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multilinear operators by establishing pointwise inequalities and applying extrapolation methods on
tent spaces T, (R""!), where these multilinear operators include multilinear Hardy-Littlewood maximal
operator M, multilinear fractional maximal operator M,, multilinear Calderén—Zygmund operator 7,
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1. Introduction and main results

Tent spaces were first introduced by Coifman, Meyer, and Stein in [1] and started with the use of
Lusin area functionals on harmonic functions. These spaces were extensively used in the recent theory
of Hardy spaces associated with operators [2] and played an important role in harmonic analysis, as
evidenced in [3]. They also appeared in the study of maximal regularity operators arising from some
linear or nonlinear partial differential equations [4].

Recently, Auscher and Prisuelos—Arribas [5] showed how extrapolation allows us to conclude
the boundedness of some operators on tent spaces, such as the Hardy—Littlewood maximal operator,
the Calderon—Zygmund operator, the Riesz potential, the fractional maximal function, and the Riesz
transform of elliptic operator. Moreover, many interesting results were also extensively investigated
on tent spaces; we refer the readers to see [6,7] and therein references. The purpose of this paper is to
extend the boundedness of multilinear operators on tent spaces.

In the 1970s, Coifman and Meyer were among the first to adopt the multilinear point of view in their
study of certain singular integral operators (see; for example, [8,9]). The study of multilinear operators
is not motivated by a mere quest to generalize the theory of linear operators but rather by their natural
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appearance in harmonic analysis. A series of papers on this topic enrich this theory, see [10, 11] and so
on. In particular, we want to understand how some multilinear operators act on tent spaces. We assume

7 be a multilinear operator and F(x, 1), ..., F,(x, t) be measurable functions on RT‘ and define 7~ by
n+1

the setting, for any (x,7) € R}",
T(Fl’ ey Fm)(xa t) = Tt(Fl(" t)’ ey Fm(" t))(X)

The following definition of tent spaces, T,/(R"*!), can be found in [1].

Definition 1.1. For a measurable function F : R := R" X (0,00) > Cand 0 < r < oo, let

1
a dydt\”
AF)) ::( f f FQ, I f+1) . xeR".
0 JBGo r

Tent space T, := T/(R™"),0 < q,r < oo, is defined as the set of all measurable functions F such that
A (F) e L1(R").

For an m-tuple locally integrable function f = (f1, ..., fw), the multilinear Hardy—Littlewood
maximal operator M is defined by, for any x € R",

% LN |
M s=sup [ [ [ 150 )1dy,
J=1 B

Bax ~._

where the supremum is taken over all the balls B containing x.

Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzalez [12] first introduced the multilinear Hardy—
Littlewood maximal operator and further obtained some mapping properties of the multilinear Hardy—
Littlewood maximal operator on weighted Lebesgue spaces. In 2014, Iida [13] proved the boundedness
of the multilinear Hardy-Littlewood maximal operator on weighted Morrey spaces.

Our first result can be stated as follows:

Theorem 1.1. Let M be the multilinear Hardy—Littlewood maximal operator. If 1 < r,ry,...,r, < oo,

1<q,41,---,Qm<00,%=%+---+%and%}zi+---+q¢, then, there exists a constant C > 0, such

that for all F = (Fy,--- ,F) € T x--- x T,

IMBlzs < C [ [IIF e

J=1

Let 7~ be a multilinear operator initially defined on the m-fold product of Schwartz spaces and taking
values into the space of tempered distributions,

T:SRYX---xSR")—>S"(R").

We say that 7 is the m-linear Calderon—Zygmund operator, if for some 1 < g; < oo, it extends to a

bounded multilinear operator from L% X - -- x L to LY, where é = % 4ot ql, and if there exists a
m+1

function K, defined off the diagonal x = y; = --- = y,, in (R")""", satisfying

T (R = f KGoy1s e os3) L)oo fon O Y1 < i

®y"
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for all x ¢ (., supp f;,

A
IK (Y0, Y15 - Ym)| < ~ i (1.1)
(Zk,l:o e = yll)

and e
Aly; =

‘K(yo,...,yj,...,ym)—K(yo,...,y},...,ym)‘ < (1.2)

)mn +e?

(ZZJ:O e — yil

for some £ > 0 and all 0 < j < m, whenever [y; — | < 2 max lv; = Wl

In 2002, Grafakos and Torres [14] obtained the boundedness of the multilinear Calderon-Zygmund
operator on Lebesgue spaces. Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzalez [12] developed a
multiple weight theory and obtained that the multilinear Calderén—Zygmund operator is bounded on
weighted Lebesgue spaces. In 2014, Grafakos, Liu, Maldonado, and Yang [15] extended these results to
the framework of metric spaces.

Here is the second result we obtained.

Theorem 1.2. Let T be the m-linear Calderon—Zygmund operator. If 1 < r,ry,...,1, < oo, 1 <

q4,q1s-->sqm < 09, % = % +-- 4 riandé = qil +---4 qL, then, there exists a constant C > 0, such that,

forall F = (Fy,-- ,F,) € TY x---x T,

T (e < C [ ] IF 0.
J=1 ’

Let 0 < @ < mn. For f = (f1,..., fn), the multilinear fractional integral operator 7, is defined by

]'a(j?)(x) ::f fl (yl)fm (ym) mn_adyl dym
R

w (X =il + -+ x =yl

The associated multilinear fractional maximal operator M, is defined by

M) : —sup]_[lB|1 - f 1£,0p)] dys

where the supremum is taken over all the balls B containing x.

In 1992, Grafakos [16] first studied the multilinear fractional integral operator and obtained the
boundedness of the multilinear fractional integral operator on Lebesgue spaces. In 2015, Li, Moen and
Sun [17] extended this result to weighted Lebesgue spaces.

Next, our third result is as follows:

Theorem 1.3. Let 0 < a < mn and I, be the multilinear fractional integral operator. If 1 <

1 _ 1 11 _ 1 1 1 1 _a
r,rl,...,rm<oo,1<q,q1,...,qm<oo,;—Z+-~-+— a——+---+q—m,anda—;—;,then,there

exists a constant C > 0, such that for all F = (Fy, -+ ,Fy,) € TH X x T

Ia(P)llzy < € ]—[ IF Sl

j=1
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We note that the multilinear fractional maximal operator has the same boundedness as that of the
multilinear fractional integral since the pointwise inequality M,(f) < Z,(f). Thus, we have the
following result:

Corollary 1.1. Let 0 < @ < mn and M, be the multilinear fractional maximal operator. If 1 <
r— 1., .1 1_1_,. .1 1_1_2¢a
Bty <00, 1< g,y g <00, = oot omy o= m oo+ - and = o = 4, then, there

roon
exists a constant C > 0, such that, for all F=(F,-- ,F,e€ T} X x T
m
.
MBIz < C | JIE Mo
L J
j=1

We end this section by explaining some notations. We write A < B to mean that there is a positive
constant C such that A < CB, and A ~ B to suggest that there exists a positive constant C such that
B<Aand A < B. J% f(x)dx represents the average ﬁ fB f(x)dx of f over the set B. The letter C will be
used for positive constants independent of relevant variables that may change from one occurrence to
another.

2. Preliminaries

We present some necessary lemmas and definitions in this section, which are very important to prove
our main results.

Let us recall the definitions of A, weights and reverse Holder classes (see, for example, [18]). In
what follows, for x € R" and r > 0, the symbol B = B(x, r) denotes balls in R".

Definition 2.1. An A, weight w is a non-negative locally integrable function on R" that satisfies, when

p € (l,00), 1
-
[w]a, := sup (wa(x) dx) (ch(x)l_p’ dx) < oo,
B \JB B

[w]a, := sup (J[ w(x) dx) llw™ I8y < oo,
B

BcR”

and when p =1,

where the quantity [w],, is called the A, constant of the weight w.
In addition, we also need the reverse Holder classes.
Definition 2.2. For s € (1, oo], we define the reverse Holder class RH; as the collection of all weights w

such that
1

[w]gH, := sup (JC w(x)sdx)x (JC a)(x)dx)_ < 00,
B \Js B

1

when s = oo, (J% a)(x)sdx) " is understood as esssupg w. Define RH, := |J RH,. Then we see that
1<s<oc0

RHl = Aoo.

Some properties about A, weights and reverse Holder classes used later are summed up in the
following; see [19,20].
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Proposition 2.1. (/) Ay CA, CA,for1 <p<q<oo.
(2) RH, CRH, CRH, for 1 < p < g < co.
(3) A= U A,= U RH,

1<p<oo I1<s<oco
(4) If1 <p<oco,w€A,ifand only if 07 € A,.
(5) If w e A, 1< p < oo, then there exists q € (1, p) such that w € A,.
(6) If w e RHy, 1 < s < 00, then there exists r € (s, ) such that w € RH,.
(7) Ifw e A, NRH,,, 1 < p < oo, then there exists r € (1, 00) such that w" € A,

For any a € (0, o) and r € (1, o), we define the operator A’ by

1
® dydt\"
AF) ) = ( [ [ oo iﬂ), xeR".
0 JBxan t

The following lemma (change of angles) comes from [21, Proposition 3.2].

Lemma 2.1. Let0 < a < < co.

(i) For every w € A;, 1 < g < oo, there holds

2Dl s(g)” VA (Dllrwy, forall 0<p<rg.

(ii) For every w € RHy , 1 < s < oo, there holds

a\” r
AT (llrw) < (,3) 1A (lerw,  for all SSP <>
For m exponents pi, ..., p,, we write p for the number given by = -~ +--- + - and j for the
vector 7 = (P1y..., Pm).
Definition 2.3. Let 1 < py,..., p, < 0. Given @ = (wy, ..., w,,), set
m A
— Pj
=T
j=1

We say that @& satisfies the Ay condition if

sgp(fvw(x)dx) l_l(fw](x)l -7 dx) T < 00,

J=1

1

when p =1, (JC w,(x)l i dx)" is understood as (inf w) ™.

By Holder’s inequality, we can check that [, A, C Aj. Moreover, it is proved in [12] that, for
1 <pi,...,pm <0, @ € Apif and only if

W' eAmpfj, j=1,...,m,
Ve GAmP,
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where the condition wj._pj € Ayp, in the case p; = 1 is understood as a)j €A

We are going to present the definition of the multilinear Muckenhoupt classes A introduced in [22].
Given g = (p1,...,pn) With 1 < py,...,pp <ocand 7= (ry,..., 1) With 1 < rq, ..., 1y < 00, We
say that 7 < p whenever

1 1
ri<p,i=1,...,m,and 7, , > p, where — 1= — +---+ —.
p P1 Pm
Analogously, we say that 7 < pif r; < p;foreachi=1,...,mand v/ ,, > p.

Definition 2.4. Let p = (p1,....pn) with 1 < pi,...,pn < 0 and let ¥ = (ry,..., 1) with 1 <
Flse.sFme1 < 00 such that ¥ < p. Suppose that & = (w;, . . ., wy) and each w; is a weight on R". We say
that & € Aﬁj lf

s NPT e \GTH
(Dlay, = " (JC it dx) l—[ (JC w;(x)"77" dX) < o0, 2.1)
B B

j=1

where w = [|L, w; and the supremum is taken over all balls B C R". When p = r,, |, the term
corresponding to w needs to be replaced by esssupy w, and, analogously, when p; = rj, w needs to be

replaced by ( J% w(x)? dx) %

Remark 2.1. If we take ¥ = (1,...,1,r,.1) with r,L =

% in (2.1), then we see that Ay is the same
m+1

1
q
as Ag,.

The following lemma is proved in [12, Theorem 3.7].

Lemma 2.2. Let 1 <p1,...,pm<ooandi = +---+pim. Ifw:=ww; - wy € HTzlAijAﬁ, then,

1
Pl_)
there exists a constant C > 0, such that, for all f = (fi,--- , fu) € L' (") X - - X LP"(w}"),

IMPlrian < €[ [l

j=1

Let f=(fisenrs f) €L, (R X -+ X L

Ioc 1oc (R™). The centered multilinear maximal operator M. is
defined by

Mo =se[ £ iolay,
1 X,r

>0
T j=

Remark 2.2. For f=(fi, -, fn) € L1 (R") x ---x LL_(R"), it is easy to see that M.(F) ~ M(F.

loc loc

For the centered multilinear maximal operator M., we have the following pointwise inequality:

Lemma 2.3. Forall x € R, t > Qandvr, r, ..., 1, € (1,00) with% = %++i and all

-

f=U s f) € L, R X+ x L (R"), we have

m

Mcﬁrd: "”'d'rij )ldy; | (). 2.2
(Ji(x,t)l o) y) <l—[(~£(x,21) o) y,) ’ (l;[ Ji(-,n ) y]](X) 2

J=1
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Proof. Fix x € R" and ¢ > 0, and split the supremum into O < 7 <t and 7 < 7. Then,
1

( f IM(f)(y)l’dy)r < { f [sup [1f |f(y,)|dy,] dy}
B(x.0) By |0<r<t oy JBoD)
+ lfpldy;| d
{ﬁ(x,t) [S‘rlill) 1;' JCB(y,T) f y] yj y}

=:1+1I.

For 1, since B(y,7) C B(x,2t) for0 < 7 < tandy € B(x,1), it follows that

r ¥
I< {JC [SUP n JC lf X B0 (V) dy; d)’}
B(x,t) | 0<7t<t B(y,7)

< (J[( )lM(fXB(th))(y)lr d)’)r
< ]‘[ ( £ o dyj)rj ,

where f XY Bi2n = (fiXBx20s - - - » fmXBx2n) and the last inequality we have used is M : L"(R") X --- X
L'm(R") — L"(R") (see [12, Theorem 3.7]).

As for 11, we note that, for &;, y; € R", £ € B(y;,t) if and only if y; € B(¢;,1). If y; € B(y,7),
&; € B(y;,t) and 7 > ¢, then &; € B(y,27). Besides, we observe that the fact that x € B(y,r) and 7 > ¢
implies that x € B(y, 27). Hence, applying Fubini’s theorem, we have

u:{f sl [ £ 1ropf  agay
B(x,t) ™t =1 B(y,7) B(y;j.t)

{f sup [ | f f Fopldy, dg; dy}
B(m) ™1 j=1 B(y.2t) JB(£;.1)
(]‘[ f |f(y,~>|dyj) (x)
B(-,1)

Combining with estimates for I and /1, we complete the proof of Lemma 2.3.

dy}

IA

Next, we establish the pointwise inequality for the multilinear Calderon—Zygmund operator 7 .

Lemma 2.4. Let T be an m-linear Calderon—-Zygmund operator. For 1 < r, ry, ..., 1, < o0 with
1 _

L= % +--- t andf: (fi,- s f) € L"(R") X -+ - X L'(R"). Then, for all x € R" and t > 0, we have
( f I‘T(f)(y)l’dy)r <[] ( f g dyj)” +TLHE) + M,
B(x.0) =1 B2

Communications in Analysis and Mechanics Volume 16, Issue 4, 700-716.
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where

T((x) := sup

e>0

Proof. Fix x € R" and t > 0, consider the ball B(x, 2¢), and write f;
j=1,...,m. Then

3

ﬂf,(yj =]_[ (Fop+rron) = D o0 £mOm

:S |I

Fop+ D 1 e0 £ Gm),

j=1

where each term of )}’ contains at least one «; # 0. Then, we write that

( f |T<f)<y>|’dy) < ( f T fON dy),
B(x,t) B(x,1)

(e or o)

= I+1I

Since 7 : L"(R") X ---x L'"(R") = L"(R") (see [12, Corollary 3.9]), we obtain
m =
<] ( £ ipopr dyj)
j=1 B(x,21)
As for 1, we consider each term in the sum )" and get that
(J[ T N dy)
B(x,t)
:(f f K(yaylv"ym)flal(yl)a"a ,gm()’m)dj’{ dy)
B(x,t) (Rn )I}l
(Ji(x,t)
+ ( f
B(x,t)

K(X,}’l, .. ,}’m)f]m(h), .o ,fyﬁm()’m) df’{ dy))

(Rn )m

f K(x’yb9ym)fl(yl)ﬁn(ym)dyldy
=y 1P+ Hx—ym P> €2

f [K()’,)’l, .. aym) - K(Xa)’l»~ .. ,)’m)] lal(yl)’~ .. ’fn(:m(ym)d)?l dy
(Rnym

L
-

— —. £0 00
= fiXsoan + fiXpaay =0 f7 + 77

Observe that there exists aj, # 0 such that |y;, — x| > 2¢. Then, for y € B(x,1), we have [x —y| <t <

1 1
2y = X < 3 maxen
that
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and using |x — yi* + -+ - + [x =yl > |y, — x> > (20)%, it is easy to see

Thus, we complete the proof of Lemma 2.4.
For the operator 7, we need the following lemma (see [15, Theorem 4.16]).

Lemma 2.5. Let 1 < py,...,pn < land% = pil + me Ifw:i=ww - w, € H;."zlApj C A, then,
there exists a constant C > 0, such that, for all f = (fi,---, f) € L"(W]") X -+ X LP"(wp"),

m
« =2
17 Pllrry < € [ [l
j=1

Lemma2.6.Let0<t<o<>,0<a<mnlzl—f—’ana’lzL

il . Sl+---+j Then, for any x € R", if
1< Styenessy<coand f=(fi,-+ o fo) € L (RY) X -+ X L (R"), we have
(Jtl;(x,t)

Ia(f)(y)‘rdy)r <0 ( ﬁ( . 1))
j=l x,0t
( f TADK dzl)” o ( f fon Gl dzm) ] (x).
B(-.1) B(-,t)

Proof. For the sake of brevity, we just consider m = 2. For each x € R" and r > 0, we split f; =
fiXsesn + fixsesoe =2 f] + £, j = 1,2 Then,

(f_|ndofo) <(f |ntsofs] +(f
B(x.0) B(x1) B(x1)

{f, e i o[£,

= I+ 1T+ 0I+1IV.

Y
'dyj)

+ 7,

L

(R85 of dy)r

):

Since 7, : L*' (R") x L*> (R") — L" (R") in [23], we deduce that

1
(-1 1"
1<t ]—[(Ji( . dy])

As for II, for any z, € R"\B(x, 51), if £ € B(z2,1) and y € B(x, 1), then max {ly — 2|, |x — |} > 47 and
b=zl < |x — ¢ < 2|y - z,. Furthermore, for any z, € B(x, 5¢) and 17 € B (z;, 1),

nyJ

ly—zil+ 1y — 2o
5

Then, by Fubini’s theorem, we have
(1R 157) 0

Communications in Analysis and Mechanics Volume 16, Issue 4, 700-716.
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L@ (22)
- f 7 Gl Jn_a JC de 1 dndzdz
rRexer ([y — zil + [y — 220) B(z2.0) B(x1.0)

1 LD @)\ xsen (22) XBun (21)
- . f f f P @] |52 @)l s zn_amr) dz1deadédn
|BCx, DI Jigge—nman Jrn Jrnyp (y—zil+ 1y =2zl

|f1 (Zl)| |f2 (22)|XB(§t) (22) X Br (21)
dzidzydéd
|B(X ni ffls —x|>41) fR” fn)z (Ix — 7 + |x — &2 z1dzodédn

sfa(f il dn, f Ifz(f)ldf)(x)-
B(-,p) B(-,1)

Ilsfa(f i), f |fz(§)|d§)(x)-
B(-t) B(-,1)

msfa(f il dn, f |fz<f>|d§)<x>.
B(-,) B(-.1)

It remains to estimate IV. For any z;,z, € R"\B(x, 5t), if ¢ € B(z,,t),n € B(z1,1), and y € B(x, 1), then
we have

Therefore,

Similarly, we also have

max {ly — zil, [y — 2ol , [x = &, Ix — |} > 4¢
and

ly =zl [y — 22l
TS|X—77|S2|)’—Z1|,

Sk =€ <20y - zf.
Furthermore, we get

ly—zil + |y — zal
2

Then, by Fubini’s theorem, we obtain

L (A7) 157

;@5
_ f I ol 1 f dé f dndzdz,
rescren ([y = z1] + |y — 2al) B(z2.0) B(x1.0)
1 @O (22) 0 (22) X B (21)
_ i f f f 1 @[5 @)| xaen 22n)_(f<nr) 1 dz,dedédn
|B(x’ DI Jiese-xman Jipin-x>4n J@n2 (y—zil+1y -z
(z1) (22) (22) (z1)
f f f [ G| f5° @2 e ; XBaa (21 dz,desdédn
|B(x DI Jigse—vsan Jipin-sisan Jrny (Ix = nl + |x — &)=«

sfa(f il dn, f |fz(§)ld§)(X)-
B(-.t) B(-.t)

Thus, we have
V<7, ( f i), f @) df) .
B(-,1) B(..,1)

Combining with the estimates for I-IV, we finish the proof of Lemma 2.6.

Shx—nl+lx=&<2(y-al+ly-2z).
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We need the following extrapolation theorem, which was introduced by Cruz-Uribe and Martell
in [24].

Lemma 2.7. Given m > 1, let ¥ be a family of extrapolation (m + 1)-tuples. For each j,1 < j < m,
suppose we have parameters riand r;T, and an exponent p; € (0,00), 0 < r; < p; < r}“ < oo, such that

r
J

given any collection of weights w1, ..., w,, with a)fj €Ar N RH(,; rand w = wy -+ w,, we have the
7)

inequality

m
Il < €| Tl -
j=1 ’

= 3" L and C depends on

J=1 p;

for all (f,fi,...,fn) € F such that ||fllirwry < oo, where 1—17
n,pj, [a)j]ﬁ , [a)j]RH . Then for all exponents q;,r; < q; < r}r, all weights wzj € As NRH "

ol "

J
and w = wy -+ Wy,

I f Loy < € 1—[ ||fj||qu(w‘{j) ;
j=1 !
Sfor all (f, fi,...,fw) € F such that ||f|lswsy < o0, where é = Z'}l:li and C depends on n, p;,
s [wf]qy[wf]m[ |
In order to show Theorem 1.3, we also need the off-diagonal extrapolation theorem (see [25, Theorem
4.5]).

Lemma 2.8. Let ¥ be a collection of (m + 1)-tuples of non-negative functions. Let ¥ = (ry, ..., Fns1)
with 1 < ry,...,Fu < 0. Assume that there exists p, € (0,00) and p = (p1,...,pn) with 7 < p and
pl < 1_17 = pll ++ pl such that for all & = (wy, ..., w,) € App,

m
Aoy < C[ [l psry> o fiseos ) €F
J=1 '

where w = [['_; w;. Then, for all q. € (0, 00), for all § = (q1, - .., qm) With 7 < 67,}] = qil +oe ql and

1 _1

1 =2
a9 ¢ p  p’ and for all v= (v, ...,vn) € Agp,

m
Wy < CT Wil o fine s ) € F,
j=1 ’

m

where v = [,

Vj.
3. Proofs of Theorems 1.1-1.3

Now, we begin to prove Theorems 1.1-1.3 in this position.
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Proof of Theorem 1.1. For r,ry,...,r, € (1,00) and 1 = % + -+ + -L, we shall prove that for any

W= ww - wy € [T Ay, C Apwithw] € Ay NRH+y and F = (Fy,--+ ,Fy) € T/ X -+ X T},
T3
v . o g

( f \AMEN X' (x) dX) < n( AL (F O w] (x) dX) : (3.1)
j=1

From this and Lemma 2.7, it follows that, for any ¢,q;,...,¢g, € (1,00) and 1 = ql—] + .-+ ql,

W= ww Wy, €[] Ay, C Az with wj’.f €Ay ﬁRH(,;)r and F = (F,, - ,F,) € Tql X T,
rj E

1

A, (F )0 (x) dx)q’

AMEN 0w (x) dx| < C
(fw' AMF)) ()0 (x) x) < ]—[(

In particular, we take w; = 1 as above, then, for all F=(F,, - ,F,)€ (T3, T,

R”

IM(F)llps = ( . Iﬂr(M(ﬁ))(X)l"dx)q < Cl_l(f (A, (F (01" dX)qj = Cl_l IEjllye. (3.2)
! =1 WE J=1 '

Since the set of compactly supported functions in T,rj N Trqj’ is dense in Tfjj , by the monotone convergence
theorem, we conclude that (3.2) holds true for functions F'; € T,q_/,j ,j=1,...,m.

Therefore, to finish the proof of Theorem 1.1, it just remains to show (3.1). This follows from (2.2)
applied to f; = F;(-,1), j=1,...,m, and Lemma 2.2. Using Holder’s inequality and Lemma 2.3, for all
w=wwwy, €[] A, CAp wehave

l - dyd ;
(f Iﬂr(M(F))(x)lrw’(x)dx) :(f f JC IMCEC,0)0)) aa ta)r(X)dx)
R JO  JB(xp) t
f f (JC IF f'(yf’”'”dyf) Ttw’(x)dx
R"JO T B(x,21)
M F(y;,0ld — d
fRnL [D Jg(-z)l S yJ](x) a)(x) X
- i\’
f n(f JC o f(yf’”'r’dyf_t) W' (x) dx
"= B(x.21) t
f f [H]C |F@J’I)|dYJ](X)
0 R2 B(-f)
F(y.0ldy;
+[L‘ f" l;[Ji(x,t)| (yj t)l y]

m
f [ [, (Fpeore (x) dx
Rn
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T

<

~ =

+ w" (x)dxd—

<

. 1
d r
w'(x)dx TI}

J=1



712

1

< 1_1[ [Ln |ﬂrj(Fj)(X)|rjwjf(x) dx + [f f l—ll (JC(X ) IF(Yj, t)|rj dyj) wr(x) dXTI
j=

J=

3

< ]‘[[ AP0 00 dx] ’
=1 R

Thus, it finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. We consider F = (F, -+, F,) € T - - -x T 5o that for almost every € (0, co)
and j =1,2,...,m, F(-,t) € L"/(R") and all calculations make sense. For w = ww, - - - w,, € H?’zl A, C
Ay with a):.’ €A 5 NRH Y by Lemma 2.4, Fubini’s theorem, Lemma 2.2, and Lemma 2.5, we use

Tj

Holder’s inequaﬁty and Lemma 2.1 and deduce that

w0 B dyd G
( f f f T )0 tf—jw’(x)dx)
R® JO B(x,t)
A w]ﬂ[(f |Fj<yj,t)|’-fdy,-):" yeonl
R Jo Gy \JB2n 4
= dr G S dr G
( f f T (FC, 0l o (x)dx) +( f f IMEC I e (x)dx)
R? n
< ( f f f IF (v D dy,—wf(x)dx)
= Rn B(x,21)
oo - d 7
f ( f IF 0l wf(y»dy,) 7’]
( | f [ or 2o ’f(x)dx)}+lﬂl( [ M|F-<y-t)|’~fﬂw’-"<y->dy~))"
n B(x.0) wmdo T R

J=1

+

m
J=1

n 0 . dy] dl rj ﬁ
|[F(y. 0" t"ij x)dx] ,
Rt Jo  JBxn

J=1

N

N

where the last inequality comes from the proof of [26, Proposition 2.3] in the case w;j €A, NRH, j=
1,...,m. Therefore, foralla);:" €A, NRH, j=1,....,m and F = (Fi,--- ,Fp)eT; x---xT,",

1 m 00 . dy] dt i )Vlj
‘7’ F S F i o .J d . 3.3
(f f fB(xz)l ( )(y) ) S LJ (Lﬂ L(X’I)L‘ |F (v, DI pove] w; (x)dx (3.3)

Note now that in view of (3.3), we can apply Lemma 2.7, for r]‘. =1, r;.f = oo, p; = r;. Then, for all
1 <q;j < oo, a)?” € A, NRH, and F = (Fy, -+ ,F,) € T} x---x T/, we obtain

[ fR ( f f ror dvd ) q(x)dx];
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1

AL Lo 22 ]

J=1

Thus, for a)j." = 1€ A, NRH, and F=(F, - ,F,)¢ T}' x --- X T;/™ as above, we have

1T (F)ls ]_[ Il

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let F = (Fy,--- ,F,,) € T& XX T and w(x) = w1 (x)w,(x) - - - (). Taking
s = %(j =1,2,--- ,m)in Lemma 2.6, we can deduce that
J

1
P L

PG JE Fiy,0ld .)Qif 4
f(f l—[( B(x51)| 1y Dy e
) " dr\" ’
+ {f (f (fa (JC |F1Os Dldyy, - - JC IFm(ym,t)|dym) (x)) _) dx]
R \JO B(-,1) BC1) p

=1+l

N

Since r; > s;, using Jensen’s inequality, Holder’s inequality, Lemma 2.1, and [27, Theorem 2.19] for
si =~ =1),5=0,po=qj,p1 = pj, and g = r;, we have
1

bj Pi
o0 rj dy;dt\"i !
n+1 dx
re \Jo  JBx5n) t
1
9j q;
o dydt\’i !
f ( f f |F<y,r>|’f%) dx
re \Jo  JB50 "

IF il “-

t%(%‘%)Fj(yj’ 1)

~
Il
—_

~N
A
s

~
Il
—_

:15 s

~
Il
—_

Finally, to estimate 11, we shall proceed by extrapolation. Since 0 < @ < nm, 1 < sy1,...,5, < o,
1 = 1 R w1th 1 — and @ € Ag,, we have the fact that 7, le(a)“)x X L (a)s’") - L' (w")
1n [28 Theorem 2. 3] Applymg this fact, Lemma 2.6, Minkowski’s 1ntegra1 inequality, Holder’s
inequality, we obtain

(o) , d :
(f f (Lx (JC 101, Dy, JC lFm(ym,t)Idym) (x)) Dy - wm(x)’dx)
R* JO B(-,1) B1)
s(f f(‘r“(f |F1(yl’t)|dyl""’f IFm(ym,t)Idym)(x)) w(x)’dxd_’)
0 R» B(-f) BC-1) "
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~ 1=

s N 5 dt
[ 1Fooiay, w,’(x)dx) a
R \J B(x.1) t

JC |F;(yj, DIdy; w;j(X)dX)
B(x,t)

A A

* =

3

=Ty I

—_ —_—
7

A\,
JC |F (), Oldy; —) W (x)dx
B(x,t) t

AN
E
Z 2
= 8

N
B
z 2
—_———
= 8
= v
=
=
<
3
=
~ | &
\-./*-"»
g
~. ©
~
o
N
Ny
=
N ——

, applying Lemma 2.6, we have that,

Then,sincel<ﬂ<q<ooand1<s<r<oowith§—%: é

forall ¥ € Ag,, and F = (Fy,--- ,F,) € T x -~ x T{",

00 r d %
(f f (Ia (f |F1 ()’1, t)ldyl, T f |Fm(yma Z‘)ldym) ()C)) _twr(x)dx)
R Jo B(-0) B(-1) t

L

qj rr
n o0 de\ . !
< | | |Fi(y;s f)lrjdy'—) VU (xdx| .

J=1

1
q

In particular for v; = 1, we have that v € A;,. Thus,

1
m 4 G m
00 . dt T . .
ms|] f(f f |Fj(yj,t)|rjdyj—) vieodx| = [ JIF .
=1 Wrn\Jo o I ? i1 i

The proof of Theorem 1.3 is finished.
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