Research article Special Issues

Some estimates of multilinear operators on tent spaces

  • Received: 06 December 2023 Revised: 04 July 2024 Accepted: 04 July 2024 Published: 09 October 2024
  • 42B20, 42B25, 42B35

  • Let $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators include multilinear Hardy–Littlewood maximal operator $ \mathcal{M} $, multilinear fractional maximal operator $ \mathcal{M}_{\alpha} $, multilinear Calderón–Zygmund operator $ \mathcal{T} $, and multilinear fractional integral operator $ \mathcal{I}_{\alpha} $. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.

    Citation: Heng Yang, Jiang Zhou. Some estimates of multilinear operators on tent spaces[J]. Communications in Analysis and Mechanics, 2024, 16(4): 700-716. doi: 10.3934/cam.2024031

    Related Papers:

  • Let $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators include multilinear Hardy–Littlewood maximal operator $ \mathcal{M} $, multilinear fractional maximal operator $ \mathcal{M}_{\alpha} $, multilinear Calderón–Zygmund operator $ \mathcal{T} $, and multilinear fractional integral operator $ \mathcal{I}_{\alpha} $. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.



    加载中


    [1] R. Coifman, Y. Meyer, E. M. Stein, Un nouveal espace fonctionnel adapte a l'etude des operateurs definis par des integrales singulieres, in Harmonic Analysis. Lecture Notes in Mathematics, (eds. G. Mauceri, F. Ricci, G. Weiss), Springer, Berlin, Heidelberg, (1983), 1–15. https://doi.org/10.1007/BFb0069149
    [2] S. Hofmann, S. Mayboroda, Hardy and BMO spaces to divergence form elliptic operators, Math. Ann., 344 (2009), 37–116. https://doi.org/10.1007/s00208-008-0295-3 doi: 10.1007/s00208-008-0295-3
    [3] R. Coifman, Y. Meyer, E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 62 (1985), 304–335. https://doi.org/10.1016/0022-1236(85)90007-2 doi: 10.1016/0022-1236(85)90007-2
    [4] P. Auscher, C. Kriegler, S. Monniaux, P. Portal, Singular integral operators on tent spaces, J. Evol. Equ., 12 (2012), 741–765. https://doi.org/10.1007/s00028-012-0152-4 doi: 10.1007/s00028-012-0152-4
    [5] P. Auscher, C. Prisuelos-Arribas, Tent space boundedness via extrapolation, Math. Z., 286 (2017), 1575–1604. https://doi.org/10.1007/s00209-016-1814-7 doi: 10.1007/s00209-016-1814-7
    [6] J. Cao, D. Chang, Z. Fu, D. Yang, Real interpolation of weighted tent spaces, Appl. Anal., 95 (2016), 2415–2443. https://doi.org/10.1080/00036811.2015.1091924 doi: 10.1080/00036811.2015.1091924
    [7] C. Cascante, J. M. Ortega, Imbedding potentials in tent spaces, J. Funct. Anal., 198 (2003), 106–141. https://doi.org/10.1016/s0022-1236(02)00087-3 doi: 10.1016/s0022-1236(02)00087-3
    [8] R. Coifman, Y. Meyer, On commutators of singular integral and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315–331. https://doi.org/10.1090/S0002-9947-1975-0380244-8 doi: 10.1090/S0002-9947-1975-0380244-8
    [9] R. Coifman, Y. Meyer, Commutateurs d'intégrales singuliéres et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28 (1978), 177–202. https://doi.org/10.5802/aif.708 doi: 10.5802/aif.708
    [10] G. Lu, Multiple weighted estimates for bilinear Calderón-Zygmund operator and its commutator on non-homogeneous spaces, Bull. Sci. Math., 187 (2023), 103311. https://doi.org/10.1016/j.bulsci.2023.103311 doi: 10.1016/j.bulsci.2023.103311
    [11] S. He, J. Zhang, Endpoint estimates for multilinear fractional maximal operators, Bull. Korean Math. Soc., 57 (2020), 383–391. https://doi.org/10.4134/BKMS.b190269 doi: 10.4134/BKMS.b190269
    [12] A. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 220 (2009), 1222–1264. https://doi.org/10.1016/j.aim.2008.10.014 doi: 10.1016/j.aim.2008.10.014
    [13] T. Iida, The boundedness of the Hardy-Littlewood maximal operator and multilinear maximal operator in weighted Morrey type spaces, J. Funct. Space. 2014 (2014), 648251. https://doi.org/10.1155/2014/648251 doi: 10.1155/2014/648251
    [14] L. Grafakos, R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 65 (2002), 124–164. https://doi.org/10.1006/aima.2001.2028 doi: 10.1006/aima.2001.2028
    [15] L. Grafakos, L. Liu, D. Maldonado, D. Yang, Multilinear analysis on metric spaces, Diss. Math., 497 (2014), 1–121. https://doi.org/10.4064/dm497-0-1 doi: 10.4064/dm497-0-1
    [16] L. Grafakos, On multilinear fractional integrals, Studia Math., 102 (1992), 49–56. https://doi.org/10.4064/sm-102-1-49-56 doi: 10.4064/sm-102-1-49-56
    [17] K. Li, K. Moen, W. Sun, Sharp weighted inequalities for multilinear fractional maximal operators and fractional integrals, Math. Nachr., 288 (2015), 619–632. https://doi.org/10.1002/mana.201300287 doi: 10.1002/mana.201300287
    [18] L. Grafakos, Classical Fourier Analysis, in Graduate Texts in Mathematics. 3 Eds., Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1194-3
    [19] J. García-Cuerva, J. Rubio de Francia, Weighted norm inequalities and related topics, Elsevier, 1985.
    [20] L. Grafakos, Modern Fourier Analysis, in Graduate Texts in Mathematics. 3 Eds., Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1230-8
    [21] J. M. Martell, C. Prisuelos-Arribas, Weighted Hardy spaces associated with elliptic operators Part: Ⅰ. Weighted norm inequalities for conical square functions, Trans. Am. Math. Soc., 369 (2017), 4193–4233. https://doi.org/10.1090/tran/6768 doi: 10.1090/tran/6768
    [22] K. Li, J. M. Martell, S. Ombrosi, Extrapolation for multilinear Muckenhoupt classes and applications to the bilinear Hilbert transform, Adv. Math., 373 (2020), 107286. https://doi.org/10.1016/j.aim.2020.107286 doi: 10.1016/j.aim.2020.107286
    [23] K. Moen, Weighted inequalities for multilinear fractional integral operators. Collect. Math., 60 (2009), 213–238. https://doi.org/10.1007/bf03191210 doi: 10.1007/bf03191210
    [24] D. Cruz-Uribe, J. M. Martell, Limited range multilinear extrapolation with applications to the bilinear Hilbert transform, Math. Ann., 371 (2018), 615–653. https://doi.org/10.1007/s00208-018-1640-9 doi: 10.1007/s00208-018-1640-9
    [25] M. Cao, A. Olivo, K. Yabuta, Extrapolation for multilinear compact operators and applications, Trans. Amer. Math. Soc., 375 (2022), 5011–5070. https://doi.org/10.1090/tran/8645 doi: 10.1090/tran/8645
    [26] P. Auscher, S. Hofmann, J. M. Martell, Vertical versus conical square functions, Trans. Am. Math. Soc., 364 (2012), 5469–5489. https://doi.org/10.1090/S0002-9947-2012-05668-6 doi: 10.1090/S0002-9947-2012-05668-6
    [27] A. Amenta, Interpolation and embeddings of weighted tent spaces, J. Fourier. Anal. Appl., 24 (2018), 108–140. https://doi.org/10.1007/s00041-017-9521-2 doi: 10.1007/s00041-017-9521-2
    [28] X. Chen, Q. Xue, Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362 (2010), 355–373. https://doi.org/10.1016/j.jmaa.2009.08.022 doi: 10.1016/j.jmaa.2009.08.022
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(435) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog