Let 0<α<mn and 0<r,q<∞. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces Tqr(Rn+1+), where these multilinear operators include multilinear Hardy–Littlewood maximal operator M, multilinear fractional maximal operator Mα, multilinear Calderón–Zygmund operator T, and multilinear fractional integral operator Iα. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.
Citation: Heng Yang, Jiang Zhou. Some estimates of multilinear operators on tent spaces[J]. Communications in Analysis and Mechanics, 2024, 16(4): 700-716. doi: 10.3934/cam.2024031
[1] | Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012 |
[2] | Jizheng Huang, Shuangshuang Ying . Hardy-Sobolev spaces of higher order associated to Hermite operator. Communications in Analysis and Mechanics, 2024, 16(4): 858-871. doi: 10.3934/cam.2024037 |
[3] | Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu . Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups. Communications in Analysis and Mechanics, 2023, 15(3): 410-435. doi: 10.3934/cam.2023020 |
[4] | Xiaotian Hao, Lingzhong Zeng . Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds. Communications in Analysis and Mechanics, 2023, 15(2): 162-176. doi: 10.3934/cam.2023009 |
[5] | İrem Akbulut Arık, Seda İğret Araz . Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos. Communications in Analysis and Mechanics, 2024, 16(1): 169-192. doi: 10.3934/cam.2024008 |
[6] | Lovelesh Sharma . Brezis Nirenberg type results for local non-local problems under mixed boundary conditions. Communications in Analysis and Mechanics, 2024, 16(4): 872-895. doi: 10.3934/cam.2024038 |
[7] | Caojie Li, Haixiang Zhang, Xuehua Yang . A new $ \alpha $-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation. Communications in Analysis and Mechanics, 2024, 16(1): 147-168. doi: 10.3934/cam.2024007 |
[8] | Andrea Brugnoli, Ghislain Haine, Denis Matignon . Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint. Communications in Analysis and Mechanics, 2023, 15(3): 362-387. doi: 10.3934/cam.2023018 |
[9] | Siegfried Carl . Quasilinear parabolic variational-hemivariational inequalities in $ \mathbb{R}^N\times (0, \tau) $ under bilateral constraints. Communications in Analysis and Mechanics, 2025, 17(1): 41-60. doi: 10.3934/cam.2025003 |
[10] | Leandro Tavares . Solutions for a class of problems driven by an anisotropic $ (p, q) $-Laplacian type operator. Communications in Analysis and Mechanics, 2023, 15(3): 533-550. doi: 10.3934/cam.2023026 |
Let 0<α<mn and 0<r,q<∞. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces Tqr(Rn+1+), where these multilinear operators include multilinear Hardy–Littlewood maximal operator M, multilinear fractional maximal operator Mα, multilinear Calderón–Zygmund operator T, and multilinear fractional integral operator Iα. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.
Tent spaces were first introduced by Coifman, Meyer, and Stein in [1] and started with the use of Lusin area functionals on harmonic functions. These spaces were extensively used in the recent theory of Hardy spaces associated with operators [2] and played an important role in harmonic analysis, as evidenced in [3]. They also appeared in the study of maximal regularity operators arising from some linear or nonlinear partial differential equations [4].
Recently, Auscher and Prisuelos–Arribas [5] showed how extrapolation allows us to conclude the boundedness of some operators on tent spaces, such as the Hardy–Littlewood maximal operator, the Calderón–Zygmund operator, the Riesz potential, the fractional maximal function, and the Riesz transform of elliptic operator. Moreover, many interesting results were also extensively investigated on tent spaces; we refer the readers to see [6,7] and therein references. The purpose of this paper is to extend the boundedness of multilinear operators on tent spaces.
In the 1970s, Coifman and Meyer were among the first to adopt the multilinear point of view in their study of certain singular integral operators (see; for example, [8,9]). The study of multilinear operators is not motivated by a mere quest to generalize the theory of linear operators but rather by their natural appearance in harmonic analysis. A series of papers on this topic enrich this theory, see [10,11] and so on. In particular, we want to understand how some multilinear operators act on tent spaces. We assume T be a multilinear operator and F1(x,t),…,Fm(x,t) be measurable functions on Rn+1+ and define T by the setting, for any (x,t)∈Rn+1+,
T(F1,…,Fm)(x,t):=Tt(F1(⋅,t),…,Fm(⋅,t))(x). |
The following definition of tent spaces, Tqr(Rn+1+), can be found in [1].
Definition 1.1. For a measurable function F:Rn+1+:=Rn×(0,∞)→C and 0<r<∞, let
Ar(F)(x):=(∫∞0∫B(x,t)|F(y,t)|rdydttn+1)1r,x∈Rn. |
Tent space Tqr:=Tqr(Rn+1+),0<q,r<∞, is defined as the set of all measurable functions F such that Ar(F)∈Lq(Rn).
For an m-tuple locally integrable function →f=(f1, …, fm), the multilinear Hardy–Littlewood maximal operator M is defined by, for any x∈Rn,
M(→f)(x):=supB∋xm∏j=11|B|∫B|fj(yj)|dyj, |
where the supremum is taken over all the balls B containing x.
Lerner, Ombrosi, Pérez, Torres, and Trujillo–González [12] first introduced the multilinear Hardy–Littlewood maximal operator and further obtained some mapping properties of the multilinear Hardy–Littlewood maximal operator on weighted Lebesgue spaces. In 2014, Iida [13] proved the boundedness of the multilinear Hardy–Littlewood maximal operator on weighted Morrey spaces.
Our first result can be stated as follows:
Theorem 1.1. Let M be the multilinear Hardy–Littlewood maximal operator. If 1<r,r1,…,rm<∞, 1<q,q1,…,qm<∞, 1r=1r1+⋯+1rm and 1q=1q1+⋯+1qm, then, there exists a constant C>0, such that for all →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm,
||M(→F)||Tqr≤Cm∏j=1‖Fj‖Tqjrj. |
Let T be a multilinear operator initially defined on the m-fold product of Schwartz spaces and taking values into the space of tempered distributions,
T:S(Rn)×⋯×S(Rn)→S′(Rn). |
We say that T is the m-linear Calderón–Zygmund operator, if for some 1≤qj<∞, it extends to a bounded multilinear operator from Lq1×⋯×Lqm to Lq, where 1q=1q1+⋯+1qm, and if there exists a function K, defined off the diagonal x=y1=⋯=ym in (Rn)m+1, satisfying
T(→f)(x)=∫(Rn)mK(x,y1,…,ym)f1(y1)…fm(ym)dy1…dym |
for all x∉⋂mj=1suppfj,
|K(y0,y1,…,ym)|≤A(∑mk,l=0|yk−yl|)mn | (1.1) |
and
|K(y0,…,yj,…,ym)−K(y0,…,y′j,…,ym)|≤A|yj−y′j|ε(∑mk,l=0|yk−yl|)mn+ε, | (1.2) |
for some ε>0 and all 0≤j≤m, whenever |yj−y′j|≤12max0≤k≤m|yj−yk|.
In 2002, Grafakos and Torres[14] obtained the boundedness of the multilinear Calderón–Zygmund operator on Lebesgue spaces. Lerner, Ombrosi, Pérez, Torres, and Trujillo–González [12] developed a multiple weight theory and obtained that the multilinear Calderón–Zygmund operator is bounded on weighted Lebesgue spaces. In 2014, Grafakos, Liu, Maldonado, and Yang [15] extended these results to the framework of metric spaces.
Here is the second result we obtained.
Theorem 1.2. Let T be the m-linear Calderón–Zygmund operator. If 1<r,r1,…,rm<∞, 1<q,q1,…,qm<∞, 1r=1r1+⋯+1rm and 1q=1q1+⋯+1qm, then, there exists a constant C>0, such that, for all →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm,
||T(→F)||Tqr≤Cm∏j=1‖Fj‖Tqjrj. |
Let 0<α<mn. For →f=(f1,…,fm), the multilinear fractional integral operator Iα is defined by
Iα(→f)(x):=∫Rmnf1(y1)⋯fm(ym)(|x−y1|+⋯+|x−ym|)mn−αdy1⋯dym. |
The associated multilinear fractional maximal operator Mα is defined by
Mα(→f)(x):=supB∋xm∏j=11|B|1−αmn∫B|fj(yj)|dyj, |
where the supremum is taken over all the balls B containing x.
In 1992, Grafakos[16] first studied the multilinear fractional integral operator and obtained the boundedness of the multilinear fractional integral operator on Lebesgue spaces. In 2015, Li, Moen and Sun [17] extended this result to weighted Lebesgue spaces.
Next, our third result is as follows:
Theorem 1.3. Let 0<α<mn and Iα be the multilinear fractional integral operator. If 1<r,r1,…,rm<∞, 1<q,q1,…,qm<∞, 1r=1r1+⋯+1rm, 1q=1q1+⋯+1qm, and 1q−1p=αn, then, there exists a constant C>0, such that for all →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm,
||Iα(→F)||Tpr≤Cm∏j=1‖Fj‖Tqjrj. |
We note that the multilinear fractional maximal operator has the same boundedness as that of the multilinear fractional integral since the pointwise inequality Mα(→f)≲Iα(→f). Thus, we have the following result:
Corollary 1.1. Let 0<α<mn and Mα be the multilinear fractional maximal operator. If 1<r,r1,…,rm<∞, 1<q,q1,…,qm<∞, 1r=1r1+⋯+1rm, 1q=1q1+⋯+1qm, and 1q−1p=αn, then, there exists a constant C>0, such that, for all →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm,
||Mα(→F)||Tpr≤Cm∏j=1‖Fj‖Tqjrj. |
We end this section by explaining some notations. We write A≲B to mean that there is a positive constant C such that A≤CB, and A∼B to suggest that there exists a positive constant C such that B≲A and A≲B. − ∫Bf(x)dx represents the average 1|B|∫Bf(x)dx of f over the set B. The letter C will be used for positive constants independent of relevant variables that may change from one occurrence to another.
We present some necessary lemmas and definitions in this section, which are very important to prove our main results.
Let us recall the definitions of Ap weights and reverse Hölder classes (see, for example, [18]). In what follows, for x∈Rn and r>0, the symbol B=B(x,r) denotes balls in Rn.
Definition 2.1. An Ap weight ω is a non-negative locally integrable function on Rn that satisfies, when p∈(1,∞),
[ω]Ap:=supB⊂Rn(− ∫Bω(x)dx)(− ∫Bω(x)1−p′dx)p−1<∞, |
and when p=1,
[ω]A1:=supB⊂Rn(− ∫Bω(x)dx)‖ω−1‖L∞(B)<∞, |
where the quantity [ω]Ap is called the Ap constant of the weight ω.
In addition, we also need the reverse Hölder classes.
Definition 2.2. For s∈(1,∞], we define the reverse Hölder class RHs as the collection of all weights ω such that
[ω]RHs:=supB(− ∫Bω(x)sdx)1s(− ∫Bω(x)dx)−1<∞, |
when s=∞, (− ∫Bω(x)sdx)1s is understood as esssupBω. Define RH1:=⋃1<s≤∞RHs. Then we see that RH1=A∞.
Some properties about Ap weights and reverse Hölder classes used later are summed up in the following; see [19,20].
Proposition 2.1. (1) A1⊂Ap⊂Aq for 1≤p≤q<∞.
(2) RH∞⊂RHq⊂RHp for 1<p≤q≤∞.
(3) A∞=⋃1≤p<∞Ap=⋃1<s≤∞RHs.
(4) If 1<p<∞, ω∈Ap if and only if ω1−p′∈Ap′.
(5) If ω∈Ap, 1<p<∞, then there exists q∈(1,p) such that ω∈Aq.
(6) If ω∈RHs, 1<s<∞, then there exists r∈(s,∞) such that ω∈RHr.
(7) If ω∈Ap∩RH∞, 1≤p<∞, then there exists r∈(1,∞) such that ωr∈Ap.
For any α∈(0,∞) and r∈(1,∞), we define the operator Aαr by
Aαr(F)(x):=(∫∞0∫B(x,αt)|F(y,t)|rdydttn+1)1r,x∈Rn. |
The following lemma (change of angles) comes from [21, Proposition 3.2].
Lemma 2.1. Let 0<α≤β<∞.
(i) For every ω∈Aq, 1≤q<∞, there holds
‖Aβr(f)‖Lp(ω)≤(βα)nqp‖Aαr(f)‖Lp(ω),for all0<p≤rq. |
(ii) For every ω∈RHs′, 1≤s<∞, there holds
‖Aαr(f)‖Lp(ω)≤(αβ)nsp‖Aβr(f)‖Lp(ω),for allrs≤p<∞. |
For m exponents p1,…,pm, we write p for the number given by 1p=1p1+⋯+1pm and →p for the vector →p=(p1,…,pm).
Definition 2.3. Let 1≤p1,…,pm<∞. Given →ω=(ω1,…,ωm), set
ν→ω=m∏j=1ωppjj. |
We say that →ω satisfies the A→p condition if
supB(− ∫Bν→ω(x)dx)1pm∏j=1(− ∫Bωj(x)1−p′jdx)1p′j<∞, |
when p=1, (− ∫Bωj(x)1−p′jdx)1p′j is understood as (infBωj)−1.
By Hölder's inequality, we can check that ∏mj=1Apj⊂A→p. Moreover, it is proved in [12] that, for 1≤p1,…,pm<∞, →ω∈A→p if and only if
{ω1−p′j∈Amp′j,j=1,…,m,ν→ω∈Amp, |
where the condition ω1−p′jj∈Amp′j in the case pj=1 is understood as ω1mj∈A1.
We are going to present the definition of the multilinear Muckenhoupt classes A→p,→r introduced in[22]. Given →p=(p1,…,pm) with 1≤p1,…,pm≤∞ and →r=(r1,…,rm+1) with 1≤ r1,…,rm+1<∞, we say that →r≤→p whenever
ri≤pi,i=1,…,m, and r′m+1≥p, where 1p:=1p1+⋯+1pm. |
Analogously, we say that →r<→p if ri<pi for each i=1,…,m and r′m+1>p.
Definition 2.4. Let →p=(p1,…,pm) with 1≤p1,…,pm<∞ and let →r=(r1,…,rm+1) with 1≤r1,…,rm+1<∞ such that →r≤→p. Suppose that →ω=(ω1,…,ωm) and each ωj is a weight on Rn. We say that →ω∈A→p,→r if
[→ω]A→p,→r:=supB(− ∫Bω(x)r′m+1r′m+1−pdx)1p−1r′m+1m∏j=1(− ∫Bωj(x)rjpjrj−pjdx)1rj−1pj<∞, | (2.1) |
where ω=∏mj=1ωj and the supremum is taken over all balls B⊂Rn. When p=r′m+1, the term corresponding to ω needs to be replaced by esssupBω, and, analogously, when pj=rj, ω needs to be replaced by (− ∫Bω(x)pdx)1p.
Remark 2.1. If we take →r=(1,…,1,rm+1) with 1r′m+1=1p−1q in (2.1), then we see that A→p,→r is the same as A→p,r.
The following lemma is proved in [12, Theorem 3.7].
Lemma 2.2. Let 1<p1,…,pm<∞ and 1p=1p1+⋯+1pm. If ω:=ω1ω2⋯ωm∈∏mj=1Apj⊂A→p, then, there exists a constant C>0, such that, for all →f=(f1,⋯,fm)∈Lp1(ωp11)×⋯×Lpm(ωpmm),
||M(→f)||Lp(ωp)≤Cm∏j=1‖fj‖Lpj(ωpjj). |
Let →f=(f1,…,fm)∈L1loc(Rn)×⋯×L1loc(Rn). The centered multilinear maximal operator Mc is defined by
Mc(→f)(x):=supr>0m∏j=1− ∫B(x,r)|fj(yj)|dyj. |
Remark 2.2. For →f=(f1,⋯,fm)∈L1loc(Rn)×⋯×L1loc(Rn), it is easy to see that Mc(→f)∼M(→f).
For the centered multilinear maximal operator Mc, we have the following pointwise inequality:
Lemma 2.3. For all x∈Rn, t>0 and r, r1, …, rm∈(1,∞) with 1r=1r1+⋯+1rm, and all →f=(f1,⋯,fm)∈Lr1loc(Rn)×⋯×Lrmloc(Rn), we have
(− ∫B(x,t)|Mc(→f)(y)|rdy)1r≲m∏j=1(− ∫B(x,2t)|fj(yj)|rjdyj)1rj+M(m∏j=1− ∫B(⋅,t)|fj(yj)|dyj)(x). | (2.2) |
Proof. Fix x∈Rn and t>0, and split the supremum into 0<τ≤t and t<τ. Then,
(− ∫B(x,t)|M(→f)(y)|rdy)1r≤{− ∫B(x,t)[sup0<τ≤tm∏j=1− ∫B(y,τ)|f(yj)|dyj]rdy}1r+{− ∫B(x,t)[supτ>tm∏j=1− ∫B(y,τ)|f(yj)|dyj]rdy}1r=:I+II. |
For I, since B(y,τ)⊂B(x,2t) for 0<τ≤t and y∈B(x,t), it follows that
I≤{− ∫B(x,t)[sup0<τ≤tm∏j=1− ∫B(y,τ)|f(yj)χB(x,2t)(yj)|dyj]rdy}1r≤(− ∫B(x,t)|M(→fχB(x,2t))(y)|rdy)1r≲m∏j=1(− ∫B(x,2t)|f(yj)|rjdyj)1rj, |
where →fχB(x,2t):=(f1χB(x,2t),…,fmχB(x,2t)) and the last inequality we have used is M: Lr1(Rn)×⋯×Lrm(Rn)→Lr(Rn) (see [12, Theorem 3.7]).
As for II, we note that, for ξj, yj∈Rn, ξ∈B(yj,t) if and only if yj∈B(ξj,t). If yj∈B(y,τ), ξj∈B(yj,t) and τ>t, then ξj∈B(y,2τ). Besides, we observe that the fact that x∈B(y,t) and τ>t implies that x∈B(y,2τ). Hence, applying Fubini's theorem, we have
II={− ∫B(x,t)[supτ>tm∏j=1− ∫B(y,τ)|f(yj)|− ∫B(yj,t)dξjdyj]rdy}1r≤{− ∫B(x,t)[supτ>tm∏j=1− ∫B(y,2τ)− ∫B(ξj,t)|f(yj)|dyjdξj]rdy}1r≲M(m∏j=1− ∫B(⋅,t)|f(yj)|dyj)(x). |
Combining with estimates for I and II, we complete the proof of Lemma 2.3.
Next, we establish the pointwise inequality for the multilinear Calderón–Zygmund operator T.
Lemma 2.4. Let T be an m-linear Calderón–Zygmund operator. For 1<r, r1, …, rm<∞ with 1r=1r1+⋯+1rm and →f=(f1,⋯,fm)∈Lr1(Rn)×⋯×Lrm(Rn). Then, for all x∈Rn and t>0, we have
(− ∫B(x,t)|T(→f)(y)|rdy)1r≲m∏j=1(− ∫B(x,2t)|fj(y)|rjdyj)1rj+T∗(→f)(x)+M(→f)(x), |
where
T∗(→f)(x):=supϵ>0|∫|x−y1|2+⋯+|x−ym|2>ϵ2K(x,y1,…,ym)f1(y1)⋯fm(ym)dy1⋯dym|. |
Proof. Fix x∈Rn and t>0, consider the ball B(x,2t), and write fj=fjχB(x,2t)+fjχB(x,2t)c=:f0j+f∞j, j=1,…,m. Then
m∏j=1fj(yj)=m∏j=1(f0j(yj)+f∞j(yj))=∑α1,…,αm∈{0,∞}fα11(y1)⋯fαmj(ym)=m∏j=1f0j(yj)+∑′fα11(y1)⋯fαmj(ym), |
where each term of ∑′ contains at least one αj≠0. Then, we write that
(− ∫B(x,t)|T(→f)(y)|rdy)1r≲(− ∫B(x,t)|T(f01,…,f0m)(y)|rdy)1r+∑′(− ∫B(x,t)|T(fα11,…,fαmm)(y)|rdy)1r=:I+II. |
Since T: Lr1(Rn)×⋯×Lrm(Rn)→Lr(Rn) (see [12, Corollary 3.9]), we obtain
I≲m∏j=1(− ∫B(x,2t)|fj(yj)|rjdyj)1rj. |
As for II, we consider each term in the sum ∑′ and get that
(− ∫B(x,t)|T(fα11,…,fαmm)(y)|rdy)1r=(− ∫B(x,t)|∫(Rn)mK(y,y1,…,ym)fα11(y1),…,fαmm(ym)d→y|rdy)1r=(− ∫B(x,t)|∫(Rn)m[K(y,y1,…,ym)−K(x,y1,…,ym)]fα11(y1),…,fαmm(ym)d→y|rdy)1r+(− ∫B(x,t)|∫(Rn)mK(x,y1,…,ym)fα11(y1),…,fαmm(ym)d→y|rdy)1r=:IIα1,…,αm1+IIα1,…,αm2. |
Observe that there exists αj0≠0 such that |yj0−x|>2t. Then, for y∈B(x,t), we have |x−y|<t<12|yj0−x|≤12maxj∈{1,...,m}|yj−x|. By (1.1) and the same process as the proof of [12, (4.4)], we conclude that
IIα1,…,αm1≲M(→f)(x), |
and using |x−y1|2+⋯+|x−ym|2>|yj0−x|2>(2t)2, it is easy to see
IIα1,…,αm2≲T∗(→f)(x). |
Thus, we complete the proof of Lemma 2.4.
For the operator T∗, we need the following lemma (see [15, Theorem 4.16]).
Lemma 2.5. Let 1<p1,…,pm<1 and 1p=1p1+⋯+1pm. If ω:=ω1ω2⋯ωm∈∏mj=1Apj⊂A→p, then, there exists a constant C>0, such that, for all →f=(f1,⋯,fm)∈Lp1(ωp11)×⋯×Lpm(ωpmm),
||T∗(→f)||Lp(ωp)≤Cm∏j=1‖fj‖Lp1(ωpjj). |
Lemma 2.6. Let 0<t<∞,0<α<mn,1r=1s−αn and 1s=1s1+⋯+1sm. Then, for any x∈Rn, if 1<s1,…,sm<∞ and →f=(f1,⋯,fm)∈Ls1loc(Rn)×⋯×Lsmloc(Rn), we have
(− ∫B(x,t)|Iα(→f)(y)|rdy)1r≲tn(1s−1r)m∏j=1(− ∫B(x,5t)|fj(yj)|sjdyj)1sj+Iα[(− ∫B(⋅,t)|f1(z1)|s1dz1)1s1,⋯,(− ∫B(⋅,t)|fm(zm)|smdzm)1sm](x). |
Proof. For the sake of brevity, we just consider m=2. For each x∈Rn and t>0, we split fj=fjχB(x,5t)+fjχB(x,5t)c=:f0j+f∞j,j=1,2. Then,
(− ∫B(x,t)|Iα(→f)(y)|rdy)1r≤(− ∫B(x,t)|Iα(f01,f02)(y)|rdy)1r+(− ∫B(x,t)|Iα(f01,f∞2)(y)|rdy)1r+(− ∫B(x,t)|Iα(f∞1,f02)(y)|rdy)1r+(− ∫B(x,t)|Iα(f∞1,f∞2)(y)|rdy)1r=:I+II+III+IV. |
Since Iα:Ls1(Rn)×Ls2(Rn)→Lr(Rn) in [23], we deduce that
I≲tn(1s−1r)m∏j=1(− ∫B(x,5t)|fj(yj)|sjdyj)1sj. |
As for Ⅱ, for any z2∈Rn∖B(x,5t), if ξ∈B(z2,t) and y∈B(x,t), then max{|y−z2|,|x−ξ|}≥4t and |y−z2|2≤|x−ξ|≤2|y−z2|. Furthermore, for any z1∈B(x,5t) and η∈B(z1,t),
|y−z1|+|y−z2|5≤|x−η|+|x−ξ|≤5(|y−z1|+|y−z2|). |
Then, by Fubini's theorem, we have
Iα(|f01|,|f∞2|)(y)=∫Rn×Rn|f01(z1)||f∞2(z2)|(|y−z1|+|y−z2|)2n−α− ∫B(z2,t)dξ− ∫B(x1,t)dηdz1dz2=1|B(x,t)|2∫{ξ:|ξ−x|>4t}∫Rn∫(Rn)2|f01(z1)||f∞2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|y−z1|+|y−z2|)2n−αdz1dz2dξdη≲1|B(x,t)|2∫{ξ:|ξ−x|>4t}∫Rn∫(Rn)2|f01(z1)||f∞2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|x−η|+|x−ξ|)2n−αdz1dz2dξdη≲Iα(− ∫B(⋅,t)|f1(η)|dη,− ∫B(⋅,t)|f2(ξ)|dξ)(x). |
Therefore,
II≲Iα(− ∫B(⋅,t)|f1(η)|dη,− ∫B(⋅,t)|f2(ξ)|dξ)(x). |
Similarly, we also have
III≲Iα(− ∫B(⋅,t)|f1(η)|dη,− ∫B(⋅,t)|f2(ξ)|dξ)(x). |
It remains to estimate Ⅳ. For any z1,z2∈Rn∖B(x,5t), if ξ∈ B(z2,t),η∈B(z1,t), and y∈B(x,t), then we have
max{|y−z1|,|y−z2|,|x−ξ|,|x−η|}≥4t |
and
|y−z1|2≤|x−η|≤2|y−z1|,|y−z2|2≤|x−ξ|≤2|y−z2|. |
Furthermore, we get
|y−z1|+|y−z2|2≤|x−η|+|x−ξ|≤2(|y−z1|+|y−z2|). |
Then, by Fubini's theorem, we obtain
Iα(|f∞1|,|f∞2|)(y)=∫Rn×Rn|f∞1(z1)||f∞2(z2)|(|y−z1|+|y−z2|)2n−α− ∫B(z2,t)dξ− ∫B(x1,t)dηdz1dz2=1|B(x,t)|2∫{ξ:|ξ−x|>4t}∫{η:|η−x|>4t}∫(Rn)2|f∞1(z1)||f∞2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|y−z1|+|y−z2|)2n−αdz1dz2dξdη≲1|B(x,t)|2∫{ξ:|ξ−x|>4t}∫{η:|η−x|>4t}∫(Rn)2|f∞1(z1)||f∞2(z2)|χB(ξ,t)(z2)χB(η,t)(z1)(|x−η|+|x−ξ|)2n−αdz1dz2dξdη≲Iα(− ∫B(⋅,t)|f1(η)|dη,− ∫B(⋅,t)|f2(ξ)|dξ)(x). |
Thus, we have
IV≤Iα(− ∫B(⋅,t)|f1(η)|dη,− ∫B(⋅,t)|f2(ξ)|dξ)(x). |
Combining with the estimates for Ⅰ-Ⅳ, we finish the proof of Lemma 2.6.
We need the following extrapolation theorem, which was introduced by Cruz-Uribe and Martell in [24].
Lemma 2.7. Given m≥1, let F be a family of extrapolation (m+1)-tuples. For each j,1≤j≤m, suppose we have parameters r−jand r+j, and an exponent pj∈(0,∞), 0≤r−j≤pj≤r+j≤∞, such that given any collection of weights ω1,…,ωm with ωpjj∈Apjr−j∩RH(r+jpj)′ and ω=ω1⋯ωm, we have the inequality
‖f‖Lp(ωp)≤Cm∏j=1‖fj‖Lpj(ωpjj), |
for all (f,f1,…,fm)∈F such that ‖f‖Lp(ωp)<∞, where 1p=∑mj=11pj and C depends on n,pj,[ωj]pjr−j,[ωj]RH(r+jqj)′. Then for all exponents qj,r−j<qj<r+j, all weights ωqjj∈Aqjr−j∩RH(r+jqj)′ and ω=ω1⋯ωm,
‖f‖Lq(ωq)≤Cm∏j=1‖fj‖Lqj(ωqjj), |
for all (f,f1,…,fm)∈F such that ‖f‖Lq(ωq)<∞, where 1q=∑mj=11qj and C depends on n, pj, qj, [ωj]qjr−j, [ωj]RH(r+jqj)′.
In order to show Theorem 1.3, we also need the off-diagonal extrapolation theorem (see [25, Theorem 4.5]).
Lemma 2.8. Let F be a collection of (m+1)-tuples of non-negative functions. Let →r= (r1,…,rm+1) with 1≤r1,…,rm+1<∞. Assume that there exists p∗∈(0,∞) and →p= (p1,…,pm) with →r≤→p and 1p∗≤1p=1p1+⋯+1pm such that for all →ω=(ω1,…,ωm)∈A→p,→r,
‖f‖Lp∗(ωp∗)≤Cm∏j=1‖fj‖Lpj(ωpjj),(f,f1,…,fm)∈F, |
where ω=∏mj=1ωj. Then, for all q∗∈(0,∞), for all →q=(q1,…,qm) with →r<→q,1q= 1q1+⋯+1qm and 1q−1q∗=1p−1p∗, and for all →v=(v1,…,vm)∈A→q,→r,
‖f‖Lq∗(vq∗)≤Cm∏j=1‖fj‖Lqj(vqjj),(f,f1,…,fm)∈F, |
where v=∏mj=1vj.
Now, we begin to prove Theorems 1.1–1.3 in this position.
Proof of Theorem 1.1. For r,r1,…,rm∈(1,∞) and 1r=1r1+⋯+1rm, we shall prove that for any ω=ω1ω2⋯ωm∈∏mj=1Arj⊂A→r with ωrjj∈Arjr−j∩RH(r+jrj)′ and →F=(F1,⋯,Fm)∈Tr1r1×⋯×Trmrm,
(∫Rn|Ar(M(→F))(x)|rωr(x)dx)1r≤Cm∏j=1(∫Rn|Arj(Fj)(x)|rjωrjj(x)dx)1rj. | (3.1) |
From this and Lemma 2.7, it follows that, for any q,q1,…,qm∈(1,∞) and 1q=1q1+⋯+1qm, ω=ω1ω2⋯ωm∈∏mi=1Aqj⊂A→q with ωqjj∈Aqjr−j∩RH(r+jqj)′ and →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm,
(∫Rn|Ar(M(→F))(x)|qωq(x)dx)1q≤Cm∏j=1(∫Rn|Ar(Fj)(x)|qjωqjj(x)dx)1qj. |
In particular, we take ωj≡1 as above, then, for all →F=(F1,⋯,Fm)∈(Tq1r1,⋯,Tqmrm),
‖M(→F)‖Tqr=(∫Rn|Ar(M(→F))(x)|qdx)1q≤Cm∏j=1(∫Rn|Arj(Fj)(x)|qjdx)1qj=Cm∏j=1‖Fj‖Tqjrj. | (3.2) |
Since the set of compactly supported functions in Trjrj∩Tqjrj is dense in Tqjrj, by the monotone convergence theorem, we conclude that (3.2) holds true for functions Fj∈Tqjrj, j=1,…,m.
Therefore, to finish the proof of Theorem 1.1, it just remains to show (3.1). This follows from (2.2) applied to fj=Fj(⋅,t), j=1,…,m, and Lemma 2.2. Using Hölder's inequality and Lemma 2.3, for all ω=ω1ω2⋯ωm∈∏mi=1Api⊂A→p, we have
(∫Rn|Ar(M(→F))(x)|rωr(x)dx)1r=(∫Rn∫∞0− ∫B(x,t)|M(→F(⋅,t))(y)|rdydttωr(x)dx)1r≲[∫Rn∫∞0m∏j=1(− ∫B(x,2t)|Fj(yj,t)|rjdyj)rrjdttωr(x)dx]1r+[∫Rn∫∞0|M(m∏j=1− ∫B(⋅,t)|F(yj,t)|dyj)(x)|rdttωr(x)dx]1r≲[∫Rnm∏j=1(∫∞0− ∫B(x,2t)|Fj(yj,t)|rjdyjdtt)rrjωr(x)dx]1r+[∫∞0∫Rn|M(m∏j=1− ∫B(⋅,t)|F(yj,t)|dyj)(x)|rωr(x)dxdtt]1r≲[∫Rnm∏j=1|Arj(Fj)(x)|rωr(x)dx]1r+[∫∞0∫Rn|m∏j=1− ∫B(x,t)|F(yj,t)|dyj|rωr(x)dxdtt]1r≲m∏j=1[∫Rn|Arj(Fj)(x)|rjωrjj(x)dx]1rj+[∫∞0∫Rnm∏j=1(− ∫B(x,t)|F(yj,t)|rjdyj)rrjωr(x)dxdtt]1r≲m∏j=1[∫Rn|Arj(Fj)(x)|rjωj(x)dx]1rj. |
Thus, it finishes the proof of Theorem 1.1.
Proof of Theorem 1.2. We consider →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm so that for almost every t∈(0,∞) and j=1,2,…,m, F(⋅,t)∈Lrj(Rn) and all calculations make sense. For ω=ω1ω2⋯ωm∈∏mj=1Api⊂A→p with ωrjj∈Arjr−j∩RH(r+jrj)′, by Lemma 2.4, Fubini's theorem, Lemma 2.2, and Lemma 2.5, we use Hölder's inequality and Lemma 2.1 and deduce that
(∫Rn∫∞0∫B(x,t)|T(→F(⋅,t))(y)|rdydttn+1ωr(x)dx)1r≲(∫Rn∫∞0m∏j=1(− ∫B(x,2t)|Fj(yj,t)|rjdyj)rrjdttωr(x)dx)1r+(∫Rn∫∞0|T∗(→F(⋅,t))(x)|rdttωr(x)dx)1r+(∫Rn∫∞0|M(→F(⋅,t))(x)|rdttωr(x)dx)1r≲m∏j=1(∫Rn∫∞0− ∫B(x,2t)|Fj(yj,t)|rjdyjdttωrjj(x)dx)1rj+(∫∞0m∏j=1(∫Rn|Fj(yj,t)|rjωrjj(yj)dyj)rrjdtt)1r≲m∏j=1(∫Rn∫∞0∫B(x,t)|Fj(y,t)|rjdyjdttn+1ωrjj(x)dx)1rj+m∏j=1(∫Rn∫∞0|Fj(yj,t)|rjdttωrjj(yj)dyj)1rj≲m∏j=1(∫Rn∫∞0∫B(x,t)|Fj(y,t)|rjdyjdttn+1ωrjj(x)dx)1rj, |
where the last inequality comes from the proof of [26, Proposition 2.3] in the case ωrjj∈Arj∩RH∞, j=1,…,m. Therefore, for all ωrjj∈Arj∩RH∞, j=1,…,m and →F=(F1,⋯,Fm)∈Tr1r1×⋯×Trmrm,
(∫Rn∫∞0∫B(x,t)|T(→F)(y)|rdydttn+1ωr(x)dx)1r≲m∏j=1(∫Rn∫B(x,t)∫∞0|Fj(yj,t)|rjdyjdttn+1ωrjj(x)dx)1rj. | (3.3) |
Note now that in view of (3.3), we can apply Lemma 2.7, for r−j=1, r+j=∞, pj=rj. Then, for all 1<qj<∞, ωqjj∈Aqj∩RH∞ and →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm, we obtain
(∫Rn(∫∞0∫B(x,t)|T(→F)(y)|rdydttn+1)qrωq(x)dx)1q≲m∏j=1(∫Rn(∫∞0∫B(x,t)|Fj(yj,t)|rjdyjdttn+1)qjrjωqjj(x)dx)1qj. |
Thus, for ωqjj≡1∈Aqj∩RH∞ and →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm as above, we have
‖T(→F)‖Tqr≲m∏j=1‖Fj‖Tqjrj. |
This completes the proof of Theorem 1.2.
Proof of Theorem 1.3. Let →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm and ω(x)=ω1(x)ω2(x)⋯ωm(x). Taking sj=nrjαrj+n(j=1,2,⋯,m) in Lemma 2.6, we can deduce that
‖Iα(→F)‖Tpr≲(∫Rn(∫∞0tn(rs−1)m∏j=1(− ∫B(x,5t)|Fj(yj,t)|sjdyj)rsjdtt)prdx)1p+(∫Rn(∫∞0(Iα(− ∫B(⋅,t)|F1(y1,t)|dy1,⋯,− ∫B(⋅,t)|Fm(ym,t)|dym)(x))rdtt)prdx)1p=:I+II. |
Since rj>sj, using Jensen's inequality, Hölder's inequality, Lemma 2.1, and [27, Theorem 2.19] for s1=1m(1r−1s), s0=0,p0=qj,p1=pj, and q=rj, we have
I≲m∏j=1(∫Rn(∫∞0∫B(x,5t)|tnm(1s−1r)Fj(yj,t)|rjdyjdttn+1)pjrjdx)1pj≲m∏j=1(∫Rn(∫∞0∫B(x,5t)|F(y,t)|rjdydttn+1)qjrjdx)1qj≲m∏j=1‖Fj‖Tqjrj. |
Finally, to estimate II, we shall proceed by extrapolation. Since 0<α<nm, 1<s1,…,sm<∞, 1s=1s1+⋯+1sm with 1r=1s−αn and →ω∈A→s,r, we have the fact that Iα:Ls1(ωs11)×⋯×Lsm(ωsmm)→Lr(ωr) in [28, Theorem 2.3]. Applying this fact, Lemma 2.6, Minkowski's integral inequality, Hölder's inequality, we obtain
(∫Rn∫∞0(Iα(− ∫B(⋅,t)|F1(y1,t)|dy1,⋯,− ∫B(⋅,t)|Fm(ym,t)|dym)(x))rdttω1(x)r⋯ωm(x)rdx)1r≲(∫∞0∫Rn(Iα(− ∫B(⋅,t)|F1(y1,t)|dy1,⋯,− ∫B(⋅,t)|Fm(ym,t)|dym)(x))rω(x)rdxdtt)1r≲(∫∞0m∏j=1(∫Rn(− ∫B(x,t)|Fj(yj,t)|dyj)sjωsjj(x)dx)rsjdtt)1r≲m∏j=1(∫∞0(∫Rn(− ∫B(x,t)|Fj(yj,t)|dyj)sjωsjj(x)dx)rjsjdtt)1rj≲m∏j=1(∫Rn(∫∞0(− ∫B(x,t)|Fj(yj,t)|dyj)rjdtt)sjrjωsjj(x)dx)1sj≲m∏j=1(∫Rn(∫∞0− ∫B(x,t)|Fj(yj,t)|rjdyjdtt)sjrjωsjj(x)dx)1sj. |
Then, since 1<ϑ<q<∞ and 1<s<r<∞ with 1s−1r=1q−1ϑ, applying Lemma 2.6, we have that, for all →v∈A→q,r, and →F=(F1,⋯,Fm)∈Tq1r1×⋯×Tqmrm,
(∫Rn∫∞0(Iα(− ∫B(⋅,t)|F1(y1,t)|dy1,⋯,− ∫B(⋅,t)|Fm(ym,t)|dym)(x))rdttωr(x)dx)1r≲m∏j=1(∫Rn(∫∞0− ∫B(x,t)|Fj(yj,t)|rjdyjdtt)qjrjvqjj(x)dx)1qj. |
In particular for vj≡1, we have that →v∈A→q,r. Thus,
II≲m∏j=1(∫Rn(∫∞0− ∫B(x,t)|Fj(yj,t)|rjdyjdtt)qjrjvqjj(x)dx)1qj=m∏j=1||Fj||Tqjrj. |
The proof of Theorem 1.3 is finished.
Heng Yang: methodology, writing-original draft, writing-review & editing; Jiang Zhou: writing-review & editing, supervision, formal analysis.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
The authors want to express their sincere thanks to the referees for the valuable remarks and suggestions. This work was supported by the National Natural Science Foundation of China (No. 12061069).
The authors declare that there is no conflict of interest.
[1] | R. Coifman, Y. Meyer, E. M. Stein, Un nouveal espace fonctionnel adapte a l'etude des operateurs definis par des integrales singulieres, in Harmonic Analysis. Lecture Notes in Mathematics, (eds. G. Mauceri, F. Ricci, G. Weiss), Springer, Berlin, Heidelberg, (1983), 1–15. https://doi.org/10.1007/BFb0069149 |
[2] |
S. Hofmann, S. Mayboroda, Hardy and BMO spaces to divergence form elliptic operators, Math. Ann., 344 (2009), 37–116. https://doi.org/10.1007/s00208-008-0295-3 doi: 10.1007/s00208-008-0295-3
![]() |
[3] |
R. Coifman, Y. Meyer, E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 62 (1985), 304–335. https://doi.org/10.1016/0022-1236(85)90007-2 doi: 10.1016/0022-1236(85)90007-2
![]() |
[4] |
P. Auscher, C. Kriegler, S. Monniaux, P. Portal, Singular integral operators on tent spaces, J. Evol. Equ., 12 (2012), 741–765. https://doi.org/10.1007/s00028-012-0152-4 doi: 10.1007/s00028-012-0152-4
![]() |
[5] |
P. Auscher, C. Prisuelos-Arribas, Tent space boundedness via extrapolation, Math. Z., 286 (2017), 1575–1604. https://doi.org/10.1007/s00209-016-1814-7 doi: 10.1007/s00209-016-1814-7
![]() |
[6] |
J. Cao, D. Chang, Z. Fu, D. Yang, Real interpolation of weighted tent spaces, Appl. Anal., 95 (2016), 2415–2443. https://doi.org/10.1080/00036811.2015.1091924 doi: 10.1080/00036811.2015.1091924
![]() |
[7] |
C. Cascante, J. M. Ortega, Imbedding potentials in tent spaces, J. Funct. Anal., 198 (2003), 106–141. https://doi.org/10.1016/s0022-1236(02)00087-3 doi: 10.1016/s0022-1236(02)00087-3
![]() |
[8] |
R. Coifman, Y. Meyer, On commutators of singular integral and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315–331. https://doi.org/10.1090/S0002-9947-1975-0380244-8 doi: 10.1090/S0002-9947-1975-0380244-8
![]() |
[9] |
R. Coifman, Y. Meyer, Commutateurs d'intégrales singuliéres et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28 (1978), 177–202. https://doi.org/10.5802/aif.708 doi: 10.5802/aif.708
![]() |
[10] |
G. Lu, Multiple weighted estimates for bilinear Calderón-Zygmund operator and its commutator on non-homogeneous spaces, Bull. Sci. Math., 187 (2023), 103311. https://doi.org/10.1016/j.bulsci.2023.103311 doi: 10.1016/j.bulsci.2023.103311
![]() |
[11] |
S. He, J. Zhang, Endpoint estimates for multilinear fractional maximal operators, Bull. Korean Math. Soc., 57 (2020), 383–391. https://doi.org/10.4134/BKMS.b190269 doi: 10.4134/BKMS.b190269
![]() |
[12] |
A. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 220 (2009), 1222–1264. https://doi.org/10.1016/j.aim.2008.10.014 doi: 10.1016/j.aim.2008.10.014
![]() |
[13] |
T. Iida, The boundedness of the Hardy-Littlewood maximal operator and multilinear maximal operator in weighted Morrey type spaces, J. Funct. Space. 2014 (2014), 648251. https://doi.org/10.1155/2014/648251 doi: 10.1155/2014/648251
![]() |
[14] |
L. Grafakos, R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 65 (2002), 124–164. https://doi.org/10.1006/aima.2001.2028 doi: 10.1006/aima.2001.2028
![]() |
[15] |
L. Grafakos, L. Liu, D. Maldonado, D. Yang, Multilinear analysis on metric spaces, Diss. Math., 497 (2014), 1–121. https://doi.org/10.4064/dm497-0-1 doi: 10.4064/dm497-0-1
![]() |
[16] |
L. Grafakos, On multilinear fractional integrals, Studia Math., 102 (1992), 49–56. https://doi.org/10.4064/sm-102-1-49-56 doi: 10.4064/sm-102-1-49-56
![]() |
[17] |
K. Li, K. Moen, W. Sun, Sharp weighted inequalities for multilinear fractional maximal operators and fractional integrals, Math. Nachr., 288 (2015), 619–632. https://doi.org/10.1002/mana.201300287 doi: 10.1002/mana.201300287
![]() |
[18] | L. Grafakos, Classical Fourier Analysis, in Graduate Texts in Mathematics. 3 Eds., Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1194-3 |
[19] | J. García-Cuerva, J. Rubio de Francia, Weighted norm inequalities and related topics, Elsevier, 1985. |
[20] | L. Grafakos, Modern Fourier Analysis, in Graduate Texts in Mathematics. 3 Eds., Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1230-8 |
[21] |
J. M. Martell, C. Prisuelos-Arribas, Weighted Hardy spaces associated with elliptic operators Part: Ⅰ. Weighted norm inequalities for conical square functions, Trans. Am. Math. Soc., 369 (2017), 4193–4233. https://doi.org/10.1090/tran/6768 doi: 10.1090/tran/6768
![]() |
[22] |
K. Li, J. M. Martell, S. Ombrosi, Extrapolation for multilinear Muckenhoupt classes and applications to the bilinear Hilbert transform, Adv. Math., 373 (2020), 107286. https://doi.org/10.1016/j.aim.2020.107286 doi: 10.1016/j.aim.2020.107286
![]() |
[23] |
K. Moen, Weighted inequalities for multilinear fractional integral operators. Collect. Math., 60 (2009), 213–238. https://doi.org/10.1007/bf03191210 doi: 10.1007/bf03191210
![]() |
[24] |
D. Cruz-Uribe, J. M. Martell, Limited range multilinear extrapolation with applications to the bilinear Hilbert transform, Math. Ann., 371 (2018), 615–653. https://doi.org/10.1007/s00208-018-1640-9 doi: 10.1007/s00208-018-1640-9
![]() |
[25] |
M. Cao, A. Olivo, K. Yabuta, Extrapolation for multilinear compact operators and applications, Trans. Amer. Math. Soc., 375 (2022), 5011–5070. https://doi.org/10.1090/tran/8645 doi: 10.1090/tran/8645
![]() |
[26] |
P. Auscher, S. Hofmann, J. M. Martell, Vertical versus conical square functions, Trans. Am. Math. Soc., 364 (2012), 5469–5489. https://doi.org/10.1090/S0002-9947-2012-05668-6 doi: 10.1090/S0002-9947-2012-05668-6
![]() |
[27] |
A. Amenta, Interpolation and embeddings of weighted tent spaces, J. Fourier. Anal. Appl., 24 (2018), 108–140. https://doi.org/10.1007/s00041-017-9521-2 doi: 10.1007/s00041-017-9521-2
![]() |
[28] |
X. Chen, Q. Xue, Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362 (2010), 355–373. https://doi.org/10.1016/j.jmaa.2009.08.022 doi: 10.1016/j.jmaa.2009.08.022
![]() |