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Abstract: In this work, we consider an α-robust high-order numerical method for the time fractional
nonlinear Korteweg-de Vries (KdV) equation. The time fractional derivatives are discretized by the
L1 formula based on the graded meshes. For the spatial derivative, the nonlinear operator is defined
to approximate the uux, and two coupling equations are obtained by processing the uxxx with the order
reduction method. Finally, the nonlinear difference schemes with order (2 − α) in time and order 2
precision in space are obtained. This means that we can get a higher precision solution and improve
the computational efficiency. The existence and uniqueness of numerical solutions for the proposed
nonlinear difference scheme are proved theoretically. It is worth noting the unconditional stability and
α-robust stability are also derived. Moreover, the optimal convergence result in the L2 norms is attained.
Finally, two numerical examples are given, which is consistent with the theoretical analysis.
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1. Introduction

Korteweg-de Vries equation is a classic representative of the nonlinear dispersion equation. Since it
satisfies a lot of conservation laws in solids and liquids, it is widely used in the field of gas and plasma [1].
Dutch mathematicians Diederik Korteweg and Gustav de Vries [2] first discovered the KdV equation
for unidirectional motion in 1895 while studying the small and medium amplitude long wave motion of
diving waves; thus, the equation is named after the above two scholars. Since then, researchers gradually
found that many physical phenomena are closely related to the KdV equation such as magnetic current
wave and ionic sound wave in plasma, and pressure wave in liquid-gas mixture [3,4].

In recent years, time fractional derivative has received extensive attention because of its heredity
and memory [5–11], which can simulate a large number of physical phenomena involving anomalous
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diffusion and non-local behaviors. There are a series of numerical works on fractional linear or nonlinear
differential equations [12–20]. In fact, fractional derivative was first developed by pure mathematicians
in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications
for these concepts in their areas [21]. The emergence of the concept of fractional derivatives further
strengthens the connection between disciplines. The presence of the fractional derivative introduces
memory effects and non-local interactions, leading to the emergence of new wave phenomena and
intriguing solutions [22–25]. Correspondingly, integer-order derivatives limit the ability of equations to
capture the complexity of real-world phenomena, and many phenomena involving non-local or non-
local behavior cannot be accurately described using traditional integer-order derivatives. To solve these
problems, one can introduce the concept of fractional derivative and apply it to the KdV equation [26]
to obtain the following nonlinear fractional KdV equation

C
0D

α
t u(x, t) + γu(x, t)ux(x, t) + uxxx(x, t) = f (x, t), (x, t) ∈ Ωx ×Ωt, (1.1)

u(x, 0) = ϕ(x), x ∈ Ωx, (1.2)

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0, t ∈ Ωt, (1.3)

where Ωx = (0, L),Ωt = (0,T ], the source term f (x, t) and initial condition ϕ(x) are known smooth
functions. Here, the Caputo fractional derivative is used [27, 28], which is define as follows

C
0D

α
t u(x, t) =

1
Γ(1 − α)

∫ t

0
(t − s)−α

∂u(x, s)
∂s

ds, α ∈ (0, 1).

This definition takes into account the memory effect of the system, that is, the response of the system is
affected by past time periods. By introducing fractional derivatives, the nonlinear fractional derivative
KdV equation can describe long-term interactions, memory effects, and non-local phenomena.

Over the past few decades, there has been an increasing amount of theoretical and numerical work
on the nonlinear KdV equation. However, due to the nonlinearity and complexity of the KdV equation,
it is very difficult or impossible to find the analytical solution. Therefore, a lot of scholars have devoted
to obtain numerical solutions of various KdV equations. An et al. [29] proposed a fully discrete
discontinuous Galerkin (DG) method combining the well-known L1 discretization in time and DG
method in space to approximate the time fractional KdV equation. Cen et al. [30] studied a spatial
first-order numerical method for integer order KdV equation with initial singularity, and a second order
scheme is also presented, but no corresponding theoretical proof is given. Chen et al. [31] studied a
numerical solution of the linearized fractional order KdV equation with the initial singular on graded
meshes. Shen et al. [32] proposed a method for the fractional KdV equation, which on graded meshes
got the fact that the convergence order of the numerical scheme was O(h+N−min{2−α,rα}). There are other
KdV-types studies [33–38]. According to the existing research results, there is no space second-order
difference scheme with complete theory and there is much room for progress in the study of the fractional
order KdV equation. Therefore, in paper we construct a spatial second-order fully discrete difference
scheme with complete theory analysis. Because of the improvement of the convergence rate, it can
greatly improve the operation efficiency, which is very beneficial to large-scale calculations [39].

In this paper, we consider an α-robust high-order numerical method for the time fractional nonlinear
KdV equation, and the major results are as follows
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• We use the reduction method of to handle uxxx and introduce the nonlinear operator ψ to
approximate uux, and then a spatial second-order nonlinear difference scheme is obtained.
• We prove the existence, uniqueness, stability, and convergence of the proposed second-order

nonlinear difference scheme, and then improved the unconditional stability to α-robust stability.
• The results of numerical examples are consistent with the theory, and it is verified that the proposed

nonlinear difference scheme converges with order 2 in space and order (2 − α) in time on graded
meshes.

The rest of this article is arranged as follows. In Section 2, we provide some relevant symbols and
lemmas needed for theoretical proof and constructing the nonlinear difference scheme. In Section 3, we
present the theoretical result, where the existence, uniqueness, unconditional stability, α-robust stability,
and convergence are proved in turn. In Section 4, two experiments are given to verify the reliability of
the theoretical proof. At the end of the article, we have made a summary in Section 5.

In this paper, C stands for some constants that can take on different values at different places, and the
c with the subscript represents a specific constant.

2. The construction of nonlinear difference scheme

In the section, we provide some relevant symbols and lemmas needed in constructing the nonlinear
difference scheme and theoretical analysis.

2.1. Preliminaries

Given the positive integers M and N, denote h := L
M be the spatial step, x j := jh(0 ≤ j ≤ M). Divide

the interval [0,T ] into N non-uniform compartments and set

tn = (nτ)r, n = 0, 1, ...,N, τ =
T 1/r

N
,

where r (r ≥ 1) is called the grading exponent, τn = tn − tn−1 (n = 1, 2, . . . ,N) are time-steps. Define the
grid functions as follows

Un
i := u(xi, tn), f n

i := f (xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N. (2.1)

Denote
Uh := {u|u = (u0, u1, ..., uM)}

and
◦

Uh := {u|u ∈ Uh, u0 = uM = 0}

be two set of grid functions.
Next, we introduce some important notations, for u ∈ Uh, let

δxui+ 1
2
=

1
h

(ui+1 − ui), δ2
xui =

1
h2 (ui−1 − 2ui + ui+1), ∆xui =

1
2h

(ui+1 − ui−1).

Assume u, v ∈ Uh, we introduce inner product and norm as follows

(u, v) = h(
1
2

u0v0 +

M−1∑
i=1

uivi +
1
2

uMvM), ∥u∥ =
√

(u, u), ∥u∥∞ = max
0≤i≤M

|ui|.
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In addition, we define the nonlinear operator ψ [40] as follows

ψ(u, v)i =
1
3

[ui∆xvi + ∆x(uv)i], 1 ≤ i ≤ M − 1.

Now, we introduce several lemmas help to develop the theoretical analysis.

Lemma 2.1. [41] Let v ∈ Uh and u ∈ Ůh, then one gets

(ψ(v, u), u) = 0. (2.2)

Lemma 2.2. [42] For any grid function u, v ∈ Ůh, then

∥u∥ ≤
√

L∥u∥∞, (u, δ2
xv) = −(δxu, δxv). (2.3)

2.2. The construction of nonlinear difference scheme

Next, we begin to construct a nonlinear difference method for Eq.(1.1)-(1.3). Let v = ux, then
Eq.(1.1)–(1.3) can be written as

C
0D

α
t u(x, t) + γu(x, t)ux(x, t) + vxx(x, t) = f (x, t), 0 < x < L, 0 < t ≤ T, (2.4a)

v = ux, 0 < x < L, 0 < t ≤ T, (2.4b)

u(x, 0) = ϕ(x), 0 < x < L, (2.4c)

u(0, t) = 0, u(L, t) = 0, v(L, t) = 0, 0 ≤ t ≤ T. (2.4d)

Now, considering Eq.(2.4a) at the points (xi, tn) and Eq.(2.4b) at the points (xi+ 1
2
, tn), one has

C
0D

α
t u(xi, tn) + γu(xi, tn)ux(xi, tn) + vxx(xi, tn) = f (xi, tn), 1 ≤ i ≤ m − 1, 0 ≤ n ≤ N, (2.5)

v(xi+ 1
2
, tk) = ux(xi+ 1

2
, tk), 0 ≤ i ≤ m − 1, 0 ≤ n ≤ N. (2.6)

Next, we discretize the equation (2.5). First, we approximate the Caputo fractional derivative
C
0D

α
t u(xi, tn) by employing the L1 formula on the graded meshes

Dα
Nu(xi, tn) =

an,1

Γ(2 − α)
u(xi, tn)

−
1

Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1)u(xi, tn−s) −
an,n

Γ(2 − α)
u(xi, t0),

(2.7)

where
an,s = ((tn − tn−s)1−α − (tn − tn−s+1)1−α)/τn−s+1, 1 ≤ s ≤ n. (2.8)

Denote (R1)n
i =

C
0 D

α
t u(xi, tn) − Dα

Nu(xi, tn), from [44], then we can get the error as follows∣∣∣(R1)n
i

∣∣∣ ≤ Cn−min{rα,2−α}. (2.9)

Second, using Taylor expansion and the definition of the operator ψ, one gets

u(xi, tn)ux(xi, tn) =
1
3
{[u(xi−1, tn) + u(xi, tn) + u(xi+1, tn)] + O(h2)} · [∆xu(xi, tn) + O(h2)]
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=
1
3

(Un
i−1 + Un

i + Un
i+1)∆xUn

i + O(h2)

=
1
3

[Un
i ∆xUn

i + (Un
i+1 + Un

i−1)∆xUn
i ] + O(h2)

= ψ(Un,Un)i + (R2)n
i . (2.10)

Using second-order central difference, one arrives at

vxx(xi, tn) = δ2
xV

n
i + O(h2) = δ2

xV
n
i + (R3)n

i . (2.11)

Combining Eq.(2.7)-(2.11), we can easily obtain the nonlinear difference scheme of (2.4) as follows

Dα
NUn

i + γψ(Un,Un)i + δ
2
xV

n
i = f n

i + Pn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.12a)

Vn
i+ 1

2
= δxUn

i+ 1
2
+ Qn

i+ 1
2
, 0 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.12b)

U0
i = ϕ(xi), 0 ≤ i ≤ M, (2.12c)

Un
0 = Un

M = 0, Vn
M = 0, 0 ≤ n ≤ N, (2.12d)

where the |Pn
i | = |(R1)n

i + (R2)n
i + (R3)n

i | ≤ C(h2 + n−min{rα,2−α}).
Then, eliminating Pn

i and Qn
i+ 1

2
in the expression and substituting numerical solution un

i and vn
i for its

exact solution Un
i and Vn

i , respectively, we can obtain the nonlinear difference scheme of Eq.(1.1)–(1.3)
as follows

Dα
Nun

i + γψ(un, un)i + δ
2
xv

n
i = f n

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.13a)

vn
i+ 1

2
= δxun

i+ 1
2
, 0 ≤ i ≤ M − 1, (2.13b)

u0
i = ϕ(xi), 0 ≤ i ≤ M, (2.13c)

un
0 = un

M = 0, vn
M = 0, 0 ≤ n ≤ N. (2.13d)

3. Theoretical derivation

3.1. Existence

We refer to the following Browder theorem which help us to prove the existence of the solution of
the difference scheme.

Theorem 3.1. (Browder theorem) [43] Let (H, (·, ·)) be a finite dimensional inner product space, ∥ · ∥ is
the derived norm operator, and Π : H → H be continuous. Assume that

∃ α > 0, ∀z ∈ H, ∥z∥ = α, Re (Π(z), z) ≥ 0.

Then there exists satisfying |z∗| ≤ α such that Π(z∗) = 0.

Theorem 3.2. The nonlinear difference scheme (2.13) has at least a solution.
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Proof. Denote
uk = (uk

0, u
k
1, · · · , u

k
M), vk = (vk

0, v
k
1, · · · , v

k
M).

It is easy to get u0 from (2.13c), we can get v0 by computing (2.13b) and (2.13d).
Suppose {u0, u1, · · · , un−1} and {v0, v1, · · · , vn−1} exist, then we now consider {un, vn} for nonlinear

difference scheme (2.13), one has

Dα
Nun

i + γψ(un, un)i + δ
2
xv

n
i = f n

i , 1 ≤ i ≤ M − 1, (3.1)

vn
i+ 1

2
= δxun

i+ 1
2
, 0 ≤ i ≤ M − 1, (3.2)

u0
i = ϕ(xi), 0 ≤ i ≤ M, (3.3)

and
un

0 = un
M = 0, vn

M = 0, 0 ≤ n ≤ N. (3.4)

Define Π(u) : Ůh → Ůh :

Π(ui) =
{

Dα
Nui + γψ(u, u)i + δ

2
xvi − f n

i , 1 ≤ i ≤ M − 1,
0, i = 0, M.

(3.5)

We notice that Π(u) is a continuous operator in Ůh. Thereupon, taking an inner product with u, leads
to

(Π(u), u) =
an,1

Γ(2 − α)
∥u∥2 −

1
Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1)(un−s, un) −
an,n

Γ(2 − α)
(u0, u) + (δ2

xv
n, u) − ( f n, u)

≥
an,1

Γ(2 − α)
∥u∥2 −

1
Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1)∥u∥∥un−s∥

−
an,n

Γ(2 − α)
∥u∥∥u0∥ +

1
2

(v0)2 − ∥u∥∥ f n∥

≥
∥u∥

Γ(2 − α)
[an,1∥u∥ − an,n∥u0∥ −

n−1∑
s=1

(an,s − an,s+1)∥un−s∥ − ∥ f n∥].

Then, let ∥u∥ =
1

an,1
(an,n

∥∥∥u0
∥∥∥+∑n−1

s=1(an,s − an,s+1) ∥un−s∥+ ∥ f n∥), we can figure out (Π(u), u) ≥ 0 such

that Π(un) = 0.
Therefore, the nonlinear difference scheme (2.13) exists a solution {un, vn} at least.

3.2. Uniqueness

Denote:
c2 = max

(x,t)∈[0,L]×[0,T ]
{|u(x, t)|, |ux(x, t)|, |uxx(x, t)|}.

Theorem 3.3. The solution of the difference scheme (2.13) is unique.
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Proof. It is easy to get that u0 and v0 are unique, respectively. Now, suppose that

{u0, u1, · · · , un−1} and {v1, v2, · · · , vn−1} are unique.

For k = n, assuming that both {un, vn} and {ûn, v̂n} are the solutions of (2.13), respectively, that is to
say they satisfy: 

Dα
Nun

i + γψ(un, un)i + δ
2
xv

n
i = f n

i , 1 ≤ i ≤ M − 1,
vn

i+ 1
2
= δxun

i+ 1
2
, 0 ≤ i ≤ M − 1,

un
0 = un

M = 0, vn
M = 0,

(3.6)

and 
Dα

N ûn
i + γψ(ûn, ûn)i + δ

2
xv̂

n
i = f n

i , 1 ≤ i ≤ M − 1,
v̂n

i+ 1
2
= δxûn

i+ 1
2
, 0 ≤ i ≤ M − 1,

ûn
0 = ûn

M = 0, v̂n
M = 0.

(3.7)

Let
ρn

i = un
i − ûn

i , η
n
i = vn

i − v̂n
i .

Subtracting (3.6) from (3.7), due to u0, u1, · · · , un−1 and v0, v1, · · · , vn−1 are unique, we get

an,1

Γ(2 − α)
ρn

i + γ[ψ(un, un)i − ψ(ûn, ûn)i] + δ2
xη

n
i = 0, 1 ≤ i ≤ M − 1, (3.8)

ηn
i+ 1

2
= δxρ

n
i+ 1

2
, 0 ≤ i ≤ M − 1, (3.9)

ρn
0 = ρ

n
M = 0, ηn

M = 0. (3.10)

Further, taking inner product for (3.8) with ρn, one leads to

an,1

Γ(2 − α)
∥ρn∥

2 + (γ[ψ(un, un) − ψ(ûn, ûn)], ρn) + (δ2
xη

n, ρn) = 0. (3.11)

For the second term on the left side of the equation, by Lemma 2.2, leads to

(γ[ψ(un, un) − ψ(ûn, ûn)], ρn) = (γ[ψ(un, un) − ψ(un − ρn, un − ρn)], ρn)
= γ(ψ(ρn, un), ρn). (3.12)

Combining the previous definitions of both inner products and operators ψ(·, ·), we can derive

−(ψ(ρn, un), ρn) = −
h
3

M−1∑
i=1

[ρn
i∆xun

i + ∆x(ρnun)i]ρn
i

= −
h
3

M−1∑
i=1

(ρn
i )2 · ∆xun

i −
h
6

M−1∑
i=1

un
i+1 − un

i

h
· ρn

i ρ
n
i+1

≤
c2

2
∥ρn∥

2 . (3.13)
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In addition, using Eq.(3.9) and (3.10), for the third term on the left side, we derive

(δ2
xη

n, ρn) = −(δxη
n, δxρ

n)

= −h
m−1∑
i=0

(δxη
n
i+ 1

2
)ηn

i+ 1
2

= −
1
2

[(ηn
M)2 − (ηn

0)2]

=
1
2

(ηn
0)2 ≥ 0. (3.14)

Substituting (3.12)-(3.14) into (3.11), then we have

an,1

Γ(2 − α)
∥ρn∥

2
≤

c2|γ|

2
∥ρn∥

2 . (3.15)

When an,1

Γ(2−α) >
c2 |γ|

2 , that is ταn <
2

Γ(2−α)|γ|c3
. We can get ∥ρn∥ = 0. That is to say it holds that u = û, v = v̂.

By mathematical induction, the solution of difference scheme (2.13) is unique.

3.3. Stability

Theorem 3.4. (L2-stability) Assume that {un
i | 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N} is the solution of the difference

scheme (2.13), then the solution is unconditionally stable.

Proof. First, we take the inner product on both sides of the Eq.(2.13a) with un, one obtains(
Dα

Nun, un) + γ (ψ(un, un), un) + (δ2
xv

n, un) = ( f n, un), 1 ≤ n ≤ N. (3.16)

Using Lemma 2.2, one has
γ (ψ(un, un), un) = 0. (3.17)

Second, by (2.13b) and (2.13d), one has

(δ2
xv

n, un) = −(δxvn, δxun)

= −h
m−1∑
i=0

(δxvn
i+ 1

2
)vn

i+ 1
2

= −
1
2

[(vn
M)2 − (vn

0)2]

=
1
2

(vn
0)2 ≥ 0.

(3.18)

Thus, we get the following inequality

(Dα
Nun, un) ≤ ( f n, un). (3.19)

Using the Cauchy-Schwarz inequality and noticing an,s ≥ an,s+1, we arrive at

an,1

Γ(2 − α)
∥un∥ ≤ ∥ f n∥ +

1
Γ(2 − α)

(an,n

∥∥∥u0
∥∥∥ + n−1∑

s=1

(an,s − an,s+1)
∥∥∥un−s

∥∥∥), (3.20)
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the above formula can be rearranged as

∥un∥ ≤ ταn (Γ(2 − α) ∥ f n∥ + an,n

∥∥∥u0
∥∥∥ + n−1∑

s=1

(an,s − an,s+1)
∥∥∥un−s

∥∥∥). (3.21)

Next, we define

λn,n = 1, λn,m =

n−m∑
s=1

ταn−s(an,s − an,s+1)λn−s,m. (3.22)

Then, from [Lemma 4.1 and Lemma 4.2 of [44]], one has

∥un∥ ≤≤ ∥u0∥ + Γ(2 − α)ταn
n∑

s=1

λn,s ∥ f s∥ . (3.23)

According to [Lemma 4.3, [44]], we select the parameter β ≤ rα, and note that Γ(1 + α) = αΓ(α),
leads to

ταn

n∑
s=1

s−βλn,s ≤
TαN−β

1 − α
. (3.24)

Then, we get

Γ(2 − α)ταn
n∑

s=1

s−βλn,s ≤
Γ(2 − α)

1 − α
TαN−β = Γ(1 − α)TαN−β. (3.25)

The above equation can also be written

Γ(2 − α)ταn
n∑

s=1

λn,s ≤ Γ(1 − α)Tα(
n
N

)β, s ≤ n. (3.26)

Further, we can have

Γ(2 − α)ταn
n∑

s=1

λn,s ∥ f s∥ ≤ TαΓ(1 − α)(
n
N

)β max
1≤s≤n
∥ f s∥ . (3.27)

In the end, combined Eq.(3.23) and Eq.(3.27), we get

∥un∥ ≤ ∥u0∥ + TαΓ(1 − α)(
n
N

)β max
1≤s≤n
∥ f s∥ . (3.28)

Remark 3.5. In this theorem, we have completed the stability proof of solution. However, when α→ 1−,
we note that it leads to Γ(1 − α) → ∞, and the values on the right-hand side of the inequality are no
longer binding. In order to avoid this shortcoming, we next to improved the result in Theorem 3.7.

Lemma 3.6. [45] For any finite time tN = T > 0 and a given nonnegative sequence (λl)N−1
l=0 , assume

that there exists a constant λ, independent of time-steps, such that λ ≥
∑N−1

l=0 λl. Suppose that the grid
function {vn|n ≥ 0} satisfies

Dα
Nvn ≤

n∑
l=1

λn−lvl + ξn + ηn, n ≥ 1, (3.29)
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where {ξn, ηn|1 ≤ n ≤ N} are nonnegative sequences. If the time-step satisfies τk−1 ≤ τk and the

maximum time-step τN ≤
α

√
1

2Γ(2−α)λ , one holds that

vk ≤ 2Eα(2λαk )

v0 +max
1≤i≤k

i∑
l=1

P(i)
i−lξ

l + ω1+α(tk) max
1≤i≤k

ηi

 , 1 ≤ k ≤ N, (3.30)

where Eα(x) =
∑∞

k=0 xk/Γ(1+kα) is the Mittag-Leffler function, ωβ(t) = tβ−1

Γ(β) , and the discrete convolution
kernel P(n)

n−k is defined as follows

P(n)
n−k =

1
ak,1

Γ(2 − α), k = n,∑n
i=k+1(ai,i−k − ai,i−k+1)P(n)

n−i, 1 ≤ k ≤ n − 1.

Theorem 3.7. (α-robust L2-stability) Assume that {un
i |1 ≤ i ≤ M − 1, 1 ≤ n ≤ N} is the solution of the

scheme (2.13), then one has

∥un∥
2
≤ C(
∥∥∥u0
∥∥∥ + tαn
Γ(1 + α)

max
1≤k≤n

∥∥∥ f k
∥∥∥).

Proof. First, taking inner product to un for the Eq.(2.13a), we can get

(Dα
Nun, un) =

an,1

Γ(2 − α)
∥un∥

2
−

an,n

Γ(2 − α)
(u0, un) −

1
Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1)(un−s, un)

≥
an,1

Γ(2 − α)
∥un∥

2
−

1
2

an,n

Γ(2 − α)

∥∥∥u0
∥∥∥2 − 1

2
an,n

Γ(2 − α)
∥un∥

2

−
1

2Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1)
∥∥∥un−s

∥∥∥2 − 1
2Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1) ∥un∥
2

≥
1
2

Dα
N ∥u

n∥
2 .

According to Lemma 2.2 and equation (3.18), we have

γ (ψ(un, un), un) = 0

and
(δ2

xv
n, un) =

1
2

(vn
0)2 ≥ 0.

Therefore, employing Cauchy-Schwartz inequality and Young inequality, we arrive at

1
2

Dα
N∥u

n∥2 ≤ ( f n, un) ≤ ∥ f n∥∥un∥ ≤
1
2
∥ f n∥2 +

1
2
∥un∥2. (3.31)

Further, due to the Lemma 3.6, one leads to

∥un∥2 ≤ 2Eα(2tαn )(
∥∥∥u0
∥∥∥2 + ω1+α(tn) max

1≤k≤n
∥ f k∥2)

≤ C(∥u0∥2 + ω1+α(tn) max
1≤k≤n
∥ f k∥2). (3.32)
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Finally, we can get the result of stability

∥un∥2 ≤ C(
∥∥∥u0
∥∥∥ + ω1+α(tn) max

1≤k≤n
∥ f k∥)2, (3.33)

which is equivalent to

∥un∥ ≤ C(∥u0∥ +
tαn

Γ(1 + α)
max
1≤k≤n
∥ f k∥). (3.34)

The above theorem solves the shortcoming when α→ 1−.

3.4. Convergence

In this subsection, we will prove the convergence of the nonlinear difference scheme (2.13). First,
we introduce the following lemma to help us complete the proof.

Lemma 3.8. [46] For any fixed t ∈ [0,T ], if u(x, ·) ∈ C6([0, L]), for 0 ≤ k ≤ N, denote

S k
i =

1
h

(Qk
i+ 1

2
− Qk

i− 1
2
), 1 ≤ i ≤ M − 1,

Rk
M−1 = 0,Rk

j =

M−1∑
i= j+1

(−1)i− j−1S k
i , j = M − 2,M − 3, · · · .

Then there exists a constant c3, one has

|S k
i | ≤ c3h2, 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N,

|Rk
j | ≤ c3h2, 0 ≤ j ≤ M − 2, 0 ≤ k ≤ N,

and
|δxRk

j+ 1
2
| ≤ c3h2, 0 ≤ j ≤ M − 2.

Theorem 3.9. Assume {Uk
i ,V

k
i | 0 ≤ i ≤ M, 0 ≤ k ≤ N} and {uk

i , v
k
i | 0 ≤ i ≤ M, 0 ≤ k ≤ N} be the

solution of (2.12) and the difference scheme (2.13), respectively. Then there exists a constant such that

N∑
n=1

τn ∥en∥ ≤ C(τ2−α + h2).

Proof. Denote
ek

i = Uk
i − uk

i , gk
i = Vk

i − vk
i , 0 ≤ i ≤ M, 0 ≤ k ≤ N

and
c4 = c2

1 + c2
3 + 2c1c3L + c2

3L.

Subtracting (2.12) from (2.13), one can get the system of error equation

Dα
Nen

i + γ[ψ(Un,Un)i − ψ(un, un)i] + δ2
xg

n
i = Pn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.35)
gn

i+ 1
2
= δxe2

i+ 1
2
+ Qn

i+ 1
2
, 0 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.36)

e0
i = 0, 0 ≤ i ≤ N, (3.37)
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en
0 = en

M = 0, gn
M = 0, 0 ≤ n ≤ N. (3.38)

Taking inner product of (3.35) with en, leads to

(Dα
Nen, en) + (δ2

xg
n, en) = (Pn, en) − γ (ψ(Un,Un) − ψ(un, un), en) . (3.39)

For the first term, by the definition and Cauchy-Schwartz inequality, we have

(Dα
Nen, en) =h

M−1∑
i=1

[
an,1en

i

Γ(2 − α)
−

an,ne0
i

Γ(2 − α)
−

1
Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1)en−s
i ]en

i

=
an,1∥en∥2

Γ(2 − α)
−

an,n(e0, en)
Γ(2 − α)

−
1

Γ(2 − α)

n−1∑
s=1

(an,s − an,s+1)(en−s, en)

≥
an,1

Γ(2 − α)
∥en∥2 −

1
2

an,n

Γ(2 − α)
∥e0∥2 −

1
2

an,n

Γ(2 − α)
∥en∥2

−

n−1∑
s=1

(an,s − an,s+1)
2Γ(2 − α)

∥∥∥en−s
∥∥∥2 − n−1∑

s=1

(an,s − an,s+1)
2Γ(2 − α)

∥en∥2

≥
1
2

Dα
N∥e

n∥2. (3.40)

According to equation (3.13), for the second term on right of equation, one has

−γ (ψ(Un,Un) − ψ(un, un), en) ≤
c2|γ|

2
∥en∥

2 . (3.41)

For the second term on the left hand

−(δ2
xg

n, en) = (δxgn, δxen)

= h
M−1∑
i=0

(δxgn
i+ 1

2
)(gn

i+ 1
2
− Qn

i+ 1
2
)

= h
M−1∑
i=0

(δxgn
i+ 1

2
) · gn

i+ 1
2
− h

M−1∑
i=0

(δxgn
i+ 1

2
)Qn

i+ 1
2

=
1
2

M−1∑
i=0

[(gn
i+1)2 − (gn

i )2] −
M−1∑
i=0

(gn
i+1 − gn

i )Qn
i+ 1

2

= −
1
2

(gn
0)2 + h

M−1∑
i=1

gn
i S n

i + gn
0Qn

1
2
. (3.42)

Rewrite gn
i as follows

gn
i = (gn

i + gn
i−1) − (gn

i−1 + gn
i−2) + · · · + (−1)i−1(gn

1 + gn
0) + (−1)ign

0

= 2
i−1∑
j=0

(−1)i− j−1gn
i+ 1

2
+ (−1)ign

0. (3.43)
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By the definitions of Rn
i and δxRn

i+ 1
2
, we arrive at

h
M−1∑
i=1

gn
i S n

i = h
M−1∑
i=1

[2
i−1∑
j=0

(−1)i− j−1gn
i+ 1

2
+ (−1)ign

0]S n
i

= 2h
M−2∑
j=0

gn
i+ 1

2

M−1∑
i= j+1

(−1)i− j−1S n
i + h

m−1∑
i=1

(−1)ign
0S n

i

= 2h
M−2∑
j=0

gn
i+ 1

2
Rn

j + gn
0[h

M−1∑
i=1

(−1)iS n
i ]

= 2h
M−2∑
j=0

(δxen
j+ 1

2
+ Qn

j+ 1
2
)Rn

j + gn
0(−Rn

0)

= 2h
M−2∑
j=0

Qn
j+ 1

2
Rn

j − 2h
M−1∑
j=1

en
j(δxRn

j− 1
2
) − gn

0Rn
0. (3.44)

Substituting the above results and applying Lemma 3.8, leads to

−(δ2
xg

n, en) = −
1
2

(gn
0)2 + gn

0Qn
1
2
− gn

0Rn
0 + 2h

M−2∑
j=0

Qn
j+ 1

2
Rn

j − 2h
M−1∑
j=1

en
j(δxR j− 1

2
)

≤ −
1
2

(gn
0)2 + [

1
4

(gn
0)2 + (Qn

1
2
)2] + [

1
4

(gn
0)2 + (Rn

0)2]

+ 2h
M−2∑
j=0

|Qn
j+ 1

2
||Rk+ 1

2
j | + ∥e

n∥
2 + h

M−1∑
j=1

(δxRn
j− 1

2
)2

≤ ∥en∥
2 + (c2

1 + c2
3 + 2c1c3L + c2

3L)h4. (3.45)

Combining with (3.39)-(3.45), we get

1
2

Dα
N ∥e

n∥
2
≤ (

c2|γ|

2
+ 1) ∥en∥

2 + (c2
1 + c2

3 + 2c1c3L + c2
3L)h4 + (Pn, en)

≤ (
c2|γ|

2
+ 1 +

1
2

) ∥en∥
2 + c4h4 +

1
2
∥Pn∥

2 . (3.46)

Further, there exists a constant c5 such that

Dα
N ∥e

n∥
2
≤ (|γ|c2 + 3) ∥en∥

2 + (c5n−min {rα,2−α} + c5h2)2. (3.47)

Using the Lemma 3.6, then we have

|en∥2 ≤ 2Eα(2λαn )ω1+α(tn)(c5n−min{rα,2−α} + c5h2)2. (3.48)

Taking the square root of both sides, for simplicity, the above equation can be written as

∥en∥ ≤ C(n−min{rα,2−α} + h2). (3.49)
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Multiplying both sides of this inequality by τn, and then summing up for n from 1 to N, arrives at

N∑
n=1

τn ∥en∥ ≤ C
N∑

n=1

τn(h2 + n−min{rα,2−α})

≤ Ch2
∫ T

0
1dt +Cτmin{rα,2−α}

N∑
n=1

τnt−min{α, 2−α
r }

n

≤ C(h2 + τmin{rα,2−α}).

We select r = 2−α
α

, then we can get the optimal grids, which leads to the difference scheme can
achieve (2 − α) precision in the time direction.

N∑
n=1

τn ∥en∥ ≤ C(τ2−α + h2).

4. Numerical Experiments

In this section, we will present two numerical experiments to verify the reliability of the previous
theoretical results. From the theoretical proofs of the nonlinear difference scheme established in this
paper, it can be found that the scheme has only one solution, so we choose the fixed point iteration
method to calculate the numerical solution. For details, see reference [47, Algorithm 1]. Another way,
for the variable v introduced in the nonlinear difference scheme, it is not necessary to participate in the
calculation, and the difference scheme can be separated to obtain a difference system with only variable
u. We select T = L = γ = 1 and employ the scheme (2.13) to solve the following examples. In order to
achieve the optimal convergence rate in time, we select r = 2−α

α
.

In our examples we consider the exact solution has no known and define L∞-errors and convergence
rate, respectively.

E(M,N) = max
1≤k≤N
{ max
1≤i≤M−1

|uhk
i − uk

i |},

ratet = log2
E(M,N)

E(M, 2N)
, ratex = log2

E(M,N)
E(2M,N)

,

where the u is reference solution that can approximately replace the exact solution in time or space with
high-precision.

Example 1. In this example, we consider the initial value condition is u0(x) = 0 and the source term
is

f (x, t) = t1−α sin(2πx)/Γ(2 − α) + 2πt2 sin(2πx) cos(2πx) − 8π3t sin(2πx).

In Example 1, we can compute numerical solutions for different nodes at different time and space
steps as in Table 1. To verify the spatial convergence rate, we first fix N = 512. Table 2 lists the
convergence rates for different α. We can observe that the spatial convergence rate is order 2, and it
is clear that the calculated result satisfies the theoretical expectation well. On the other hand, when
we verify the temporal convergence rate, we fix M = 512. Table 3 lists the change of the numerical
solution of Example 1 with N for different α, where Ratet is the convergence rate in the time direction.
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However, we notice that both α and N values are small, the convergence rate is slow, failing to meet
the theoretical expectation of (2 − α). Thus, we increase the number of nodes, and the convergence
rate gradually approaches the theoretical value. Therefore, the time convergence diagram drawn in
Figure 3, the space convergence diagram drawn in Figure 4, where the numerical curve are parallel to
the theoretical expected curve. This shows the superiority of graded meshes.

Table 1. Take N = 4, T = 1, the numerical solution of each node under different space steps
in example 1.

x M = 8 M = 16 M = 32 M = 64 M = 128
1/4 −6.087 −5.798 −5.729 −5.712 −5.707
5/8 3.774 3.597 3.555 3.545 3.542
7/8 5.043 4.850 4.801 4.789 4.786

Table 2. L∞ errors and convergence rates in spatial direction for Example 1.
M α = 0.1 α = 0.2 α = 0.35 α = 0.5 α = 0.8 α = 0.95

E(M,N) ratex E(M,N) ratex E(M,N) ratex E(M,N) ratex E(M,N) ratex E(M,N) ratex

8 2.905e-01 2.899e-01 2.893e-01 2.889e-01 2.891e-01 2.900e-01
16 6.950e-02 2.064 6.937e-02 2.063 6.922e-02 2.063 6.914e-02 2.063 6.921e-02 2.063 6.921e-02 2.063
32 1.740e-02 1.998 1.736e-02 1.998 1.732e-02 1.999 1.729e-02 1.999 1.731e-02 2.000 1.731e-02 2.000
64 4.340e-03 2.003 4.331e-03 2.003 4.322e-03 2.003 4.316e-03 2.003 4.320e-03 2.002 4.320e-03 2.002

Table 3. Example 1: L∞ errors and convergence rates in temporal direction.
N α = 0.1 α = 0.2 α = 0.35 α = 0.5 α = 0.8 α = 0.95

E(M,N) ratet E(M,N) ratet E(M,N) ratet E(M,N) ratet E(M,N) ratet E(M,N) ratet

32 1.815e-04 2.171e-04 2.222e-04 2.386e-04 8.521e-04 2.905e-03
64 1.007e-04 0.850 9.110e-05 1.253 8.730e-05 1.348 9.579e-05 1.318 4.015e-04 1.086 1.515e-03 0.939

128 4.099e-05 1.297 3.313e-05 1.456 3.177e-05 1.459 3.658e-05 1.389 1.814e-04 1.146 7.639e-04 0.988
256 1.437e-05 1.512 1.118e-05 1.567 1.107e-05 1.521 1.359e-05 1.429 8.044e-05 1.174 3.764e-04 1.021
512 4.659e-06 1.625 3.613e-06 1.630 3.758e-06 1.559 4.961e-06 1.453 3.534e-05 1.187 1.837e-04 1.035

1024 1.444e-06 1.690 1.137e-06 1.668 1.254e-06 1.584 1.794e-06 1.468 1.546e-05 1.193 8.915e-05 1.043
2048 4.358e-07 1.729 3.503e-07 1.699 4.126e-07 1.604 6.447e-07 1.476 6.746e-06 1.196 4.316e-05 1.047
4096 1.293e-07 1.753 1.069e-07 1.712 1.352e-07 1.610 2.284e-07 1.497 2.940e-06 1.198 2.087e-05 1.048

Figure 1. The graph of the numerical
solution with α = 0.2.

Figure 2. The graph of the numerical
solution with α = 0.8.
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Figure 3. Temporal convergence. Figure 4. Spatial convergence.

Example 2. For the second example, we consider the initial condition is u0(x) = 0, and the source
term is

f (x, t) =
4x(1 − x)
Γ(3 − α)

t2−α + 4x(1 − x)(1 − 2x)t4.

In Example 2, fixed N = 512, Table 2 lists the changes of the maximum error values E(M,N) of
different α with M. From the table, we see that the spatial convergence rate is order 2. Then, to verify
the time convergence rate, fixed M = 512, Table 5 lists the variation of the maximum error E(M,N)
with N for different α. Similar to Example 1, when α is larger, the time convergence rate is (2 − α),
which is consistent with the theory. When α is small, due to the effect of the singularity of this equation,
the time convergence rate is lower than the theoretical value, so we increase the time node quantity N,
and with the increase of N, the time convergence rate gradually returns to (2 − α).

The solution of the KdV equation describes the propagation and evolution behavior of waves in
the system under the influence of nonlinear, non-local and memory effects. The dynamic evolution
graph enables us to understand the spatial and temporal characteristics of the solution, the physical
meaning of the evolutionary behavior, and the propagation and interaction of the wave. Figures 1–2 and
Figures 5–6 are the dynamic evolution graph of the solutions of Example 1 and Example 2 respectively.
Because the temporal convergence rate is (2 − α), the numerical solution obtained by taking different α
at the same time will change with the change of α. Figures 1 and Figure 2 draw the numerical solution
surface obtained by different α of Example 1, Figure 5 and Figure 6 draw the numerical solution surface
obtained by different α of Example 2, from which we can see only the slight difference. To highlight the
difference, we draw Figure 7, the curve of the value obtained by different α at the same time T = 1 for
the example 2.

Table 4. Example 2 L∞ errors and convergence rates in spatial direction.
M α = 0.1 α = 0.2 α = 0.35 α = 0.5 α = 0.8 α = 0.95

E(M,N) ratex E(M,N) ratex E(M,N) ratex E(M,N) ratex E(M,N) ratex E(M,N) ratex

8 6.702e-04 6.908e-04 7.225e-04 7.552e-04 8.276e-04 8.849e-04
16 1.679e-04 1.997 1.731e-04 1.997 1.824e-04 1.986 1.922e-04 1.975 2.136e-04 1.954 2.261e-04 1.969
32 4.227e-05 1.990 4.369e-05 1.986 4.588e-05 1.991 4.814e-05 1.999 5.344e-05 1.999 5.657e-05 1.999
64 1.057e-05 2.000 1.093e-05 2.000 1.147e-05 2.000 1.205e-05 1.999 1.336e-05 2.000 1.415e-05 1.999

Communications in Analysis and Mechanics Volume 16, Issue 1, 147–168.



163

Table 5. Example 2 L∞ errors and convergence rates in temporal direction.
N α = 0.1 α = 0.2 α = 0.35 α = 0.5 α = 0.8 α = 0.95

E(M,N) ratet E(M,N) ratet E(M,N) ratet E(M,N) ratet E(M,N) ratet E(M,N) ratet

32 6.899e-05 7.384e-05 6.704e-05 6.197e-05 5.372e-04 9.439e-05
64 3.545e-05 0.961 3.020e-05 1.290 2.605e-05 1.364 2.472e-05 1.326 2.452e-05 1.131 4.742e-05 0.993

128 1.420e-05 1.320 1.094e-05 1.456 9.458e-06 1.462 9.430e-06 1.390 1.096e-05 1.162 2.336e-05 1.021
256 4.981e-06 1.512 3.695e-06 1.566 3.295e-06 1.521 3.503e-06 1.429 4.842e-06 1.179 1.140e-05 1.036
512 1.620e-06 1.620 1.195e-06 1.628 1.119e-06 1.559 1.279e-06 1.453 2.125e-06 1.188 5.531e-06 1.043

1024 5.034e-07 1.686 3.762e-07 1.668 3.733e-07 1.584 4.624e-07 1.468 9.273e-07 1.196 2.678e-06 1.046
2048 1.520e-07 1.728 1.161e-07 1.696 1.231e-07 1.601 1.659e-07 1.479 4.071e-07 1.188 1.296e-06 1.047
4096 4.495e-08 1.758 3.536e-08 1.716 4.023e-08 1.613 5.907e-08 1.490 1.773e-07 1.199 6.286e-07 1.045

Figure 5. The graph of the numerical
solution with α = 0.2.

Figure 6. The graph of the numerical
solution with α = 0.8.

Figure 7. T = 1,the graph with different α.
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Figure 8. Temporal convergence. Figure 9. Spatial convergence.

5. Summary

In this paper, a nonlinear difference scheme has been established for solving time fractional nonlinear
KdV equations. The precision of τ2−α is achieved in time and h2 in space. In theoretical analysis, the
mathematical induction is applied in the proof of the existence and uniqueness, and the Browder theorem
plays an important role for the existence analysis of nonlinear difference scheme solutions. In addition,
the unconditional stability proof of the nonlinear difference scheme and the α-robust stability proof are
given. Finally, the proof of convergence in the L2 norm is derived. The above several theoretical results
are verified by two numerical examples. It is worth noting that two kinds of stability analysis are carried
out and that the first stability result will explode when α→ 1−, so we introduce the discrete Gronwall
inequality to improve the analysis. The relevant theoretical proofs in this paper are complementary to
the fractional order nonlinear KdV equation.
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