagonal x=y1==ym in (Rn)m+1, satisfying

    T(f)(x)=(Rn)mK(x,y1,,ym)f1(y1)fm(ym)dy1dym

    for all xmj=1suppfj,

    |K(y0,y1,,ym)|A(mk,l=0|ykyl|)mn (1.1)

    and

    |K(y0,,yj,,ym)K(y0,,yj,,ym)|A|yjyj|ε(mk,l=0|ykyl|)mn+ε, (1.2)

    for some ε>0 and all 0jm, whenever |yjyj|12max0km|yjyk|.

    In 2002, Grafakos and Torres[14] obtained the boundedness of the multilinear Calderón–Zygmund operator on Lebesgue spaces. Lerner, Ombrosi, Pérez, Torres, and Trujillo–González [12] developed a multiple weight theory and obtained that the multilinear Calderón–Zygmund operator is bounded on weighted Lebesgue spaces. In 2014, Grafakos, Liu, Maldonado, and Yang [15] extended these results to the framework of metric spaces.

    Here is the second result we obtained.

    Theorem 1.2. Let T be the m-linear Calderón–Zygmund operator. If 1<r,r1,,rm<, 1<q,q1,,qm<, 1r=1r1++1rm and 1q=1q1++1qm, then, there exists a constant C>0, such that, for all F=(F1,,Fm)Tq1r1××Tqmrm,

    ||T(F)||TqrCmj=1FjTqjrj.

    Let 0<α<mn. For f=(f1,,fm), the multilinear fractional integral operator Iα is defined by

    Iα(f)(x):=Rmnf1(y1)fm(ym)(|xy1|++|xym|)mnαdy1dym.

    The associated multilinear fractional maximal operator Mα is defined by

    Mα(f)(x):=supBxmj=11|B|1αmnB|fj(yj)|dyj,

    where the supremum is taken over all the balls B containing x.

    In 1992, Grafakos[16] first studied the multilinear fractional integral operator and obtained the boundedness of the multilinear fractional integral operator on Lebesgue spaces. In 2015, Li, Moen and Sun [17] extended this result to weighted Lebesgue spaces.

    Next, our third result is as follows:

    Theorem 1.3. Let 0<α<mn and Iα be the multilinear fractional integral operator. If 1<r,r1,,rm<, 1<q,q1,,qm<, 1r=1r1++1rm, 1q=1q1++1qm, and 1q1p=αn, then, there exists a constant C>0, such that for all F=(F1,,Fm)Tq1r1××Tqmrm,

    ||Iα(F)||TprCmj=1FjTqjrj.

    We note that the multilinear fractional maximal operator has the same boundedness as that of the multilinear fractional integral since the pointwise inequality Mα(f)Iα(f). Thus, we have the following result:

    Corollary 1.1. Let 0<α<mn and Mα be the multilinear fractional maximal operator. If 1<r,r1,,rm<, 1<q,q1,,qm<, 1r=1r1++1rm, 1q=1q1++1qm, and 1q1p=αn, then, there exists a constant C>0, such that, for all F=(F1,,Fm)Tq1r1××Tqmrm,

    ||Mα(F)||TprCmj=1FjTqjrj.

    We end this section by explaining some notations. We write AB to mean that there is a positive constant C such that ACB, and AB to suggest that there exists a positive constant C such that BA and AB.  Bf(x)dx represents the average 1|B|Bf(x)dx of f over the set B. The letter C will be used for positive constants independent of relevant variables that may change from one occurrence to another.

    We present some necessary lemmas and definitions in this section, which are very important to prove our main results.

    Let us recall the definitions of Ap weights and reverse Hölder classes (see, for example, [18]). In what follows, for xRn and r>0, the symbol B=B(x,r) denotes balls in Rn.

    Definition 2.1. An Ap weight ω is a non-negative locally integrable function on Rn that satisfies, when p(1,),

    [ω]Ap:=supBRn( Bω(x)dx)( Bω(x)1pdx)p1<,

    and when p=1,

    [ω]A1:=supBRn( Bω(x)dx)ω1L(B)<,

    where the quantity [ω]Ap is called the Ap constant of the weight ω.

    In addition, we also need the reverse Hölder classes.

    Definition 2.2. For s(1,], we define the reverse Hölder class RHs as the collection of all weights ω such that

    [ω]RHs:=supB( Bω(x)sdx)1s( Bω(x)dx)1<,

    when s=, ( Bω(x)sdx)1s is understood as esssupBω. Define RH1:=1<sRHs. Then we see that RH1=A.

    Some properties about Ap weights and reverse Hölder classes used later are summed up in the following; see [19,20].

    Proposition 2.1. (1) A1ApAq for 1pq<.

    (2) RHRHqRHp for 1<pq.

    (3) A=1p<Ap=1<sRHs.

    (4) If 1<p<, ωAp if and only if ω1pAp.

    (5) If ωAp, 1<p<, then there exists q(1,p) such that ωAq.

    (6) If ωRHs, 1<s<, then there exists r(s,) such that ωRHr.

    (7) If ωApRH, 1p<, then there exists r(1,) such that ωrAp.

    For any α(0,) and r(1,), we define the operator Aαr by

    Aαr(F)(x):=(0B(x,αt)|F(y,t)|rdydttn+1)1r,xRn.

    The following lemma (change of angles) comes from [21, Proposition 3.2].

    Lemma 2.1. Let 0<αβ<.

    (i) For every ωAq, 1q<, there holds

    Aβr(f)Lp(ω)(βα)nqpAαr(f)Lp(ω),for all0<prq.

    (ii) For every ωRHs, 1s<, there holds

    Aαr(f)Lp(ω)(αβ)nspAβr(f)Lp(ω),for allrsp<.

    For m exponents p1,,pm, we write p for the number given by 1p=1p1++1pm and p for the vector p=(p1,,pm).

    Definition 2.3. Let 1p1,,pm<. Given ω=(ω1,,ωm), set

    νω=mj=1ωppjj.

    We say that ω satisfies the Ap condition if

    supB( Bνω(x)dx)1pmj=1( Bωj(x)1pjdx)1pj<,

    when p=1, ( Bωj(x)1pjdx)1pj is understood as (infBωj)1.

    By Hölder's inequality, we can check that mj=1ApjAp. Moreover, it is proved in [12] that, for 1p1,,pm<, ωAp if and only if

    {ω1pjAmpj,j=1,,m,νωAmp,

    where the condition ω1pjjAmpj in the case pj=1 is understood as ω1mjA1.

    We are going to present the definition of the multilinear Muckenhoupt classes Ap,r introduced in[22]. Given p=(p1,,pm) with 1p1,,pm and r=(r1,,rm+1) with 1 r1,,rm+1<, we say that rp whenever

    ripi,i=1,,m, and rm+1p, where 1p:=1p1++1pm.

    Analogously, we say that r<p if ri<pi for each i=1,,m and rm+1>p.

    Definition 2.4. Let p=(p1,,pm) with 1p1,,pm< and let r=(r1,,rm+1) with 1r1,,rm+1< such that rp. Suppose that ω=(ω1,,ωm) and each ωj is a weight on Rn. We say that ωAp,r if

    [ω]Ap,r:=supB( Bω(x)rm+1rm+1pdx)1p1rm+1mj=1( Bωj(x)rjpjrjpjdx)1rj1pj<, (2.1)

    where ω=mj=1ωj and the supremum is taken over all balls BRn. When p=rm+1, the term corresponding to ω needs to be replaced by esssupBω, and, analogously, when pj=rj, ω needs to be replaced by ( Bω(x)pdx)1p.

    Remark 2.1. If we take r=(1,,1,rm+1) with 1rm+1=1p1q in (2.1), then we see that Ap,r is the same as Ap,r.

    The following lemma is proved in [12, Theorem 3.7].

    Lemma 2.2. Let 1<p1,,pm< and 1p=1p1++1pm. If ω:=ω1ω2ωmmj=1ApjAp, then, there exists a constant C>0, such that, for all f=(f1,,fm)Lp1(ωp11)××Lpm(ωpmm),

    ||M(f)||Lp(ωp)Cmj=1fjLpj(ωpjj).

    Let f=(f1,,fm)L1loc(Rn)××L1loc(Rn). The centered multilinear maximal operator Mc is defined by

    Mc(f)(x):=supr>0mj=1 B(x,r)|fj(yj)|dyj.

    Remark 2.2. For f=(f1,,fm)L1loc(Rn)××L1loc(Rn), it is easy to see that Mc(f)M(f).

    For the centered multilinear maximal operator Mc, we have the following pointwise inequality:

    Lemma 2.3. For all xRn, t>0 and r, r1, , rm(1,) with 1r=1r1++1rm, and all f=(f1,,fm)Lr1loc(Rn)××Lrmloc(Rn), we have

    ( B(x,t)|Mc(f)(y)|rdy)1rmj=1( B(x,2t)|fj(yj)|rjdyj)1rj+M(mj=1 B(,t)|fj(yj)|dyj)(x). (2.2)

    Proof. Fix xRn and t>0, and split the supremum into 0<τt and t<τ. Then,

    ( B(x,t)|M(f)(y)|rdy)1r{ B(x,t)[sup0<τtmj=1 B(y,τ)|f(yj)|dyj]rdy}1r+{ B(x,t)[supτ>tmj=1 B(y,τ)|f(yj)|dyj]rdy}1r=:I+II.

    For I, since B(y,τ)B(x,2t) for 0<τt and yB(x,t), it follows that

    I{ B(x,t)[sup0<τtmj=1 B(y,τ)|f(yj)χB(x,2t)(yj)|dyj]rdy}1r( B(x,t)|M(fχB(x,2t))(y)|rdy)1rmj=1( B(x,2t)|f(yj)|rjdyj)1rj,

    where fχB(x,2t):=(f1χB(x,2t),,fmχB(x,2t)) and the last inequality we have used is M: Lr1(Rn)××Lrm(Rn)Lr(Rn) (see [12, Theorem 3.7]).

    As for II, we note that, for ξj, yjRn, ξB(yj,t) if and only if yjB(ξj,t). If yjB(y,τ), ξjB(yj,t) and τ>t, then ξjB(y,2τ). Besides, we observe that the fact that xB(y,t) and τ>t implies that xB(y,2τ). Hence, applying Fubini's theorem, we have

    II={ B(x,t)[supτ>tmj=1 B(y,τ)|f(yj)| B(yj,t)dξjdyj]rdy}1r{ B(x,t)[supτ>tmj=1 B(y,2τ) B(ξj,t)|f(yj)|dyjdξj]rdy}1rM(mj=1 B(,t)|f(yj)|dyj)(x).

    Combining with estimates for I and II, we complete the proof of Lemma 2.3.

    Next, we establish the pointwise inequality for the multilinear Calderón–Zygmund operator T.

    Lemma 2.4. Let T be an m-linear Calderón–Zygmund operator. For 1<r, r1, , rm< with 1r=1r1++1rm and f=(f1,,fm)Lr1(Rn)××Lrm(Rn). Then, for all xRn and t>0, we have

    ( B(x,t)|T(f)(y)|rdy)1rmj=1( B(x,2t)|fj(y)|rjdyj)1rj+T(f)(x)+M(f)(x),

    where

    T(f)(x):=supϵ>0||xy1|2++|xym|2>ϵ2K(x,y1,,ym)f1(y1)fm(ym)dy1dym|.

    Proof. Fix xRn and t>0, consider the ball B(x,2t), and write fj=fjχB(x,2t)+fjχB(x,2t)c=:f0j+fj, j=1,,m. Then

    mj=1fj(yj)=mj=1(f0j(yj)+fj(yj))=α1,,αm{0,}fα11(y1)fαmj(ym)=mj=1f0j(yj)+fα11(y1)fαmj(ym),

    where each term of contains at least one αj0. Then, we write that

    ( B(x,t)|T(f)(y)|rdy)1r( B(x,t)|T(f01,,f0m)(y)|rdy)1r+( B(x,t)|T(fα11,,fαmm)(y)|rdy)1r=:I+II.

    Since T: Lr1(Rn)××Lrm(Rn)Lr(Rn) (see [12, Corollary 3.9]), we obtain

    Imj=1( B(x,2t)|fj(yj)|rjdyj)1rj.

    As for II, we consider each term in the sum and get that

    ( B(x,t)|T(fα11,,fαmm)(y)|rdy)1r=( B(x,t)|(Rn)mK(y,y1,,ym)fα11(y1),,fαmm(ym)dy|rdy)1r=( B(x,t)|(Rn)m[K(y,y1,,ym)K(x,y1,,ym)]fα11(y1),,fαmm(ym)dy|rdy)1r+( B(x,t)|(Rn)mK(x,y1,,ym)fα11(y1),,fαmm(ym)dy|rdy)1r=:IIα1,,αm1+IIα1,,αm2.

    Observe that there exists αj00 such that |yj0x|>2t. Then, for yB(x,t), we have |xy|<t<12|yj0x|12maxj{1,...,m}|yjx|. By (1.1) and the same process as the proof of [12, (4.4)], we conclude that

    IIα1,,αm1M(f)(x),

    and using |xy1|2++|xym|2>|yj0x|2>(2t)2, it is easy to see

    IIα1,,αm2T(f)(x).

    Thus, we complete the proof of Lemma 2.4.

    For the operator T, we need the following lemma (see [15, Theorem 4.16]).

    Lemma 2.5. Let 1<p1,,pm<1 and 1p=1p1++1pm. If ω:=ω1ω2ωmmj=1ApjAp, then, there exists a constant C>0, such that, for all f=(f1,,fm)Lp1(ωp11)××Lpm(ωpmm),

    ||T(f)||Lp(ωp)Cmj=1fjLp1(ωpjj).

    Lemma 2.6. Let 0<t<,0<α<mn,1r=1sαn and 1s=1s1++1sm. Then, for any xRn, if 1<s1,,sm< and f=(f1,,fm)Ls1loc(Rn)××Lsmloc(Rn), we have

    ( B(x,t)|Iα(f)(y)|rdy)1rtn(1s1r)mj=1( B(x,5t)|fj(yj)|sjdyj)1sj+Iα[( B(,t)|f1(z1)|s1dz1)1s1,,( B(,t)|fm(zm)|smdzm)1sm](x).

    Proof. For the sake of brevity, we just consider m=2. For each xRn and t>0, we split fj=fjχB(x,5t)+fjχB(x,5t)c=:f0j+fj,j=1,2. Then,

    ( B(x,t)|Iα(f)(y)|rdy)1r( B(x,t)|Iα(f01,f02)(y)|rdy)1r+( B(x,t)|Iα(f01,f2)(y)|rdy)1r+( B(x,t)|Iα(f1,f02)(y)|rdy)1r+( B(x,t)|Iα(f1,f2)(y)|rdy)1r=:I+II+III+IV.

    Since Iα:Ls1(Rn)×Ls2(Rn)Lr(Rn) in [23], we deduce that

    Itn(1s1r)mj=1( B(x,5t)|fj(yj)|sjdyj)1sj.

    As for Ⅱ, for any z2RnB(x,5t), if ξB(z2,t) and yB(x,t), then max{|yz2|,|xξ|}4t and |yz2|2|xξ|2|yz2|. Furthermore, for any z1B(x,5t) and ηB(z1,t),

    |yz1|+|yz2|5|xη|+|xξ|5(|yz1|+|yz2|).

    Then, by Fubini's theorem, we have

    Iα(|f01|,|f2|)(y)=Rn×Rn|f01(z1)||f2(z2)|(|yz1|+|yz2|)2nα B(z2,t)dξ B(x1,t)dηdz1dz2=1|B(x,t)|2{ξ:|ξx|>4t}Rn(Rn)2|f01(z1)||f2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|yz1|+|yz2|)2nαdz1dz2dξdη1|B(x,t)|2{ξ:|ξx|>4t}Rn(Rn)2|f01(z1)||f2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|xη|+|xξ|)2nαdz1dz2dξdηIα( B(,t)|f1(η)|dη, B(,t)|f2(ξ)|dξ)(x).

    Therefore,

    IIIα( B(,t)|f1(η)|dη, B(,t)|f2(ξ)|dξ)(x).

    Similarly, we also have

    IIIIα( B(,t)|f1(η)|dη, B(,t)|f2(ξ)|dξ)(x).

    It remains to estimate Ⅳ. For any z1,z2RnB(x,5t), if ξ B(z2,t),ηB(z1,t), and yB(x,t), then we have

    max{|yz1|,|yz2|,|xξ|,|xη|}4t

    and

    |yz1|2|xη|2|yz1|,|yz2|2|xξ|2|yz2|.

    Furthermore, we get

    |yz1|+|yz2|2|xη|+|xξ|2(|yz1|+|yz2|).

    Then, by Fubini's theorem, we obtain

    Iα(|f1|,|f2|)(y)=Rn×Rn|f1(z1)||f2(z2)|(|yz1|+|yz2|)2nα B(z2,t)dξ B(x1,t)dηdz1dz2=1|B(x,t)|2{ξ:|ξx|>4t}{η:|ηx|>4t}(Rn)2|f1(z1)||f2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|yz1|+|yz2|)2nαdz1dz2dξdη1|B(x,t)|2{ξ:|ξx|>4t}{η:|ηx|>4t}(Rn)2|f1(z1)||f2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|xη|+|xξ|)2nαdz1dz2dξdηIα( B(,t)|f1(η)|dη, B(,t)|f2(ξ)|dξ)(x).

    Thus, we have

    IVIα( B(,t)|f1(η)|dη, B(,t)|f2(ξ)|dξ)(x).

    Combining with the estimates for Ⅰ-Ⅳ, we finish the proof of Lemma 2.6.

    We need the following extrapolation theorem, which was introduced by Cruz-Uribe and Martell in [24].

    Lemma 2.7. Given m1, let F be a family of extrapolation (m+1)-tuples. For each j,1jm, suppose we have parameters rjand r+j, and an exponent pj(0,), 0rjpjr+j, such that given any collection of weights ω1,,ωm with ωpjjApjrjRH(r+jpj) and ω=ω1ωm, we have the inequality

    fLp(ωp)Cmj=1fjLpj(ωpjj),

    for all (f,f1,,fm)F such that fLp(ωp)<, where 1p=mj=11pj and C depends on n,pj,[ωj]pjrj,[ωj]RH(r+jqj). Then for all exponents qj,rj<qj<r+j, all weights ωqjjAqjrjRH(r+jqj) and ω=ω1ωm,

    fLq(ωq)Cmj=1fjLqj(ωqjj),

    for all (f,f1,,fm)F such that fLq(ωq)<, where 1q=mj=11qj and C depends on n, pj, qj, [ωj]qjrj, [ωj]RH(r+jqj).

    In order to show Theorem 1.3, we also need the off-diagonal extrapolation theorem (see [25, Theorem 4.5]).

    Lemma 2.8. Let F be a collection of (m+1)-tuples of non-negative functions. Let r= (r1,,rm+1) with 1r1,,rm+1<. Assume that there exists p(0,) and p= (p1,,pm) with rp and 1p1p=1p1++1pm such that for all ω=(ω1,,ωm)Ap,r,

    fLp(ωp)Cmj=1fjLpj(ωpjj),(f,f1,,fm)F,

    where ω=mj=1ωj. Then, for all q(0,), for all q=(q1,,qm) with r<q,1q= 1q1++1qm and 1q1q=1p1p, and for all v=(v1,,vm)Aq,r,

    fLq(vq)Cmj=1fjLqj(vqjj),(f,f1,,fm)F,

    where v=mj=1vj.

    Now, we begin to prove Theorems 1.1–1.3 in this position.

    Proof of Theorem 1.1. For r,r1,,rm(1,) and 1r=1r1++1rm, we shall prove that for any ω=ω1ω2ωmmj=1ArjAr with ωrjjArjrjRH(r+jrj) and F=(F1,,Fm)Tr1r1××Trmrm,

    (Rn|Ar(M(F))(x)|rωr(x)dx)1rCmj=1(Rn|Arj(Fj)(x)|rjωrjj(x)dx)1rj. (3.1)

    From this and Lemma 2.7, it follows that, for any q,q1,,qm(1,) and 1q=1q1++1qm, ω=ω1ω2ωmmi=1AqjAq with ωqjjAqjrjRH(r+jqj) and F=(F1,,Fm)Tq1r1××Tqmrm,

    (Rn|Ar(M(F))(x)|qωq(x)dx)1qCmj=1(Rn|Ar(Fj)(x)|qjωqjj(x)dx)1qj.

    In particular, we take ωj1 as above, then, for all F=(F1,,Fm)(Tq1r1,,Tqmrm),

    M(F)Tqr=(Rn|Ar(M(F))(x)|qdx)1qCmj=1(Rn|Arj(Fj)(x)|qjdx)1qj=Cmj=1FjTqjrj. (3.2)

    Since the set of compactly supported functions in TrjrjTqjrj is dense in Tqjrj, by the monotone convergence theorem, we conclude that (3.2) holds true for functions FjTqjrj, j=1,,m.

    Therefore, to finish the proof of Theorem 1.1, it just remains to show (3.1). This follows from (2.2) applied to fj=Fj(,t), j=1,,m, and Lemma 2.2. Using Hölder's inequality and Lemma 2.3, for all ω=ω1ω2ωmmi=1ApiAp, we have

    (Rn|Ar(M(F))(x)|rωr(x)dx)1r=(Rn0 B(x,t)|M(F(,t))(y)|rdydttωr(x)dx)1r[Rn0mj=1( B(x,2t)|Fj(yj,t)|rjdyj)rrjdttωr(x)dx]1r+[Rn0|M(mj=1 B(,t)|F(yj,t)|dyj)(x)|rdttωr(x)dx]1r[Rnmj=1(0 B(x,2t)|Fj(yj,t)|rjdyjdtt)rrjωr(x)dx]1r+[0Rn|M(mj=1 B(,t)|F(yj,t)|dyj)(x)|rωr(x)dxdtt]1r[Rnmj=1|Arj(Fj)(x)|rωr(x)dx]1r+[0Rn|mj=1 B(x,t)|F(yj,t)|dyj|rωr(x)dxdtt]1rmj=1[Rn|Arj(Fj)(x)|rjωrjj(x)dx]1rj+[0Rnmj=1( B(x,t)|F(yj,t)|rjdyj)rrjωr(x)dxdtt]1rmj=1[Rn|Arj(Fj)(x)|rjωj(x)dx]1rj.

    Thus, it finishes the proof of Theorem 1.1.

    Proof of Theorem 1.2. We consider F=(F1,,Fm)Tq1r1××Tqmrm so that for almost every t(0,) and j=1,2,,m, F(,t)Lrj(Rn) and all calculations make sense. For ω=ω1ω2ωmmj=1ApiAp with ωrjjArjrjRH(r+jrj), by Lemma 2.4, Fubini's theorem, Lemma 2.2, and Lemma 2.5, we use Hölder's inequality and Lemma 2.1 and deduce that

    (Rn0B(x,t)|T(F(,t))(y)|rdydttn+1ωr(x)dx)1r(Rn0mj=1( B(x,2t)|Fj(yj,t)|rjdyj)rrjdttωr(x)dx)1r+(Rn0|T(F(,t))(x)|rdttωr(x)dx)1r+(Rn0|M(F(,t))(x)|rdttωr(x)dx)1rmj=1(Rn0 B(x,2t)|Fj(yj,t)|rjdyjdttωrjj(x)dx)1rj+(0mj=1(Rn|Fj(yj,t)|rjωrjj(yj)dyj)rrjdtt)1rmj=1(Rn0B(x,t)|Fj(y,t)|rjdyjdttn+1ωrjj(x)dx)1rj+mj=1(Rn0|Fj(yj,t)|rjdttωrjj(yj)dyj)1rjmj=1(Rn0B(x,t)|Fj(y,t)|rjdyjdttn+1ωrjj(x)dx)1rj,

    where the last inequality comes from the proof of [26, Proposition 2.3] in the case ωrjjArjRH, j=1,,m. Therefore, for all ωrjjArjRH, j=1,,m and F=(F1,,Fm)Tr1r1××Trmrm,

    (Rn0B(x,t)|T(F)(y)|rdydttn+1ωr(x)dx)1rmj=1(RnB(x,t)0|Fj(yj,t)|rjdyjdttn+1ωrjj(x)dx)1rj. (3.3)

    Note now that in view of (3.3), we can apply Lemma 2.7, for rj=1, r+j=, pj=rj. Then, for all 1<qj<, ωqjjAqjRH and F=(F1,,Fm)Tq1r1××Tqmrm, we obtain

    (Rn(0B(x,t)|T(F)(y)|rdydttn+1)qrωq(x)dx)1qmj=1(Rn(0B(x,t)|Fj(yj,t)|rjdyjdttn+1)qjrjωqjj(x)dx)1qj.

    Thus, for ωqjj1AqjRH and F=(F1,,Fm)Tq1r1××Tqmrm as above, we have

    T(F)Tqrmj=1FjTqjrj.

    This completes the proof of Theorem 1.2.

    Proof of Theorem 1.3. Let F=(F1,,Fm)Tq1r1××Tqmrm and ω(x)=ω1(x)ω2(x)ωm(x). Taking sj=nrjαrj+n(j=1,2,,m) in Lemma 2.6, we can deduce that

    Iα(F)Tpr(Rn(0tn(rs1)mj=1( B(x,5t)|Fj(yj,t)|sjdyj)rsjdtt)prdx)1p+(Rn(0(Iα( B(,t)|F1(y1,t)|dy1,, B(,t)|Fm(ym,t)|dym)(x))rdtt)prdx)1p=:I+II.

    Since rj>sj, using Jensen's inequality, Hölder's inequality, Lemma 2.1, and [27, Theorem 2.19] for s1=1m(1r1s), s0=0,p0=qj,p1=pj, and q=rj, we have

    Imj=1(Rn(0B(x,5t)|tnm(1s1r)Fj(yj,t)|rjdyjdttn+1)pjrjdx)1pjmj=1(Rn(0B(x,5t)|F(y,t)|rjdydttn+1)qjrjdx)1qjmj=1FjTqjrj.

    Finally, to estimate II, we shall proceed by extrapolation. Since 0<α<nm, 1<s1,,sm<, 1s=1s1++1sm with 1r=1sαn and ωAs,r, we have the fact that Iα:Ls1(ωs11)××Lsm(ωsmm)Lr(ωr) in [28, Theorem 2.3]. Applying this fact, Lemma 2.6, Minkowski's integral inequality, Hölder's inequality, we obtain

    (Rn0(Iα( B(,t)|F1(y1,t)|dy1,, B(,t)|Fm(ym,t)|dym)(x))rdttω1(x)rωm(x)rdx)1r(0Rn(Iα( B(,t)|F1(y1,t)|dy1,, B(,t)|Fm(ym,t)|dym)(x))rω(x)rdxdtt)1r(0mj=1(Rn( B(x,t)|Fj(yj,t)|dyj)sjωsjj(x)dx)rsjdtt)1rmj=1(0(Rn( B(x,t)|Fj(yj,t)|dyj)sjωsjj(x)dx)rjsjdtt)1rjmj=1(Rn(0( B(x,t)|Fj(yj,t)|dyj)rjdtt)sjrjωsjj(x)dx)1sjmj=1(Rn(0 B(x,t)|Fj(yj,t)|rjdyjdtt)sjrjωsjj(x)dx)1sj.

    Then, since 1<ϑ<q< and 1<s<r< with 1s1r=1q1ϑ, applying Lemma 2.6, we have that, for all vAq,r, and F=(F1,,Fm)Tq1r1××Tqmrm,

    (Rn0(Iα( B(,t)|F1(y1,t)|dy1,, B(,t)|Fm(ym,t)|dym)(x))rdttωr(x)dx)1rmj=1(Rn(0 B(x,t)|Fj(yj,t)|rjdyjdtt)qjrjvqjj(x)dx)1qj.

    In particular for vj1, we have that vAq,r. Thus,

    IImj=1(Rn(0 B(x,t)|Fj(yj,t)|rjdyjdtt)qjrjvqjj(x)dx)1qj=mj=1||Fj||Tqjrj.

    The proof of Theorem 1.3 is finished.

    Heng Yang: methodology, writing-original draft, writing-review & editing; Jiang Zhou: writing-review & editing, supervision, formal analysis.

    The authors declare that they have not used artificial intelligence tools in the creation of this article.

    The authors want to express their sincere thanks to the referees for the valuable remarks and suggestions. This work was supported by the National Natural Science Foundation of China (No. 12061069).

    The authors declare that there is no conflict of interest.



    [1] R. Coifman, Y. Meyer, E. M. Stein, Un nouveal espace fonctionnel adapte a l'etude des operateurs definis par des integrales singulieres, in Harmonic Analysis. Lecture Notes in Mathematics, (eds. G. Mauceri, F. Ricci, G. Weiss), Springer, Berlin, Heidelberg, (1983), 1–15. https://doi.org/10.1007/BFb0069149
    [2] S. Hofmann, S. Mayboroda, Hardy and BMO spaces to divergence form elliptic operators, Math. Ann., 344 (2009), 37–116. https://doi.org/10.1007/s00208-008-0295-3 doi: 10.1007/s00208-008-0295-3
    [3] R. Coifman, Y. Meyer, E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 62 (1985), 304–335. https://doi.org/10.1016/0022-1236(85)90007-2 doi: 10.1016/0022-1236(85)90007-2
    [4] P. Auscher, C. Kriegler, S. Monniaux, P. Portal, Singular integral operators on tent spaces, J. Evol. Equ., 12 (2012), 741–765. https://doi.org/10.1007/s00028-012-0152-4 doi: 10.1007/s00028-012-0152-4
    [5] P. Auscher, C. Prisuelos-Arribas, Tent space boundedness via extrapolation, Math. Z., 286 (2017), 1575–1604. https://doi.org/10.1007/s00209-016-1814-7 doi: 10.1007/s00209-016-1814-7
    [6] J. Cao, D. Chang, Z. Fu, D. Yang, Real interpolation of weighted tent spaces, Appl. Anal., 95 (2016), 2415–2443. https://doi.org/10.1080/00036811.2015.1091924 doi: 10.1080/00036811.2015.1091924
    [7] C. Cascante, J. M. Ortega, Imbedding potentials in tent spaces, J. Funct. Anal., 198 (2003), 106–141. https://doi.org/10.1016/s0022-1236(02)00087-3 doi: 10.1016/s0022-1236(02)00087-3
    [8] R. Coifman, Y. Meyer, On commutators of singular integral and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315–331. https://doi.org/10.1090/S0002-9947-1975-0380244-8 doi: 10.1090/S0002-9947-1975-0380244-8
    [9] R. Coifman, Y. Meyer, Commutateurs d'intégrales singuliéres et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28 (1978), 177–202. https://doi.org/10.5802/aif.708 doi: 10.5802/aif.708
    [10] G. Lu, Multiple weighted estimates for bilinear Calderón-Zygmund operator and its commutator on non-homogeneous spaces, Bull. Sci. Math., 187 (2023), 103311. https://doi.org/10.1016/j.bulsci.2023.103311 doi: 10.1016/j.bulsci.2023.103311
    [11] S. He, J. Zhang, Endpoint estimates for multilinear fractional maximal operators, Bull. Korean Math. Soc., 57 (2020), 383–391. https://doi.org/10.4134/BKMS.b190269 doi: 10.4134/BKMS.b190269
    [12] A. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 220 (2009), 1222–1264. https://doi.org/10.1016/j.aim.2008.10.014 doi: 10.1016/j.aim.2008.10.014
    [13] T. Iida, The boundedness of the Hardy-Littlewood maximal operator and multilinear maximal operator in weighted Morrey type spaces, J. Funct. Space. 2014 (2014), 648251. https://doi.org/10.1155/2014/648251 doi: 10.1155/2014/648251
    [14] L. Grafakos, R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 65 (2002), 124–164. https://doi.org/10.1006/aima.2001.2028 doi: 10.1006/aima.2001.2028
    [15] L. Grafakos, L. Liu, D. Maldonado, D. Yang, Multilinear analysis on metric spaces, Diss. Math., 497 (2014), 1–121. https://doi.org/10.4064/dm497-0-1 doi: 10.4064/dm497-0-1
    [16] L. Grafakos, On multilinear fractional integrals, Studia Math., 102 (1992), 49–56. https://doi.org/10.4064/sm-102-1-49-56 doi: 10.4064/sm-102-1-49-56
    [17] K. Li, K. Moen, W. Sun, Sharp weighted inequalities for multilinear fractional maximal operators and fractional integrals, Math. Nachr., 288 (2015), 619–632. https://doi.org/10.1002/mana.201300287 doi: 10.1002/mana.201300287
    [18] L. Grafakos, Classical Fourier Analysis, in Graduate Texts in Mathematics. 3 Eds., Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1194-3
    [19] J. García-Cuerva, J. Rubio de Francia, Weighted norm inequalities and related topics, Elsevier, 1985.
    [20] L. Grafakos, Modern Fourier Analysis, in Graduate Texts in Mathematics. 3 Eds., Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1230-8
    [21] J. M. Martell, C. Prisuelos-Arribas, Weighted Hardy spaces associated with elliptic operators Part: Ⅰ. Weighted norm inequalities for conical square functions, Trans. Am. Math. Soc., 369 (2017), 4193–4233. https://doi.org/10.1090/tran/6768 doi: 10.1090/tran/6768
    [22] K. Li, J. M. Martell, S. Ombrosi, Extrapolation for multilinear Muckenhoupt classes and applications to the bilinear Hilbert transform, Adv. Math., 373 (2020), 107286. https://doi.org/10.1016/j.aim.2020.107286 doi: 10.1016/j.aim.2020.107286
    [23] K. Moen, Weighted inequalities for multilinear fractional integral operators. Collect. Math., 60 (2009), 213–238. https://doi.org/10.1007/bf03191210 doi: 10.1007/bf03191210
    [24] D. Cruz-Uribe, J. M. Martell, Limited range multilinear extrapolation with applications to the bilinear Hilbert transform, Math. Ann., 371 (2018), 615–653. https://doi.org/10.1007/s00208-018-1640-9 doi: 10.1007/s00208-018-1640-9
    [25] M. Cao, A. Olivo, K. Yabuta, Extrapolation for multilinear compact operators and applications, Trans. Amer. Math. Soc., 375 (2022), 5011–5070. https://doi.org/10.1090/tran/8645 doi: 10.1090/tran/8645
    [26] P. Auscher, S. Hofmann, J. M. Martell, Vertical versus conical square functions, Trans. Am. Math. Soc., 364 (2012), 5469–5489. https://doi.org/10.1090/S0002-9947-2012-05668-6 doi: 10.1090/S0002-9947-2012-05668-6
    [27] A. Amenta, Interpolation and embeddings of weighted tent spaces, J. Fourier. Anal. Appl., 24 (2018), 108–140. https://doi.org/10.1007/s00041-017-9521-2 doi: 10.1007/s00041-017-9521-2
    [28] X. Chen, Q. Xue, Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362 (2010), 355–373. https://doi.org/10.1016/j.jmaa.2009.08.022 doi: 10.1016/j.jmaa.2009.08.022
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(735) PDF downloads(71) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog