In this work, we consider an $ \alpha $-robust high-order numerical method for the time fractional nonlinear Korteweg-de Vries (KdV) equation. The time fractional derivatives are discretized by the L1 formula based on the graded meshes. For the spatial derivative, the nonlinear operator is defined to approximate the $ uu_x $, and two coupling equations are obtained by processing the $ u_{xxx} $ with the order reduction method. Finally, the nonlinear difference schemes with order ($ 2-\alpha $) in time and order $ 2 $ precision in space are obtained. This means that we can get a higher precision solution and improve the computational efficiency. The existence and uniqueness of numerical solutions for the proposed nonlinear difference scheme are proved theoretically. It is worth noting the unconditional stability and $ \alpha $-robust stability are also derived. Moreover, the optimal convergence result in the $ L_2 $ norms is attained. Finally, two numerical examples are given, which is consistent with the theoretical analysis.
Citation: Caojie Li, Haixiang Zhang, Xuehua Yang. A new $ \alpha $-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation[J]. Communications in Analysis and Mechanics, 2024, 16(1): 147-168. doi: 10.3934/cam.2024007
In this work, we consider an $ \alpha $-robust high-order numerical method for the time fractional nonlinear Korteweg-de Vries (KdV) equation. The time fractional derivatives are discretized by the L1 formula based on the graded meshes. For the spatial derivative, the nonlinear operator is defined to approximate the $ uu_x $, and two coupling equations are obtained by processing the $ u_{xxx} $ with the order reduction method. Finally, the nonlinear difference schemes with order ($ 2-\alpha $) in time and order $ 2 $ precision in space are obtained. This means that we can get a higher precision solution and improve the computational efficiency. The existence and uniqueness of numerical solutions for the proposed nonlinear difference scheme are proved theoretically. It is worth noting the unconditional stability and $ \alpha $-robust stability are also derived. Moreover, the optimal convergence result in the $ L_2 $ norms is attained. Finally, two numerical examples are given, which is consistent with the theoretical analysis.
[1] | J. S. Russell, Report of the committee on waves, Report of the 7th Meeting of the British Association for the Advancement of Science, Liverpool, 417496, 1838. |
[2] | D. J. Korteweg, G. De. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739 doi: 10.1080/14786449508620739 |
[3] | G. B. Whitham, Pure and Applied Mathematics, Linear and nonlinear waves, 1999. https://doi.org/10.1002/9781118032954 doi: 10.1002/9781118032954 |
[4] | N. J. Zabusky, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240. https://doi.org/10.1103/PhysRevLett.15.240 doi: 10.1103/PhysRevLett.15.240 |
[5] | X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972 |
[6] | J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., (2024), 1–23. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4 |
[7] | W. Xiao, X. H. Yang, Z. Z. Zhou, Pointwise-in-time $\alpha$-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003 |
[8] | X. H. Yang, H. X. Zhang, The uniform l1 long-time behavior of time discretization for time-fractional partial differential equations with nonsmooth data, Appl. Math. Lett., 124 (2022), 107644. https://doi.org/10.1016/j.aml.2021.107644 doi: 10.1016/j.aml.2021.107644 |
[9] | J. G. Liu, X. J. Yang, L. L. Geng, X. J. Yu, On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Methods Mod. Phys., 19 (2022), 2250173. https://doi.org/10.1142/S0219887822501730 doi: 10.1142/S0219887822501730 |
[10] | J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos, Solitons Fractals, 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603 |
[11] | J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov–Kuznetsov equation with single-power law nonlinearity, Fractals, (2023), 2350033. |
[12] | X. H. Yang, L. J. Wu, H. X. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192 |
[13] | Q. Q. Tian, X. H. Yang, H. X. Zhang, D. Xu, An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties, Comp. Appl. Math., 42 (2023), 246. https://doi.org/10.1007/s40314-023-02373-z doi: 10.1007/s40314-023-02373-z |
[14] | H. X. Zhang, Y. Liu, X. H. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 doi: 10.1007/s12190-022-01760-9 |
[15] | H. X. Zhang, X. H. Yang, Q. Tang, D. Xu, A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation, Comput. Math. Appl., 109 (2022), 180–190. https://doi.org/10.1016/j.camwa.2022.01.007 doi: 10.1016/j.camwa.2022.01.007 |
[16] | X. H. Yang, H. X. Zhang, Q. Zhang, G. Y. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2 |
[17] | K. M. Saad, H. M. Srivastava, Numerical solutions of the multi-space fractional-order coupled Korteweg–De Vries equation with several different kernels, Fractal Fract., 7 (2023), 716. https://doi.org/10.3390/fractalfract7100716 doi: 10.3390/fractalfract7100716 |
[18] | M. Alqhtani, M. M. Khader, K. M. Saad, Numerical simulation for a high-dimensional chaotic Lorenz system based on Gegenbauer wavelet polynomials, Mathematics, 11 (2023), 472. https://doi.org/10.3390/math11020472 doi: 10.3390/math11020472 |
[19] | S. Al. Fahel, D. Baleanu, Q. M. Al-Mdallal, K. M. Saad, Quadratic and cubic logistic models involving Caputo–Fabrizio operator, Eur. Phys. J. Spec. Top., 231 (2023), 2351–2355. https://doi.org/10.1140/epjs/s11734-023-00935-0 doi: 10.1140/epjs/s11734-023-00935-0 |
[20] | W. Wang, H. X. Zhang, X. X. Jiang, X. H. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163 |
[21] | K. Diethelm, Book announcement: the analysis of fractional differential equations, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[22] | M. B. Riaz, A. Atangana, A. Jhangeer, S. Tahir, Soliton solutions, soliton-type solutions and rational solutions for the coupled nonlinear Schrödinger equation in magneto-optic waveguides, Eur. Phys. J. Plus, 136 (2021), 1–19. https://doi.org/10.1140/epjp/s13360-021-01113-8 doi: 10.1140/epjp/s13360-021-01113-8 |
[23] | A. Atangana, S. İ. Araz, New concept in calculus: piecewise differential and integral operators, Chaos, Solitons Fractals, 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638 |
[24] | M. B. Riaz, D. Baleanu, A. Jhangeer, N. Abbas, Nonlinear self-adjointness, conserved vectors, and traveling wave structures for the kinetics of phase separation dependent on ternary alloys in iron (Fe-Cr-Y (Y = Mo, Cu)), Results Phys., 25 (2021), 104151. https://doi.org/10.1016/j.rinp.2021.104151 doi: 10.1016/j.rinp.2021.104151 |
[25] | I. Talib, F. Jarad, M. U. Mirza, A. Nawaz, M. B. Riaz, A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations, Alexandria Eng. J., 61 (2022), 135–145. https://doi.org/10.1016/j.aej.2021.04.067 doi: 10.1016/j.aej.2021.04.067 |
[26] | M. Inc, M. Parto-Haghighi, M. A. Akinlar, Y. M. Chu, New numerical solutions of fractional-order Korteweg-de Vries equation, Results Phys., 19 (2020), 103326. https://doi.org/10.1016/j.rinp.2020.103326 doi: 10.1016/j.rinp.2020.103326 |
[27] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998. |
[28] | Z. Y. Zhou, H. X. Zhang, X. H. Yang, H$^1$-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems, Numer. Algor., (2023), 1–19. https://doi.org/10.1007/s11075-023-01676-w doi: 10.1007/s11075-023-01676-w |
[29] | N. An, C. B. Huang, X. J. Yu, Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 321–334. https://doi.org/10.3934/dcdsb.2019185 doi: 10.3934/dcdsb.2019185 |
[30] | D. K. Cen, Z. B. Wang, Y. Mo, Second order difference schemes for time-fractional KdV-Burgers' equation with initial singularity, Appl. Math. Lett., 112 (2021), 106829. https://doi.org/10.1016/j.aml.2020.106829 doi: 10.1016/j.aml.2020.106829 |
[31] | H. Chen, X. H. Hu, J. C. Ren, T. Sun, Y. F. Tang, L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity, Int. J. Model. Simul. Sci. Comput., 10 (2019), 1941006. https://doi.org/10.1142/S179396231941006X doi: 10.1142/S179396231941006X |
[32] | J. Y. Shen, Z. Z. Sun, W. R. Cao, A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation, Appl. Math. Comput., 361 (2019), 752–765. https://doi.org/10.1016/j.amc.2019.06.023 doi: 10.1016/j.amc.2019.06.023 |
[33] | K. Sadri, K. Hosseini, E. Hinçal, D. Baleanu, S. Salahshour, A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation, Math. Methods Appl. Sci., 46 (2023), 8759–8778. https://doi.org/10.1002/mma.9015 doi: 10.1002/mma.9015 |
[34] | Q. Zhang, J. W. Zhang, S. D. Jiang, Z. M. Zhang, Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comp., 87 (2018), 693–719. https://doi.org/10.1090/mcom/3229 doi: 10.1090/mcom/3229 |
[35] | Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Appl. Math. Comput., 182 (2006), 1048–1055. https://doi.org/10.1016/j.amc.2006.05.004 doi: 10.1016/j.amc.2006.05.004 |
[36] | Q. Wang, Homotopy perturbation method for fractional KdV equation, Appl. Math. Comput., 190 (2007), 1795–1802. https://doi.org/10.1016/j.amc.2007.02.065 doi: 10.1016/j.amc.2007.02.065 |
[37] | Q. Wang, Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Solitons Fractals, 35 (2008), 843–850. https://doi.org/10.1016/j.chaos.2006.05.074 doi: 10.1016/j.chaos.2006.05.074 |
[38] | J. G. Liu, X. J. Yang, J. J. Wang, A new perspective to discuss Korteweg-de Vries-like equation, Phys. Lett. A, 451 (2022), 128429. https://doi.org/10.1016/j.physleta.2022.128429 doi: 10.1016/j.physleta.2022.128429 |
[39] | C. J. Li, H. X. Zhang, X. H. Yang, A high-precision Richardson extrapolation method for a class of elliptic Dirichlet boundary value calculation, J. Hunan Univ. Technol., 38 (2024), 91–97. https://doi.org/10.3969/j.issn.1673-9833.2024.01.013 doi: 10.3969/j.issn.1673-9833.2024.01.013 |
[40] | B. Y. Guo, Difference methods for partial differential equations, Pure Appl. Math., 17 (1988). |
[41] | X. P. Wang, Q. F. Zhang, Z. Z. Sun, The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation, Adv. Comput. Math., 47 (2021), 1–42. https://doi.org/10.1007/s10444-021-09848-9 doi: 10.1007/s10444-021-09848-9 |
[42] | H. B. Chen, S. Q. Gan, D. Xu, Q. W. Liu, A second-order BDF compact difference scheme for fractional-order Volterra equation, Int. J. Comput. Math., 93 (2016), 1140–1154. https://doi.org/10.1080/00207160.2015.1021695 doi: 10.1080/00207160.2015.1021695 |
[43] | Browder, Felix E, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Amer. Math. Soc., Providence, RI, 17 (1965), 24–49. |
[44] | M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329 |
[45] | H. L. Liao, D. F. Li, J. W. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829 |
[46] | X. P. Wang, Z. Z. Sun, A second order convergent difference scheme for the initial-boundary value problem of Korteweg–de Vires equation, Numer. Methods Partial Differ. Equations, 37 (2021), 2873–2894. https://doi.org/10.1002/num.22646 doi: 10.1002/num.22646 |
[47] | W. L. Qiu, H. B. Chen, X. Zheng, An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations, Math. Comput. Simul., 166 (2019), 298–314. https://doi.org/10.1016/j.matcom.2019.05.017 doi: 10.1016/j.matcom.2019.05.017 |