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1. Introduction

In this paper, we study the initial boundary value problem of the nonlinear viscoelastic hyperbolic
problem with variable exponents:

!
Uy + A2+ Ay, — f g(t — DA u(T)dT + lu /"D u, = |uP™u, (x,1) € Qx(0,7),
0
u(e,1) = 2(x,1) = 0, rneoax@©7), D
u(x,0) = up(x), u,(x,0) = u;(x), xeQ,

where Q C R*(n > 1) is a bounded domain in R" with a smooth boundary 0Q, v is the unit outer normal
to 0€), the exponents m(x) and p(x) are continuous functions on Q with the logarithmic module of
continuity:

Yx,y € Q, [x =yl < 1, Im(x) — m(y)| + |p(x) = p(W)| < w(|x - yl), (1.2)
where

1
1i%1 supw(t)In — = C < 0. (1.3)
7—0* T
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In addition to this condition, the exponents satisfy the following:

2(n—2
2<m =ess II€1£ m(x) < m(x) <m" := esssupm(x) < %, (1.4)
X xeQ -
2(n -2
2 < p :=essinf p(x) < p(x) < p* = esssup p(x) < &, (1.5)
xeQ xeQ n—4
g : R — R"is a C! function satisfying
g0)>0, g(1)<0,1- f g(nydr=1>0. (1.6)
0

The equation of Problem (1.1) arises from the modeling of various physical phenomena such as the
viscoelasticity and the system governing the longitudinal motion of a viscoelastic configuration obeying
a nonlinear Boltzmann’s model, or electro-rheological fluids, viscoelastic fluids, processes of filtration
through a porous medium, and fluids with temperature-dependent viscosity and image processing which
give rise to equations with nonstandard growth conditions, that is, equations with variable exponents of
nonlinearities. More details on these problems can be found in previous studies [1-6].

When m(x) and p(x) are constants, Messaoudi [7] discussed the nonlinear viscoelastic wave equation

!
Uy — Au+ f g(t — D) AUT)dT + " u, = [ulPu,
0

he proved that any weak solution with negative initial energy blows up in finite time if p > m, and
a global existence result for p < m. The results were improved later by Messaoudi [8], where the
blow-up result in finite time with positive initial energy was obtained. Moreover, Song [9] showed the
finite-time blow-up of some solutions whose initial data had arbitrarily high initial energy. In the same
year, Song [10] studied the initial-boundary value problem

/
il uy — Au + f gt — t)aru(t)dr + |”z|m_2”t = |u|p_2”’
0

and proved the nonexistence of global solutions with positive initial energy. Cavalcanti, Domingos, and
Ferreira [11] were concerned with the non-linear viscoelastic equation

!
|t fPuy — Au — Auyy + f gt — t)au(t)dr —yAu, =0,
0

and proved the global existence of weak solutions. Moreover, they obtained the uniform decay rates
of the energy by assuming a strong damping Au, acting in the domain and providing the relaxation
function which decays exponentially.

In 2017, Messaoudi [12] considered the following nonlinear wave equation with variable exponents:

uy; — Au+ alu|"2u, = blulPY%u,

where a, b are positive constants. By using the Faedo—Galerkin method, the existence of a unique weak
solution is established under suitable assumptions on the variable exponents m(x) and p(x). Then this
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paper also proved the finite-time blow-up of solutions and gave a two-dimensional numerical example to
illustrate the blow up result. Park [13] showed the blow up of solutions for a viscoelastic wave equation
with variable exponents

!
Uy — AU +f g(l - S)AM(S)dS + alut|m(X)_2ut — blulp(x)_zu,
0

where the exponents of nonlinearity p(x) and m(x) are given functions and a, b > 0 are constants. For
nonincreasing positive function g, they prove the blow-up result for the solutions with positive initial
energy as well as nonpositive initial energy. Alahyane [14] discussed the nonlinear viscoelastic wave
equation with variable exponents

!
Uy — Au+ f g(t — D) au(t)dt + pu, = [ulP®u,
0

where u is a nonnegative constant and the exponent of nonlinearity p(x) and g are given functions.
Under arbitrary positive initial energy and specific conditions on the relaxation function g, they prove a
finite-time blow-up result and give some numerical applications to illustrate their theoretical results.
Ouaoua and Boughamsa [15] considered the following boundary value problem:

Uy + AU — Au+ "0, = uPYu,

the authors established the local existence by using the Faedo—Galerkin method with positive initial
energy and suitable conditions on the variable exponents m(x) and r(x). In addition, they also proved
that the local solution is global and obtained the stability estimate of the solution. Ding and Zhou [16]
considered a Timoshenko-type equation

uy + A7 — M(||Vull3)au + |u PO u, = |ul?9u,

they prove that the solutions blow up in finite time with positive initial energy. Therefore, the existence
of finite-time blow-up solutions with arbitrarily high initial energy is established, and the upper and
lower bounds of the blow-up time are derived. More related references can be found in [17-22].

Motivated by [7,13,14], we considered the existence of the solutions and their blow-up for the
nonlinear damping and viscoelastic hyperbolic problem with variable exponents. Our aim in this work is
to prove the existence of the weak solutions and to find sufficient conditions on m(x) and p(x) for which
the blow-up takes place.

This article consists of three sections in addition to the introduction. In Section 2, we recall the
definitions and properties of LF*®)(Q) and the Sobolev spaces W'?®(Q). In Section 3, we prove the
existence of weak solutions for Problem (1.1). In Section 4, we state and prove the blow-up result for
solutions with positive initial energy as well as nonpositive initial energy.

2. Preliminaries

In this section, we review some results regarding Lebesgue and Sobolev spaces with variable exponents
first. All of these results and a comprehensive study of these spaces can be found in [23]. Here (-,-) and
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(-,-) denote the inner product in space L*(Q2) and the duality pairing between H~2(Q) and Hé(Q).
The variable exponent Lebesgue space LF“(Q) is defined by

L’Y(Q) = {u(x) : u is measurable in Q, p,,(u) = f lulPPdx < oo},
Q

this space is endowed with the norm

(x)
lltll iy = inf {/1>0 : f‘—”(x)‘p dx < 1}.
ol 1

The variable exponent Sobolev space W!?™(Q) is defined by
W'PO(Q) = {u € L"(Q) such that Vu exists and [Vu| € L"(Q)},
the corresponding norm for this space is

ull poo = lutllpey + 1Vellpe,

define W(;’p @(Q) as the closure of Cy(Q) with respect to the W'”(Q) norm. The spaces LP™(Q),
WPM(Q) and WS”’ Q) are separable and reflexive Banach spaces when 1 < p~ < p* < oo, where
p~i=ess i1§12f p(x) and p* := ess sup p(x).
Q
As usual, we denote the conjugate exponent of p(x) by p’(x) = p(x)/(p(x) — 1) and the Sobolev
exponent by

np(x)

p*(x) = { n—kp(x)’

00, if p(x) > n.

if p(x) <n,

Lemma 2.1. If p;(x), p(x) € C.(Q) = {h € C(Q) : minh(x) > 1}, p1(x) < pa(x) for any x € Q,
xeQ)
then there exists the continuous embedding LP*®(Q) < LP'®(Q), whose norm does not exceed |Q] + 1.

Lemma 2.2. Let p(x), g(x) € C +(ﬁ). Assuming that q(x) < p*(x), there is a compact and continuous
embedding WFP@(Q) «— LID(Q).

Lemma 2.3. (Holder’s inequality) [24] For any u € LP(Q) and v € LY (Q), then the following

inequality holds:
f uvdx
Q

Lemma 2.4. For u € L'™(Q), the following relations hold:

1 1
< (; + q—_)||u||p(x)||V||q(x) < 2[ull poy Vllg -

u
u# 0= (i = 16 ppo(3) = 1),

lllpcy < 1(= 15> 1) & (@) < 1= 13> 1),
Nl > 1= ull’y) < Ppcorae) < lully

p* p-
lrllpiy < 1= Ml < ppoo@e) < llull,.
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Next, we give the definition of the weak solution to Problem (1.1).

Definition 2.1. A function u(x,t) is called a weak solution for Problem (1.1) ,ifu € C(0, T; Hé(Q))
NCY (0, T; H3 () N C*0, T; H*(Q)) with u, € L*(0, T; H3(Q)) and u satisfies the following conditions:
(1) For every w € HS(Q) and for a.e.t € (0,T)

t
(U, ) + (A, AW) + (Aly, AW) — f g(t — ) (2u(r), Aw)dr + (" *u,, w) = (Ul 2u, w),
0
(2) u(x,0) = up(x) € Hy(Q), u,(x,0) = uy(x) € HY(Q).
3. The local existence of weak solution

In this section, we prove the existence of a weak solution for Problem (1.1) by making use of the
Faedo—Galerkin method and the contraction mapping principle. For a fixed T > 0, we consider the
space 7 = C(0,T; Hj(Q)) N C'(0, T; Hy(€2)) with the norm |v]]%, = gna)}(llAvtll% + l|avl3).

<t<

Lemma 3.1. Assume that (1.4), (1.5), and (1.6) hold, let (uy,u;) € H}Q) x HX(Q), for any
T > 0, v € A, then there exists u € C(0,T;Hy(Q)) N C'(0,T; Hy(Q)) N C*(0,T; H*(Q)) with
u, € L*(0,T; Hg(Q)) satisfying

!
Uy + Au + Nuy, — f g(t— T)AQM(T)dT + |ut|’"(x)_2u, = |v|p(x)_2v, (x,) e Qx(0,T),
0
u(x, 1) = %(x,1) = 0, .t eoax©71), G
u(x,0) = up(x), u(x,0) = uy(x), xeQ.

Proof. Let {w;}7, be the orthogonal basis of H3(Q), which is the standard orthogonal basis in L*(Q)
such that

—A(,Uj = /1](1.)] in Q, wj = 0 on (9Q,
we denote by V; = span{w;,w,, - -, w;} the subspace generated by the first k vectors of the basis
{w;}%,. By normalization, we have ||w,|l, = 1. For all k > 1, we seek k functions k@), @), ...,k e

C?[0, T] such that
k

u(x, 1) = Z clj‘-(t)a) i(x),
j=1

satisfying the following approximate problem
Uk, w) + (auk, aw;) + (2ub, Aw;) — ft g(t — ) (auk, aw)dr
0
("2, w;) = f v, 3-2)
ub(0) = uf, uf(0) = L?’l‘, i=1,2,...k,
where

k
uf = ) (o, ww; — uy in HY(Q),

i=1
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k
uf = ) (w,w)w; > u in HYQ),
i=1

thus, (3.2) generates the initial value problem for the system of second-order differential equations with
respect to c¥(7):

(1 + 2)ck () + 2Kty = Gk (o), ..., k() + gilck@)),  i=1,2,... K
3.3
c“(0) = f upwidx,  ch(0) = f uyw;dx, i=1,2,...,k -3)
Q Q
where
k k
G (D), (1) = - fg 1Y w2 & nwxwxdx,
Jj=1 J=1
and

t
g,-(cf(t)) = /lf f g(t— T)ci-‘(‘r)dr + f VP92 pw.dx,
0 Q

by Peano’s Theorem, we infer that the Problem (3.3) admits a local solution cf(t) e C?[0,T].
The first estimate. Multiplying (3.2) by ¢%(r) and summing with respect to i, we arrive at the relation

d 1 1 1
—(=lluf)5 + =llaut]ls + =llauk]3) + f
dr2"1"? 2 20 i o

= f VPO 2 yubdx.
Q

By simple calculation, we have

t
-~ f gt—1) f Auk(T)Aukdxdr
0 Q

1d( o aub) 1( "o nu) > ft (T)dtl|A "||2+1 Ollaul;
= ~— u)— = u)— = T)dT||Au = ull,
2dtg 28 2 dr og 2 28 2

!
qulm(x)dx—fg(t—‘r)fAuk(T)AufdxdT
0 Q (3.4)

(3.5)

where [
(pony)= fo ot = )llay(0) — ay(7)llzdx,
inserting (3.5) into (3.4), using Holder’s inequality and Young’s inequality, we obtain
% [%Ilufllﬁ + %IIAuflli + %(g o nu') + %(1 - fot g(T)dT)IIAukllﬁ]
:%(g' o aub) - %g(t)llAukllﬁ + fg VPO v dx — fg juy " Odx o

-2,k -2 k
< f WP v < |||l el
Q

n 2(p(x)-1) Lo
<= \% dx + —||u;|]5,
5 fg v Tl
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using the embedding H}(Q) — L*PW~D(Q) and Lemma 2.4, we easily obtain

2(p(0)-1) 2p7-1) 2p*-1)
fQM dax < max {IMl) % Vo )
2p-1 2 3.7
< C max {Jlavi2? 0, av2? ") -7
<C,
where C is a positive constant. We denote by C various positive constants that may be different at

different occurrences.
Combining (3.6) and (3.7), we obtain

d

1 1 !
||uk|| IIAukll2 + (g0 au)+ (1 - f g(T)dT)IIAukllz]
dt 2 1112 2 2 0 2

2C + —II 113,

by Gronwall’s inequality, there exists a positive constant C7 such that
15 + Nawlls + (g o au®) + lAu‘|; < Cr, (3.8)
therefore, there exists a subsequence of {1} 1> Which we still denote by {u }k |» such that

TNy weakly star in L*(0, T, Hg(Q)),
uf A u; weakly star in L*(0, T Hg(Q)),

(3.9)
Uk — u weakly in L*0,T; HS(Q)),
ub — u, weakly in L*(0, T; H3(Q)).
The second estimate. Multiplying (3.2) by ¢! (¢) and summing with respect to i, we obtain
d 1
I+ I + [ o
(3.10)
=- f AukAuf,dx + f gt—1) f Auk(T)Auk dxdt + f VP92 vuk dox.
Q Q
Note that we have the estimates for &€ > 0
1
f Ak aukdx| < gl auk |3 + —|lauk|3, (3.11)
Q 4e
X)= X)— 1 x)—
fg PO 2vugdx < [P, (||, < gl + " fg VPPODgx, (3.12)
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and

!
fg(t—T)fAuk(T)AuftdxdT
0 Q

1 !
<— f(f g(t— T)Auk(r)dr)zdx + sIIAuf,H%
48 o Jo

| . . (3.13)
<ellaub))z + — f g(s)ds f g(t—1) f |auk(T)|*dxdr
de Jo 0 Q
(1-0g©) ("
<sllsu; + 25— f laut (Dld,
& 0
similar to (3.6) and (3.7), from Hj(Q) < L*(Q), we have
P2, k e . €
[v| v, dx < eCllAull; + P (3.14)
Q E
Taking into account (3.10) — (3.14), we obtain
d kym(x)
ki3 + (1 = 2& — Ce)l|laukll; + ( ——|u; "V dx)
1 (1-Dg0) [ ( )C (3.15)
<—|lauk|p + —2— Auk(n)|RdT + —
_48|| ull; e foll u' (v)llrdr 1
integrating (3.15) over (0, #), we obtain
1
f luk|3dT + (1 = 2& — Cé) f l|lauk|3dT + f - )|uf|m<x>dx
i (3.16)

£ f (IR + f I (s)|Bds)dr + Cr.,
4e Jo 0

taking € small enough in (3.16), for some positive constant C7, we obtain

! !
f||u’,§||§df+fIIAuﬁiII%dTSCr, (3.17)
0 0

we observe that estimate (3.17) implies that there exists a subsequence of {u* }re» which we still denote
by {u }k |» such that

ul, = u, weakly in L*(0, T; H}(Q)). (3.18)
In addition, from (3.9), we have
U, wp) = ( t,a)) (u,, w;) = (uy, w;) weakly star in L0, T; H*(Q)). (3.19)

Next, we will deal with the nonlinear term. Combining (3.9), (3.18), and Aubin-Lions theorem [25],
we deduce that there exists a subsequence of {u* }re, such that

uk — u, strongly in C(0, T; L*(Q)), (3.20)
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then
"2 0k — ", ace. (x,1) € Q% (0,T), (3.21)

using the embedding Hy(Q) — L*™~D(Q) and Lemma 2.4, we have
m(x)— 2 m(x)— m— mt—
[l "2 = f uf PO D dx < max {lauf 5", laf 5™ V) < € (3.22)
Q
hence, using (3.21) and (3.22), we obtain

|u’f|’”(")‘2 f SN lu,|"O2u, weakly star in L=(0, T; L*(Q)). (3.23)

Setting up k — oo in (3.2), combining with (3.9), (3.18), (3.19), and (3.23), we obtain
!
(U, W) + (AU, AW) + (Altyy, AW) = f g(t = D)(au(r), rw)dt + (lu" O u,, w) = (WP, w).
0

To handle the initial conditions. From (3.9) and Aubin-Lions theorem, we can easily get u* — u
in C(0, T; L*()), thus u*(0) — u(0) in L*(Q), and we also have that u*(0) = uf — u, in H}(Q), hence
u(0) = up in H3(Q). Similarly, we get that u,(0) = u;.

Uniqueness. Suppose that (3.1) has solutions u and z, then w = u — z satisfies

4
wy + AN+ Aw, — f g(t — ) A’ w(T)dT + ™ u, — 17, /" %z, = 0, (x,0) € Q% (0,T),
0

w(x, 1) = %(x,1) =0, (x,1) € Q% (0,T),
w(x,0) =0, w(x,0) =0, xeQ.

Multiplying the first equation of Problem (3.1) by w, and integrating over €, we have
1d 2 l 2 2 1 2
575 |lerdlz + (1 = - g@dDllawly +[[awil; + (8 o 2w)| + Zg(@llAw]
0

=- L(Iutlm(")_%, - Iztlm(x)_zzt) (u; — z)dx + %(g' o Aw),
from the inequality
(la"™*a - 16" ~*b)(a - b) > 0, (3.24)
for all a,b € R" and a.e. x € Q, we obtain
llwdl3 + llawl; + llawll; =0,
which implies that w = 0. This completes the proof.

Theorem 3.1. Assume that (1.4) and (1.6) hold, let the initial date (uy,u,) € Hg(Q) X Hg(Q), and

2(n-73)
—4

2<p <plx)<p<
then there exists a unique local solution of Problem (1.1).
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Proof. Forany T > 0, consider My = {u € 77 : u(0) = ugy, u,(0) = uy, ||ul| ,» < M}. Lemma 3.1 implies
that for Vv € My, there exists u = S (v) such that u is the unique solution to Problem 3.1. Next, we prove
that for a suitable 7 > 0, S is a contractive map satisfying S (Mr) C Mr.

Multiplying the first equation of the Problem (3.1) by u, and integrating it over (0, #), we obtain

2 2 2
el + llaudly + (g o Au) + [f|Aully

t (3.25)
SIIM1||§+|IAM1II§+||Auo||§+2f fIVI"(X)_ZvutdxdT,
0 JQ

using Holder’s inequality and Young’s inequality, we have

f VPO~ yu,dx
Q

1 _
< Yllu |3 + ™ f VP02 dx
Q

f VPP 2dx + f |v|2p*—2dx]
Q Q

C - .
2 2p~-2 2pT-2
<Al + - [V + llavi” ]

1
< Yllui3 + 1y

thus, (3.25) becomes

2 2 2
lleeelly + lAaudl; + Ul Aull;

!
<A +2 f f WP 2y, dxdr
0 Q
2p~-2

TC .
<A +2yT sup 5 + = sup [aviie” = + laviiz” 2.
(0,7) Y 1)

hence, we have

2 2 2
sup lu|l; + sup [lau|l; + Isup [|Aull;
©.1) 0.1 ©.1)

TC - o
<Ag + 29T sup |} + 5= sup [IvIZ%, = + M1 ],
0.7) 2y o

where Ao = |luy|l3 + llau |3 + [|Auol3, choosing y = 5 such that

2p~-2

2pt-2
SRR A

2 2
lull%, < Ao + T*C sup | [Ivl %ﬂ
0,7)

For any v € M7, by choosing M large enough so that

lul?, < Ao + 2T>CM*P =D < M2,

2 _
re [P 10
2CM2P*-D

we obtain ||u||,» < M, which shows that S (Mr) C Mr.

and T > 0, sufficiently small so that
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Letvi,vo € Mr,u; = S(vq),ur = S (), u = u; — uo, then u satisfies

!
Uy + Au + Nuy, — f g(t— ) A2u(t)dr
0
"2 uy, = g™ un, = [ [PO 2y — [vpPO 2y, (x,1) € QA% (0,7),
u(x, 1) = %(x,1) =0, (x,1) € 0Q % (0,T),
u(x,0) =0, u;(x,0) =0, x € Q.

Multiplying by u, and integrating over Q X (0, ¢), we obtain

1 1 ! 1 1
Ellutllg +5(- fo g@)dr)l|aull; + EIIAuzllg +5(g 0 au)

t , (3.26)
+ f f [l "2, = o™, | (ry = )T < f f (f1) = fr))udxdr,
o Jo 0 Jo
where f(v) = [v["®~2y. From (1.6) and (3.24), we obtain
1 [ 1 1 !
5””:”% + §||AM||§ + E”Aut”% + E(g ¢ Au) < f f(f(vl) — f(v2)udxdr. (3.27)
0 Ja

Now, we evaluate
=fl(f(vl)—f(Vz))lluzldx=flf'(f)IIVIlutldx,
Q Q

where v = v —v; and ¢ = av; + (1 — @)y, 0 < @ < 1. Thanks to Young’s inequality and Holder’s
inequality, we have

6 /4

I< §||Mr||z 5% f |f'@FvPdx
Q

0 (p* -1y N
< E” u|l3 + 2—6L|§|2(”() vPdx

6y o, (=17 " Z
< Sl + p2—5( f |v|f"2dx) [ f |§|"(”(x)‘2)dx]

2 ) (3.28)

0 -1 . B n
< gl + L ( f e 2dx) [( f e 2>dx) v ( fQ e -2>dx)

0 (p* - 1)*C -
< Sl + p—IIA v |25 + llaglp” |

¢ (p* = 1’C . a
< 5” w3 + 2—5||Av||§ (MZ(p 2 4 A2 2))_

Inserting (3.28) into (3.27), choosing ¢ small enough, we obtain
*—1)*CT _ .
llull’, < %(MW 2+ MPP IR,

+ 2 — +
taking 7 small enough so that W(MZ(” =2+ M*P72) < 1, we conclude
lul’y = IS 1) = S I, < v = vall,
thus, the contraction mapping principle ensures the existence of a weak solution to Problem (1.1). This

completes the proof.
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4. The blow-up the solution

In this section, we show that the solution to Problem (1.1) blows up in finite time when the initial
energy lies in positive as well as nonpositive. For this task, we define

1 1 ! 1 1 1
E@) = Elluzlli +5 - fo g(@)d)l|aull; + EIIAurH% +5(g 0 bu) - f O )Iul”(")dx 4.1

by the definition of E(¢), we also have

1 1
E'(t)=- f | /" dx + E(g’ o Au) — Eg(t)llAuH% <0. 4.2)
Q

Now, we set

2

B 2 ,,:%2 1 1 2 7_]7)7
By =max<l,—+, A3 = (Bl) , E = (5 - ;)(Bl)" B
and
H(t) = E, — E(1), 4.3)

where the constant E, € (E(0), E,) will be discussed later, and B is the best constant of the Sobolev
embedding H3(Q) < LP™(Q). It follows from (4.2) that

H) =-Et) >0, (4.4)

and H(¢) is a non—decreasing function.
To prove Theorem 4.1, we need the following two lemmas:

Lemma 4.1. Suppose that (1.6) holds and the exponents m(x) and p(x) satisfy condition (1.4) and
(1.5). Assume further that
E0) < E; and A, < A(0) = Bil||auolf3,

then there exists a constant A, > A; such that
Blllaul3 > Ay, t>0. (4.5)

Proof. Using (1.6), (4.1), Lemma 2.4, and the embedding H;(Q) < L’™(Q), we find that

1 ! 1 1
E(t)>—(1—fg(T)dT)IIAuH%—f—Iul"“‘)dx>—IIAulli——flul"“‘)dx
2 0 (x) P Ja

[
> Sl — = max (e Nl )
)
> Sl - - max{Bp llaully, B |l aully"} (4.6)
l +
2 o}~ - max | B 1% oulf By 1" Tl
1 1 P
> —A1- —max{/12 ,/l } G,
2B} p-
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where A := A(¢) = B%lllAull%. Analyzing directly the properties of G(1), we deduce that G(2) satisfies the
following properties:

L2, a1
, 2 2— 9 )
=" 1
Z_B%_E/lz’ 0<A< .
, P’ , 1
G ()= — — <0, G()=— —-=<0,
+U 2B> 2p- M 2B> 2

G'(4)=0, 0<4 <L

It is easily verified that G(A) is strictly increasing for 0 < A < A, strictly decreasing for 4; < A4,
G(1) > —o0 as A — +o0, and G(41;) = E;. Since E(0) < E|, there exists a A, > A; such that G(1,) =
E(0). By (4.6), we see that G(1(0)) < E(0) = G(A,), which implies A(0) > A, since the condition
A(0) > A4,. To prove (4.5), we suppose by contradiction that for some 7y > 0, 4,, = B%lHAu(to)II% < A,.
The continuity of B%lllAull% illustrates that we could choose #;, such that 4; < 4,, < A,, then we have
E0) = G(1,) < G(4,,) < E(tp). This is a contradiction. The proof is completed.

Lemma 4.2. Let the assumption in Lemma 4.1 be satisfied. Fort € [0,T), we have
1
0<HO)<H@®< ;pp(x)(u).

Proof. (4.4) indicates that H(¢) is nondecreasing with respect to ¢, thus
H({t) > HO)=E,-EQ0) >0, Yte[0,T).
It follows from (1.6), (4.1), and Lemma 4.1 that
H@®) =E,— E(1)

1 1 ’ 1 1 I
=E, - Elluzllﬁ - 5(1 - fo g(0dr)|aull; - E(g o Au) = EIIAuzllﬁ + jg; mlul”( 'dx

I 1 1 1
<E -~- Au2+f— POy < By — — A +f— PO
I 2|| Il> Qp(x)lul 1 2B 2 Qp(x)lul

1 f 1 1 1
<E -—A + | —ufWdx < f ——[uPPdx < —p o (u0).
T b o P() p

The proof is completed.
Our blow-up result reads as follows:

Theorem 4.1. Suppose that

2(n-3
2<m <mx)<m"<p <pkx)<p"< (n 4),
and
0o %_1
1-1= f g(r)dr < —2——, (4.7)
0 E—1+5
P
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hold, if the following conditions
1 1-1
p(p~=2) 1

are satisfied, then there exists T* < +co such that

11 1 -
E(0) < 5(5 - ;) (1 - )(B%)p-—z and A; < A0) = B2l||Au|l3,

Tim (el + ol + laully + ull).) = +oo. (4.8)

Proof. Assume by contradiction that (4.8) does not hold true, then for VT* < +oc0 and all ¢ € [0, T"], we
get

lotelI3 + Nl ]l3 + llaull3 + ||u||§i <C, (4.9)

where C., is a positive constant.
Now, we define L(¢) as follows:

L(H)=H"™(t) + € f

Q

uudx + efAu,Audx, 4.10)
Q

where £ > 0, small enough to be chosen later, and
p —-mt p - 2}
p~(m*=1)" 2p-
The remaining proof will be divided into two steps.
Step 1: Estimate for L’(t). By taking the derivative of (4.10) and using (1.1), we obtain

OSOszin{

L'®) =1 -a)H™" (1) [f "Vl x ~ %(g' o Au) + %g(t)llAulli
Q

+ €llug]l? + € f Aty Audx + €| w3
Q

!
- ellAullg + ef f gt — ) Au(t)drAudx
aJo

—ef|u,|’”(x)_2utudx+eflulp(x)dx—efAu,,Audx
Q Q Q

>(1- a)H‘“(t)f || dx + €llu,|l; — ellAull
Q

!
+ ef f g(t — v)ru(t)drArudx — ef |, 2 u,udx + ef lulP@dx + ellAu,ll%,
aJo Q Q

applying Holder’s inequality and Young’s inequality, we have

effg(t—T)Au(T)Au(t)dex
2 Jo

:ef f g(t — D) Au(t)(Au(t) — Au(t))drdx + ef g(t— T)dTHAuH%
o Jo 0

2= Ef 8(t = DIAU(T) — Au(®)|[|Au(®)l|2dT + ff g(t = )drl|Aull;
0 0

p(1-¢g)
L —er

> — 5 (g o Au) + e(l - ;)fo g(7)dr||Aulf3,

2p=(1 - &)

Communications in Analysis and Mechanics Volume 16, Issue 4, 717-737.



731

=
where 0 < & < pp—_, then

L't = (1 -a)H (1) f "D x + ellully — ellAully

Q
+ €llAull; — Ef |t u udx + ef |ulP™ dx
Q Q
p(1-&) ( 1 )ft i
_6—( <>Au)+€ 1 — (T)dT”AM” ,

rewriting (4.7) to (% -1l - #(1 — 1) > 0, using (4.1) and (4.3) to substitute for (g ¢ Au), choosing
&1 > 0 sufficiently small, we obtain

1 —¢)

L) > - a)H™ @) f lu, /" dx + ep~(1 — g)H(t) + (e + %) (letell3 + |l Aw]3)
Q

p (1 —&) f I f 2
() [ - g [ sosrfrea

—ep (1 —g)E, — ef i, " 2w udx + eg, f lu|PPdx
Q Q

- m(x - € _(1 - & )
> (1-a@)H (1) f " dx + ep (1—sl)H(t)+(e+%)(nutu%nmub
Q
p(d-e) _ 1)L = 1 1=l
(-2 /1
LA )21 A }B—i—ep‘a ~e)Ex— ¢ f "2l x @.11)
1 Q
p(1-&) ! 1 1-1 ) f
LS A [ [P PO .
+e{( 5 )2 - (—2) 2 lAull; + e Q|u| dx
— m(x — € _(1 —& )
>(1-a)H™ () | |u/"dx+ep (1—sl)H(r)+(e+%)(nutu%nmub
Q

+ €

{(@ - 1) % - 2p‘(i—81)17_l} 9y 2 _ (-2
] B)r2—ep (1 —e)Er—€ | |ul™"“uudx
Q

p(1—-¢g) l 1 1-1 ) f
— 13- A PO
i E{( 2 ) 2 2p—(1 _ 81) 2 ” M”z + €& 5 |I/t| X

p (- \1_ 1 11 o
Step 1.1: Estimate for e{( - )ZI 2 ey 2 }(Bf)pz — ep~(1 — &))E,. It follows from the condition
in Theorem 3.1 that

111 1-1 v G =Di-ge5t
O e

here, we can take &; > 0 sufficiently small and choose E; € (E(0), E;) sufficiently close to E(0) such
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that
(P_(l—sl) _ 1) I 71 a-n .
e (BT — e~ e Es
pd-e) q\l___1_ (D . P~ _q)Li_o_Lddh . (4.12)
26( 2 )21 2p (=) 2 (B%)pf’z E(l—gl)p( )l;— 2~ 2 (B%)p,’%z
>0.

Therefore, we obtain by combining (4.11) and (4.12),
’ - m(x - € _(1 - & )
L'(t) = (1 - a)H (1) f " Pdx + ep~(1 — &) H(t) + (e + %)(nutné + llaul?)
Q
(1 - I 1 1-1
+ € f lulP“dx + 6{(M -~ 1) - - }||Au||§ (4.13)
Q

2 2 2p(l-g) 2
—eflutl’"(")_zu,udx.
Q

Step 1.2: Estimate for —¢ f |u,/" 2 u,udx. Applying Young’s inequality with &, > 1, the embedding
Q
LPI(Q) — L™(Q), Lemma 2.4 and Lemma 4.2, we easily have

f e,/ u,udx
Q

SSZH_“(t)flu,lm(")dx+
Q

m(x)—l _a/m(,\')fl QM
< |u4;| H ™ ()H® o (£)|uldx
Q

1
— f Ju" H" 0D (1)d x
Q

&

zca(m -m*)
<& H (l‘)fm |m(x)dx+ Ha(m —1)(t)f|u|m(x)dx

2

G, . .
<eH (1) f "V 4 = H D) max (el

(4.14)

where C, = min {H(0), 1}, C; = 2(1 + |Q|)m*c‘;<m"’"+). Next, we have

el < max ( f |u|p(x)dx) ( f |u|p(x)dx)
Q Q

< max{[p HOF 51 ( f |u|p(x)dx) ,

and

mt

”I/t”?:(;) < maX{[p_H(t)];l;_rﬁ, [p_H(t)]'T}(f |u|p(x)dx)p ,
Q

which illustrate

m*

+ _ 4
max {|[ull2 7, } < Cs ( fg |u|f’<x>dx)
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where C3 = 2min {p~ H(0), 1} Recalhng O<ea< and Lemma 4.2, apparently,

’(*1)

m*t

a(mt—1) m* m- a(mt—1) (x) ”
H* D) max {Jlullf. lull, | < C;H™ Do) f julP@dx
Q

DL e u
<o O e 1(())( f |u|f’<x>dx)
Ha(m 1)+— 1(0)

(4.15)
<C3(—) (f Iulp(x)dx) St () (f Iulp(")dx)
mt  a(mt-1 -1
<cg(—>1‘* b f "V,
Q
it follows from (4.13), (4.14), and (4.15) that
’ - m(x € _(1 — & )
L) > (1-a—ee)H (1) f " Vlx + (e + %) (a3 + Nl )
Q
a(m* 1+ 25—
1 ! Czcz( SN
+e(l—e)p H(t) +€|& - = f ul”Vdx
&
p (1 —-¢g) l 1 1-1 5
+ —_——1]=- A
E{( 2 ) 2 ey 2 ) ek
let us fix the constant &, so that
a(m*—1)+1 ] _mt
C, " GGk )15
&1 > ) ’
gy
and then choose € so small that 1 — & > €g;. Therefore, we obtain
L't > M, (H(t) +llaull3 + 3 + llaul; + f Iulp(x)dX), (4.16)
Q

where

a(m*~1D+25 Lt
M) (I-e)p e - i ” C2C3(17) '
2 gyl

p(1-¢p) 1l 1 1-1
2 )2 2p(-g) 2 |

Inequalities (4.16) and Lemma 4.2 imply L(¢) > L(0). Therefore, for a sufficiently small €, we have

M, = emin (1 +

L0) = H™(0) + € f

Ujupdx + ef AuyAugdx > 0.
Q Q
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Step 2: A differential inequality for L(t). Applying Holder’s inequality, Young’s inequality and
the embedding LP™(Q) — L*(Q), we easily obtain

1
I-a

f uudx _
o)

1 L
< (fuellp flullp) ™= < (1 + IQI)HIIM:II Nl o0

1+ Q)= 1
cariom, &n s

4.17)

p(X) ’

2(1-a)
2(1-a)-1’

where /lz + % = 1. Choosing u = 2(1 —a) > 1, then v =

I

. ) .
recalling 0 < a < pT, we obtain

||u||;((]x)“) " < max {(f [u|PPdx) 7 EET=T (f u|PXdx) 7T i 1]}
Q

further, (4.17) can be rewritten as

T 1+Q)m 1+|Q
< S g + (L1 @.18)

plx)

~[2(1-a)-1] _ 2-pt2(1-a)-1]
{[p H(t)] PRI [pTH(D)] 7R T Iul”(")dx (4.19)
<C, f |ulPdx,
o
with C4 = min{p~ H(0), 1} »*20-o-11  Inserting (4.19) into (4.18), we obtain

1 1
T-a I+ Q)= 1 +1Q

fuzudx < &Hb&”% ( | D f| PDdx. (4.20)

Q H

We now estimate

1
I-a

f Au,Audx
Q

therefore, combining (4.20) and (4.21), we obtain

T-a
LTa(f) = (Hl_"(t) + ef uudx + ef Au,Audx)
0 o 4.22)

2 2 2
< M, (H(f) + gy + llawll; + laull; + f Iul”(x)dX),
Q

< Al AUl < CIF < = H(), 4.21)

B ~ H(0)

where

) 2 -a €l-a -a €l-a

cre 1 +1Q 1+]Q)-L
M, = max {27 (27 + eTa , 27 1—( e RN ey |)1‘0‘04 .
H(0) J7i v

Combining (4.16) and (4.22), we arrive at

M
L'(t) > —~LTa(p), YVt > 0. (4.23)
M,
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A simple integration of (4.23) over (0, ) yields

1
L (0) - 37t

1-a

LT (f) >

this shows that L(¢) blows up in finite time

M 1 - a
< 21Ty 0),
M, «

furthermore, one gets from (4.22) that
lim (H(t) + w3 + llauls + llaull; + f |u|p(x)dx) = +o0,
t—=T* Q

it easily follows that

f ulPdx < f ul?" dx + f Jul?”dox < ull?, + 1€,
Q {lu|>1} {lul<1}

and using Lemma 4.2, we obtain

li 2 2 2 P\ _
im (|lully + llawll; + lAull; + llull,. ) = +o0,
t—T*

this leads to a contradiction with (4.9). Thus, the solution to Problem (1.1) blows up in finite time.
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