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Abstract: This paper focuses on the spectral analysis of equations that describe the oscillations of a
heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive
equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear
operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate
assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when
the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with
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1. Introduction

Over the past few years, there has been a growing interest in the dynamic characteristics of viscoelas-
tic fluids driven by the requirements of hydrodynamic engineering specifically in ensuring the safety of
fluid transportation in tankers, aerospace and shipbuilding industries. This interest stems not only from
practical needs but also from the mathematical analysis of the associated problem.

The investigation of a system comprising a rigid body containing an ideal or viscous liquid using
functional analysis methods has been the focus of several studies which can be found in fundamental
monographs [1–3]. Furthermore, certain cases of an ordinary viscous fluid (homogeneous or heteroge-
neous) partially or fully filling a fixed container have been studied and discussed in [4–7].

To date, researchers have developed various analytical and numerical approaches to investigate
the behavior of different structures interacting with a viscoelastic fluid [8]. Simultaneously, the study
of hydrodynamic problems related to small motions and normal oscillations of viscoelastic fluids in
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immovable containers has extensively utilized methods based on functional analysis and the theory
of operators in abstract Hilbert spaces (e.g., [9–15]). Recently, the specific case of a pendulum fully
filled with a viscoelastic fluid was examined in [16]. Furthermore, the case of two nonmixing fluids,
with the lower one being viscoelastic and the upper one inviscid was investigated in [15]. On the
other hand, piezoelectric materials are introduced to examine mechanical behaviors on the stability
of pendulum in presence of an electric field. To describe this effect, simultaneous coupling equations
with tensor parameters associated to mechanical behaviors and the electric field are used [17,18]
(and references therein).

The objective of this study is to expand upon previous works [2,16,19] by investigating the more
challenging case of a pendulum that is partially filled with a viscoelastic fluid. The investigation of a
pendulum containing a viscoelastic fluid topped with a barotropic gas will be reserved for another work.

Once the linearized equations of system motion (pendulum-liquid) are derived, presupposing the
liquid inside the cavity to be following the simpler Oldroyd’s model for viscoelastic fluids we reformulate
these equations as a variational problem and then as an operatorial problem involving bounded linear
operators on an appropriate Hilbert space.

Finally, through the examination of the eigenvalues of the linear operator that describes the dynamics
of the coupled system we demonstrate that under the aforementioned hypotheses the given equilibrium
is stable, as all eigenvalues have a non-negative real part. Moreover, if the viscosity coefficient reaches
a certain threshold, the spectrum exhibits three branches of eigenvalues with potential cluster points
at 0, β, and ∞. Among these eigenvalues, λ = 0 possesses infinite multiplicity, while λ = β is not an
eigenvalue. These three branches of eigenvalues correspond to frequencies associated with various types
of waves.

It is argued that the presence of viscoelastic forces gives rise to novel physical effects that are not
typically observed in an ordinary viscous incompressible fluid [2,19]. These effects are associated with
the emergence of a distinct essential spectrum. Specifically, the existence of internal dissipative waves,
whose decay rates are influenced by the viscoelastic parameter β of the fluid is observed.

2. The simpler Oldroyd model for a viscoelastic fluid

The studied system involves a viscoelastic fluid in which the tensor of viscous stresses σ′ and the
doubled tensor of deformation velocities τ satisfy a specific differential equation [2](

1 + η
d
dt

)
σ′ =

(
κ0 + κ1

d
dt

)
τ. (2.1)

Setting
κ0 − κ1λ

1 − ηλ
= µ

(
1 +

α

γ − λ

)
(2.2)

with
γ = η−1 ; α =

κ0

κ1
− γ ; µ = κ1γ

where µ is the viscosity coefficient of the solvent, γ is the inverse of the relaxation time and k0 and k1

are the total viscosity and elastic modulus of the viscoelastic fluid, respectively.
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In the following, we set

I0(λ) = 1 +
α

γ − λ
=
β − λ

γ − λ
; β = α + γ. (2.3)

It is supposed [2] that if the tensor of deformation velocity is equal to zero at the instant t = 0 then the
same condition holds for the tensor of viscous stresses. Under this hypothesis the differential equation
(2.1) can be replaced by an integral relation

σ′ = µ Î0(t)τ. (2.4)

Indeed, if Σ′(p) and T (p) denote the Laplace transforms of σ′ and τ, respectevely, we have

Σ′(p) = µ

(
1 +

α

γ + p

)
T (p). (2.5)

From the equation (2.5), noting that 1
γ+pT (p) is a product of transformed we deduce

Î0(t) τ(t) = τ(t) + α

∫ t

0
e−γ(t−s)τ(s) ds. (2.6)

3. Position of the problem

Figure 1. Model of the system.

Communications in Analysis and Mechanics Volume 15, Issue 3, 388–409.



391

The pendulum under consideration consists of a rigid rod, denoted as O0A which is firmly attached at
a point A to a rigid body known as O0. The rod is constrained to rotate around a fixed point O0 referred
to as the suspension point.

The body (S 0) is assumed to be two-dimensional and symmetric with respect to the axis that contains
O0A and with center of mass G on the rod O0A (O0G = a). Within this body (S 0) there exists a
symmetric cavity that is partially filled with a homogeneous incompressible viscoelastic fluid. The
constitutive equation of the fluid is described by the simpler Oldroyd model [2].

In the lowest equilibrium position, Ω, S , Γ are respectively the domain occupied by the fluid, the
wetted wall of the cavity and the horizontal free line [Figure 1]. Ωt, S t, Γt are their positions at the
instant t, respectively. We call h the distance of O0 to Γ, θ the small angle of rotation of the pendulum.

We use the fixed orthogonal axes O0x1x2 (O0x2) directed vertically upwards and orthogonal axes O′x′1x′2
fixed to the pendulum, with (O′x′1) carrying out the position of Γ at the instant t are used [Figure 1]. The
acceleration ~g of the gravity field is such that ~g = −g~x2.
The small oscillations of the system ”pendulum - viscoelastic fluid” in linear theory are going to be studied.

4. Equations of motion of the viscoelastic fluid

Let ~u(x1, x2, t) be the small displacement of a fluid particle M with respect to the fixed axes O0x1x2

and
−→
U(x1, x2, t) its displacement with respect to the mobile axes O′x′1x′2. Then,

~u = θ ~z ×
−−−→
O0M + ~U (~z = ~x1 × ~x2). (4.1)

4.1. Navier Stokes equations

If P(x1, x2, t) is the pressure then

ρ üi = −
∂P
∂xi

+
∂σ′i j

∂x j
− ρ g δi2 in Ω (i, j = 1, 2) (4.2)

div~u = 0 incompressibility in Ω (4.3)
~U|S = 0 condition on the wall S (4.4)

If we denote by

τi j =
∂u̇i

∂x j
+
∂u̇ j

∂xi
(i, j = 1, 2) (4.5)

the components of the tensor τ, we have for the tensor σ′

σ′i j = µ Î0 τi j. (4.6)

Then,
∂σ′i j

∂x j
= µÎ0

∂τi j

∂x j
= µ Î0

(
∂2u̇i

∂x j∂x j
+

∂

∂xi

(
∂u̇ j

∂x j

))
= µ Î0 ∆u̇i (4.7)
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The equation (4.2) takes the form, since ∆~u = ∆ ~U:

ρ ~̈U = −
−−−→
grad P + µ Î0∆ ~̇U − ρ g ~x2 − θ̈~z ×

−−−→
O0M (4.8)

If it is supposed that the pressure is equal to zero above the free line, the pressure in the equilibrium
position is

Pst = −ρ g (x2 + h) . (4.9)

Introducing the dynamic pressure p = P − Pst, we obtain

ρ ~̈U = −
−−−→
grad p + µ Î0 ∆ ~̇U − θ̈~z ×

−−→
OM (4.10)

and the equation (4.3) can be written

div ~U = 0 (4.11)

4.2. Dynamic conditions on the free line Γt

We must add the dynamic conditions on the free line Γt whose equation is

x′2 = Un|Γ (4.12)

or

x2 = −h + θ x1 + Un|Γ. (4.13)

We have

σi j n j = 0 on Γt (4.14)

or (
−P δi j + 2µ Î0 εi j

)
n j = 0 on Γt (4.15)

where εi j(i, j = 1, 2) is the rate of deformation tensor.
Or, in linear theory ([

ρ g
(
θx1 + Un|Γ

)
− p

]
δi j + 2µ Î0 εi j

)
n j = 0 on Γ (4.16)

and finally

Î0 ε12|Γ = 0 (4.17)

p|Γ = ρ g
(
θx1 + Un|Γ

)
+ 2µ Î0 ε22|Γ on Γ (4.18)

The equations (4.10), (4.11), (4.4), (4.17), (4.18) are the equations of motion of the fluid.
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4.3. A new form of the precedent equations

Let ~̃U a sufficiently smooth function defined in Ω and verifying div ~̃U = 0 and ~̃U |S = 0. We have

∫
Ω

ρ ~̈U · ~̄̃U dΩ = −

∫
Ω

−−−→
grad p · ~̄̃U dΩ + µ Î0

∫
Ω

∆ ~̇U · ~̄̃U dΩ − ρ θ̈

∫
Ω

(
x1

¯̃U2 − x2
¯̃U1

)
dΩ (4.19)

The Green’s formula and (4.11) (4.4) give

−

∫
Ω

−−−→
gradp · ~̄̃U dΩ = −

∫
Ω

div
(
p ~̄̃U

)
dΩ

= −

∫
Γ

p|Γ
¯̃Un|Γ dΓ (4.20)

The vectorial Laplacian formula [1], and (4.4), (4.17) give

Î0

∫
Ω

∆ ~̇U · ~̃̄U dΩ = −2
∫

Ω

Î0 εi j( ~̇U) εi j( ~̃̄U) dΩ + 2
∫

Γ

Î0 ε22|Γ
¯̃Un|Γ dΓ. (4.21)

Therefore, we obtain
∫

Ω

ρ ~̈U · ~̄̃U dΩ =

∫
Γ

(
−p|Γ + 2µ Î0 ε22|Γ

) ¯̃Un|Γ dΓ

− 2
∫

Ω

Î0 εi j( ~̇U) εi j(
~̄̃U) dΩ − ρ θ̈

∫
Ω

(
x1

¯̃U2 − x2
¯̃U1

)
dΩ

(4.22)

and using the dynamic condition (4.18)
∫

Ω

ρ ~̈U · ~̄̃U dΩ + 2
∫

Ω

Î0 εi j( ~̇U) εi j( ~̃̄U) dΩ + ρ g
∫

Γ

(
θ x1 + Un|Γ

) ¯̃Un|Γ dΓ

+ ρ θ̈

∫
Ω

(
x1

¯̃U2 − x2
¯̃U1

)
dΩ = 0 for all admissible ~̃U.

(4.23)

The assumption is going to be made that ~U and ~̃U belong to the space

V
def
= J1

0,S (Ω) def
=

{
~U ∈ χ1(Ω) def

=
[
H1(Ω)

]2
; div ~U = 0 in Ω; ~U|S = 0

}
(4.24)

equipped with the scalar product (
~U, ~̃U

)
V

= 2
∫

Ω

εi j( ~U)εi j(
~̄̃U) dΩ; (4.25)

(it is well-known that the associated norm is equivalent in J1
0,S (Ω) to the classical norm of χ1(Ω) [1]).

We introduce the space

χ
def
= J0,S (Ω) def

=

{
~U ∈ L 2(Ω) def

=
[
L2(Ω)

]2
; div ~U = 0 ; Un|S = 0

}
, (4.26)
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equipped with the scalar product (of L 2(Ω)) :(
~U, ~̃U

)
χ

=

∫
Ω

~U · ~̃U dΩ. (4.27)

It is well-known [1] that the embedding fromV ⊂ χ is continuous, dense and compact. We denote by A
the unbounded operator of χ associated to the pair (V, χ) and to the scalar product of (·, ·)V.

4.4. A few operators

In this section, a few operators are introduced.

4.4.1. Definition and properties of the operator L

We set ∫
Ω

(x1U2 − x2U1) dΩ = L ~U (4.28)

L being a compact operator from χ into C.
We have

θ̈

∫
Ω

(
x1

¯̃U2 − x2
¯̃U1

)
dΩ =

(
θ̈, L ~̃U

)
C

=

(
L∗ θ̈, ~̃U

)
χ

(4.29)

The adjoint L∗ is compact from C into χ.

4.4.2. Definition and properties of the operator K

Using a trace theorem in χ1(Ω), we can set∫
Γ

Un|Γ
¯̃Un|Γ dΓ =

(
K ~U, ~̃U

)
V

, (4.30)

where K is not negative, selfadjoint, bounded operator fromV intoV.
Let us prove that K is compact.
Indeed, let

{
~U p

}
a weakly convergent sequence inV. By a trace theorem, the sequence

{
U p

n|Γ

}
is strongly

convergent in L̃2(Γ) =
{
f ∈ L2(Γ),

∫
Γ

f dΓ = 0
}

and we have(
K

(
~U p − ~Uq

)
, ~U p − ~Uq

)
V

=

∫
Γ

|U p
n|Γ − Uq

n|Γ|
2 dΓ→ 0 when p, q→ ∞; (4.31)

consequently [20], K is compact.

4.4.3. Definition and properties of the operator K1

Let ∫
Γ

x1 Un|Γ dΓ = K1 ~U (4.32)
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K1 being compact fromV into C.
Then,

θ

∫
Γ

x1
¯̃Un|Γ dΓ =

(
θ,K1

~̃U
)
C

=

(
K∗1θ,

~̃U
)
V

, (4.33)

where the adjoint K∗1 is compact from C intoV.
Consequently, the variational equation (4.23) can be written

ρ
(
~̈U, ~̃U

)
χ

+ µ
(
Î0 ~̇U,

~̃U
)
V

+ ρ
(
L∗θ̈, ~̃U

)
χ

+ ρ g
(
K ~U, ~̃U

)
V

+ ρ g
(
K∗1θ,

~̃U
)
V

= 0
(4.34)

for all ~̃U ∈ V and then by density for all ~̃U ∈ χ.

4.5. Operatorial equation

It is well-known [21] that the equation (4.34) is equivalent to the operatorial equation

~̈U + L∗θ̈ + A
[
ν Î0 ~̇U + g K∗1θ + g K ~U

]
= 0 , ~U ∈ V (4.35)

where ν = µ ρ−1.
An equation with bounded coefficients is obtained by setting

A1/2 ~U =
−→
W ∈ χ (4.36)

and by applying the operator A−1/2. The equation can be expressed in operator form as:

A−1−̈→W + A−1/2 L∗θ̈ + ν Î0
−̇→
W + g A1/2KA−1/2−→W + g A1/2K∗1θ = 0 (4.37)

5. Equation of the moment of momentum for the system pendulum-fluid

Let mp and Jp be the mass and the moment of inertia about O0 of the body S 0 + O0A. We have the
equation

Jp θ̈~z +

∫
Ω

−−−→
O0M × ρ ~̈u dΩ =

−−−→
O0G × (−mp g ~x2) +

∫
Ωt

−−−→
O0M × (−ρ g ~x2) dΩt (5.1)

At first, we have

∫
Ω

−−−→
O0M × ρ ~̈u dΩ =

[
ρ

∫
Ω

(
x1Ü2 − x2Ü1

)
dΩ + θ̈

∫
Ω

ρ
(
x2

1 + x2
2

)
dΩ

]
~z

=

[
ρ L ~̈U + J` θ̈

]
~z , (5.2)

Communications in Analysis and Mechanics Volume 15, Issue 3, 388–409.



396

where J` is the moment of inertia about O0 of the liquid solidified in the equilibrium position.
We have

−−−→
O0G × (−mp g ~x2) = −mp g a θ~z (5.3)

Finally, we write ∫
Ωt

−−−→
O0M × (−ρ g ~x2) dΩt = −ρ g

∫
Ωt

x1 dΩt ·~z (5.4)

But, we have

−ρ g
∫

Ωt

x1 dΩt = −ρ g
∫

Ωt

(
x′1 − θ x′2 + h θ

)
dΩt (5.5)

= −ρ g
∫

Ωt

x′1 dΩt − g θ
∫

Ω

ρ
(
h − x′2

)
dΩ (5.6)

We can write

∫
Ωt

x′1 dΩt =

∫
Ω

x′1 dΩ −

∫
Ωt−Ω

x′1 dτ

=

∫
Γ

x1 Un|Γ dΓ ,

so that we have

− ρ g
∫

Ωt

x1 dΩt = −ρ g
∫

Γ

x1 Un|Γ dΓ − m` g (h − b)θ , (5.7)

where b is the ordinate of the center of inertia of the liquid in the equilibrium position with respect to
the axes O′x′1x′2 and m` the mass of the liquid.
Finally, setting

m = mp + m` ; mp a + m` (h − b) = m c ; J = Jp + J` (5.8)

we obtain the equation

ρ L ~̈U + J θ̈ + ρ g
∫

Γ

x1 Un|Γ dΓ + m c g θ = 0 (5.9)

or
ρ L ~̈U + J θ̈ + ρ g K1 ~U + m c g θ = 0 (5.10)

or

ρ LA−1/2−̈→W + J θ̈ + ρ g K1A−1/2−→W + m c g θ = 0 (5.11)

The equations (4.37) and (5.11) are the operatorial equations of the motion of the system pendulum -
fluid.
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6. Operatorial equations of the small oscillations and first results on the spectrum

6.1. Operatorial equations with constant coefficients

Setting J1 = J
ρ

and m0 = m c
ρ

, the equations (4.37), (5.11) becomeA−1−̈→W + A−1/2 L∗θ̈ + ν Î0
−̇→
W + g A1/2KA−1/2−→W + g A1/2K∗1θ = 0

LA−1/2−̈→W + J1 θ̈ + g K1A−1/2−→W + m0 g θ = 0
(6.1)

Using the definition of Î0 , we have

Î0
−̇→
W =

−̇→
W(t) + α

∫ t

0
e−γ(t−s) ∂

−→
W(s)
∂s

ds (6.2)

Integrating by parts, we obtain

Î0
−̇→
W =

−̇→
W(t) + α

−→
W(t) − α γ

∫ t

0
e−γ(t−s) −→W(s) ds (6.3)

and, setting

−→
W1(t) = (ν α)1/2

∫ t

0
e−γ(t−s) −→W(s) ds , (6.4)

we have

ν Î0
−̇→
W = ν

−̇→
W(t) + ν α

−→
W(t) − γ (ν α)1/2 −→W1(t) (6.5)

On the other hand, derivating gives us

−̇→
W1 = −γ

−→
W1 + (ν α)1/2 −→W (6.6)

Finally, three equations with constant coefficients are obtained for
−→
W, θ,

−→
W1 (5.11), (6.6) and (6.7),

where

A−1−̈→W + A−1/2 L∗θ̈ + ν
−̇→
W + ν α

−→
W − γ (ν α)1/2 −→W1 + g A1/2KA−1/2−→W + g A1/2K∗1θ = 0 (6.7)

6.2. Normal oscillations

The solutions of the precedent equations (5.11), (6.6) and (6.7) are sought depending on the time t by
the law e−λ t, λ ∈ C.
We obtain 

λ2
(
A−1−→W + A−1/2 L∗θ

)
− ν λ

−→
W +

(
ν α Iχ + g A1/2KA−1/2

)−→
W

− γ (ν α)1/2 −→W1 + g A1/2K∗1θ = 0
(6.8)
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λ2
(
LA−1/2−→W + J1 θ

)
+ g K1A−1/2−→W + m0 g θ = 0 (6.9)

− λ
−→
W1 = −γ

−→
W1 + (ν α)1/2 −→W (6.10)

6.3. The first results about the spectrum

6.3.1. Preliminary remarks

It should be noted that the spectrum σ(A) of linear self-adjoint operator A in Hilbert space H is divided
into two parts, the discrete and the essential spectrum [1]:

a) The discrete spectrum, denoted σd(A) contains the isolated eigenvalues with finite multiplicity.
b) The essential spectrum, denoted σe(A) contains the set of points of σ(A) which are not isolated

eigenvalues with finite multiplicity. Then, σe(A) is formed by the eigenvalues with infinite
multiplicity, the accumulation points of eigenvalues and ”continuous spectrum”.

We conclude that:
σ(A) = σe(A) ∪ σd(A) ; σe(A) ∩ σd(A) = ∅ (6.11)

From a physical perspective, we observe that in the oscillations of a liquid that partially fills a container
the normal oscillations can be categorized into two distinct classes surface waves and internal waves:

c) The surface waves are caused by the presence of the free surface of the liquid and the gravitation,
capillar, and centrifugal forces (and others...) acting on the system.

d) The internal waves whose modes have the following property: For them, the free surface of the
fluid is almost unperturbed during the process of oscillations and the proper movements take place
mainly inside the region fluid.

Let us recall that in spectral analysis we seek the properties of normal oscillations and their corresponding
waves (surface or internal). Then, we seek λ ∈ C solution of the spectral problem i.e., λ ∈ σ(A) and the
characteristics of the corresponding associated waves.

6.3.2. λ = 0 is an eigenvalue with infinite multiplicity

Setting λ = 0 and eliminating θ and
−→
W1, we obtain(

m0 A1/2KA−1/2 − A1/2K∗1K1A−1/2
) −→

W = 0 (6.12)

and consequently

m0

(
K ~U, ~U

)
V
−

(
K1 ~U,K1 ~U

)
V

= 0 (6.13)

or

m0 ‖Un|Γ‖
2
L̃2(Γ)
−

∣∣∣∣∣∫
Γ

x1 Un|Γ dΓ

∣∣∣∣∣2 = 0 (6.14)
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Using the Schwarz inequality, we have

m0 ‖Un|Γ‖
2
L̃2(Γ)
−

∣∣∣∣∣∫
Γ

x1 Un|Γ dΓ

∣∣∣∣∣2 ≥ (
m0 −

∫
Γ

x2
1 dΓ

)
‖Un|Γ‖

2
L̃2(Γ)

(6.15)

and the right-hand side is positive if the pendulum is preponderant.
Therefore,

Un|Γ = 0 (6.16)

or if γΓ is the normal trace of χ1(Ω) on Γ :

γΓA−1/2 −→W = 0 (6.17)

i.e
−→
W ∈ Ker γΓA−1/2 (6.18)

From Un|Γ = 0, we deduce K1 ~U = 0 or θ = 0. Finally, we have

−→
W1 =

(ν α)1/2

γ

−→
W ∈ Ker γΓA−1/2 (6.19)

The eigenspace of λ = 0 is the subspace of χ ⊕ C defined by
−→
W ∈ Ker γΓA−1/2, θ = 0.

6.3.3. λ = γ is not an eigenvalue

If λ = γ then we have
−→
W = 0 and

−→
W1 = 0. Thus(
γ2 J1 + m0 g

)
θ = 0 or θ = 0. (6.20)

We conclude that all proper oscillations of the considered hydrodynamic system cannot be represented
with fading decrements e(−γ t). On the other hand, we can divide by the number (λ − γ , 0). Then, the
expression I0(λ) =

λ−β

λ−γ
is true.

6.3.4. Two operatorial equations for studying the spectrum

Consequently, for studying the spectrum, we can use the equation (6.10) and we obtain only two
equations for

−→
W, θ.

Setting

I0(λ) =
λ − β

λ − γ
(6.21)

we have

λ2
(
A−1−→W + A−1/2 L∗θ

)
+

(
−ν λ I0(λ) Iχ + g A1/2KA−1/2

)−→
W + g A1/2K∗1θ = 0 (6.22)

(
λ2LA−1/2 + g K1A−1/2

)−→
W +

(
λ2 J1 + m0 g

)
θ = 0 (6.23)
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The case
−→
W =

−→
0 or ~U =

−→
0 is dismissed, i.e the case where the liquid is solidified in the equilibrium

position. Then, we have the classical pendulum whose pulsation ω is given by ω2 =
m0 g
J1

.

Eliminating θ, we have the unique equation for
−→
W :

λ2 A−1 −→W −

(
λ2 A−1/2 L∗ + g A1/2K∗1

) (
λ2 LA−1/2 + g K1A−1/2

)(
λ2 J1 + m0 g

) −→
W

+
(
−ν λ I0(λ) Iχ + g A1/2KA−1/2

)−→
W = 0

(6.24)

6.3.5. Existence and the symmetry of the spectrum

Dividing the equation (4.22) by −ν λ I0(λ), we obtain

Iχ − λ A−1

ν I0(λ)
+

(
λ2 A−1/2 L∗ + g A1/2K∗1

) (
λ2 LA−1/2 + g K1A−1/2

)
ν λ I0(λ)

(
λ2 J1 + m0 g

)
−

g A1/2KA−1/2

ν λ I0(λ)

]
−→
W = 0

(6.25)

The terms between the brackets are selfadjoint and are compact, except Iχ.
Therefore, we have a Fredholm pencil in the domain

C − {0} − {β} −
{
± i

√
m0 g
J1

}
,

regular in this domain since λ = γ is not an eigenvalue [1].
Consequently, the spectrum of the problem exists; it is formed by isolate points and its possible points
of accumulation can be only 0 , β , ± i

√
m0 g
J1

and ∞ .

On the other hand, if the pencil is selfadjoint, the spectrum is symmetrical with respect to the real axis.

6.3.6. The spectrum is located in the right-half plane

1) Stability of equilibrium : Discarding the eigenvalue λ = 0, we divide by λ the equation (6.22) and
(6.23).
We obtain λQ +

1
λ
B −


ν I0(λ) Iχ 0

0 0


 Z = 0 (6.26)

with

Z =

−→W
θ

 ∈ χ ⊕ C
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and

Q =


A−1 A−1/2L∗

LA−1/2 J1 IC

 ; B = g


A1/2KA−1/2 A1/2K∗1

K1A−1/2 m0 IC


We have

(QZ,Z)χ⊕C =

(
A−1−→W,

−→
W

)
χ⊕C

+ 2<
(
LA−1/2−→W, θ

)
C

+ J1 |θ|
2

= ‖ ~U‖2χ + 2<
(
L ~U, θ

)
C

+ J1 |θ|
2 (6.27)

Since ∣∣∣∣(L ~U, θ)
C

∣∣∣∣ =

∣∣∣∣∣∫
Ω

(x1 U2 − x2 U1) dΩ · θ̄

∣∣∣∣∣ ≤
√

J`
ρ
‖ ~U‖χ |θ| , (6.28)

we have

(QZ,Z)χ⊕C ≥ ‖ ~U‖
2
χ − 2

√
J`
ρ
‖ ~U‖χ |θ| + J1 |θ|

2 , (6.29)

so that, since J1 > J`ρ−1, (QZ,Z) is definite positive quadratic form of ‖ ~U‖χ and |θ|, then equal to zero
only for Z = 0.
Now, we have, in the same manner

(BZ,Z)χ⊕C ≥ g

‖Un|Γ‖
2
L̃2(Γ)
− 2

√∫
Γ

x2
1 dΓ ‖Un|Γ‖L̃2(Γ) |θ| + m0 |θ|

2

 , (6.30)

so that, since m0 −
∫

Γ
x2

1 dΓ > 0, we have

(BZ,Z) ≥ 0 , equal to zero for Un|Γ = 0 , θ = 0. (6.31)

From the equation (6.26), we deduce

λ (QZ,Z) +
1
λ

(BZ,Z) = ν I0(λ) ‖
−→
W‖2χ (6.32)

Taking the real parts, we obtain

<λ

[
(QZ,Z) +

1
|λ|2

(BZ,Z)
]

= ν<I0(λ) ‖
−→
W‖2χ (6.33)

or

<λ

[
(QZ,Z) +

1
|λ|2

(BZ,Z) + ν
β − γ

|λ − γ|2
‖
−→
W‖2χ

]
= ν
|λ|2 + βγ

|λ − γ|2
‖
−→
W‖2χ (6.34)

so

<λ > 0 (6.35)
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and the equilibrium of the system is stable in linear approximation.
2) Location of the eigenvalues :
From (6.34), we deduce<I0(λ) > 0 or

|λ|2 + βγ − (β + γ) <λ > 0 (6.36)

Setting, λ = x + iy, we obtain

(
x −

β + γ

2

)
+ y2 >

α2

4
. (6.37)

Figure 2. Location of the spectrum.

The eigenvalues are in the not dotted part of the plane (λ).

6.3.7. λ = β is not an eigenvalue

If λ = β is an eigenvalue then there exists
−→
W , 0 such that

β2
(
A−1 −→W,

−→
W

)
χ

+ g
(
A1/2KA−1/2 −→W,

−→
W

)
χ

−


(
β2 A−1/2 L∗ + g A1/2K∗1

) (
β2 LA−1/2 + g K1A−1/2

)(
β2 J1 + m0 g

) −→
W,
−→
W


χ

= 0
(6.38)
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This equality can be written
(
β2 J1 + m0 g

) [
β2 ‖ ~U‖2χ + g‖Un|Γ‖

2
L̃2(Γ)

]
−

∣∣∣∣∣β2
∫

Ω

(x1 U2 − x2 U1) dΩ + g
∫

Γ

x1 Un|Γ dΓ

∣∣∣∣∣2 = 0
(6.39)

Using the Cauchy’s inequality for the second term, we have
[
β2 m0 g + β4

(
J1 −

2J`
ρ

)]
‖ ~U‖2χ

+

[
β2 g J1 + g2

(
m0 − 2

∫
Γ

x2
1 dΓ

)]
‖Un|Γ‖

2
L̃2(Γ)
≤ 0

(6.40)

If the pendulum is preponderant

J1 −
2J`
ρ

=
Jp − J`
ρ

> 0 ; m0 − 2
∫

Γ

x2
1 dΓ > 0 , (6.41)

the left-hand side is equal to zero only for ~U = 0 then for
−→
W = 0.

Therefore λ = β is not an eigenvalue and we can note that all proper oscillations of the considered
hydrodynamic system can not be represented with fading decrements e(−β t). On the other hand, we
can divide by (λ − β , 0) then (I0(λ))−1 =

λ−γ

λ−β
exist and we can replace the pencil L (λ) by the pencil

Ł0(λ) = −1
ν I0(λ) L (λ) (see section 7.2).

7. There exists a branch of positive real eigenvalues having the infinity as point of accumulation

7.1. An operator pencil

We consider the pencil L (λ) defined by :

L (λ)
−→
W =


λ2 A−1 +

(
−ν λ I0(λ) Iχ + g A1/2KA−1/2

)
−

(
λ2 A−1/2 L∗ + g A1/2K∗1

) (
λ2 LA−1/2 + g K1A−1/2

)(
λ2 J1 + m0 g

)

−→
W = 0 (7.1)

Setting

λ′ = λ−1 , L̂ (λ′) = λ′2L

(
1
λ′

)
, (7.2)

we obtain 
L̂ (λ′) = A−1 −

(
A−1/2 L∗ + λ′2 g A1/2K∗1

) (
LA−1/2 + λ′2 g K1A−1/2

)(
J1 + m0 g λ′2

)
+

(
−ν

λ′ (1 − β λ′)
1 − γ λ′

Iχ + g A1/2KA−1/2
) (7.3)
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L̂ (λ′) is a self adjoint operatorial function that is holomorphic in the vicinity of λ′ = 0.
We have 

L̂ (0) = A−1 −
A−1/2 L∗LA−1/2

J1
+ g A1/2KA−1/2 compact

L̂ ′(0) = −ν
β

γ
Iχ strongly negative

(7.4)

Let us prove that KerL̂ (0) = 0.
We have (

L̂ (0)
−→
W,
−→
W

)
χ
≥ g ‖Un|Γ‖

2
L̃2(Γ)

+
Jp

J
‖ ~U‖2χ, (7.5)

L̂ (0)
−→
W = 0 only for ~U = 0 or

−→
W = 0.

Consequently [1], for each ε > 0 sufficiently small in ]0, ε[ there exists an infinity of positive real
eigenvalues λ′n having zero as point of accumulation. For our problem, there exists an infinity of
positive real eigenvalues λn = λ′−1

n having the infinity as point of accumulation. The corresponding
eigenelements form a Riesz basis in a subspace of χ having a finite defect.

7.2. Asymptotic formula

Dividing L (λ) by −ν λ I0(λ), we obtain the pencil
Ł0(λ) = Iχ − ν−1 λ − γ

λ (λ − β)
g A1/2KA−1/2 − ν−1λ (λ − γ)

λ − β
A−1

− ν−1 λ − γ

λ (λ − β)

(
λ2 A−1/2 L∗ + g A1/2K∗1

) (
λ2 LA−1/2 + g K1A−1/2

)(
λ2 J1 + m0 g

) (7.6)

After calculations, we have
λ (λ − γ)
λ − β

= λ + α + O
(
1
λ

)
(7.7)

and for the last term

ν−1

J1
(λ + α)A−1/2L∗LA−1/2 + O

(
1
λ

)
so that we can write 

Ł0(λ) = Iχ − ν−1 α
(
A−1 + J−1

1 A1/2LL∗A−1/2
)

− λ ν−1
(
A−1 + J−1 A1/2LL∗A−1/2

)
+ O

(
1
λ

) (7.8)

But, we have the following theorem [1] :
Let the pencil

Ł0(λ) = I + T − λQ + B(λ) (7.9)
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with T compact, Q selfadjoint, positive definite, compact, B(λ) analytic outside the circle |λ| ≤ R and
turning into zero at infinity.
We have

λn (Ł0(λ)) =
1

λn(Q)
[1 + o(1)] , n −→ ∞ (7.10)

Here, the conditions are satisfied and we have

λn =
ν

λn

(
A−1 + J−1

1 A1/2LL∗A−1/2
) [1 + o(1)] , n −→ ∞ (7.11)

8. There exists a branch of positive real eigenvalues having zero as point of accumulation

Let us consider still the pencil L (λ).
L (λ) is a self adjoint operatorial function, holomorphic in the vicinity of λ = 0.
We have 

L (0) = −
g

m0
A1/2K∗1K1A−1/2 + g A1/2KA−1/2 compact

L ′(0) = −ν
β

γ
Iχ strictly negative

(8.1)

On the other hand, L (0) admits λ = 0 as eigenvalue with infinite multiplicity because we have(
m0 A1/2KA−1/2 − A1/2K∗1K1A−1/2

) −→
W = 0 if

−→
W ∈ Ker γΓA−1/2 . (8.2)

Therefore, for all ε > 0 sufficiently small there exists in ]0, ε[ an infinity of positive real eigenvalues λ0
n

having zero as point of accumulation. The corresponding eigenelements and an orthonormal basis of
Ker γΓA−1/2 form a Riesz basis in a subspace of χ having a finite defect.

9. If the viscosity coefficient is sufficiently large, there exists a branch of real eigenvalues having
λ = β as point of accumulation

Setting
λ = λ” + β , L̃ (λ”) = L (λ” + β) , (9.1)

we have

L̃ (λ”)
−→
W =

{
(λ” + β)2 A−1 +

(
−ν λ”

λ” + β

λ” + α
Iχ + g A1/2KA−1/2

)

−

[
(λ” + β)2 A−1/2 L∗ + g A1/2K∗1

] [
(λ” + β)2 LA−1/2 + g K1A−1/2

](
(λ” + β)2 J1 + m0 g

)
−→W = 0

(9.2)

Let

F(ψ) =

(
ψ A−1/2 L∗ + g A1/2K∗1

) (
ψ LA−1/2 + g K1A−1/2

)
(ψ J1 + m0 g)
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For each ψ, this operator is compact.
We have 

L̃ (0) = β2 A−1 − F(β2) + g A1/2KA−1/2 compact

L̃ ′(0) = 2β A−1 − 2β F′(β2) − ν
β

α
Iχ

(9.3)

with A−1 and F′(β2) being bounded operators, L̃ ′(0) is strongly negative if ν is sufficiently large.
On the other hand, λ” = 0 cannot be an eigenvalue of L̃ (λ”) since β is not an eigenvalue of L (λ).
Therefore, if the viscosity coefficient is sufficiently large and if the pendulum is preponderant, for each
ε > 0 sufficiently small, there is in ]0, ε[ an infinity of positive real eigenvalues λ′′n having zero as point
of accumulation. So for our problem, in

]
β, β + ε

[
there is an infinity of real eigenvalues λβn = λ′′n + β

having λ = β as accumulation point. The eigenelements form a Riesz basis in a subspace of χ having a
finite defect.

10. Physical meaning of the results

This study builds upon previous works [2, 16, 19] that investigated the normal oscillations of a
pendulum with a cavity partially or fully filled with fluid. Specifically, in [2, 19] the model of a cavity
partially filled with an ordinary viscous fluid was examined. In [16], a special case was explored
where the cavity is completely filled with a viscoelastic fluid. It was demonstrated that the presence of
viscoelastic forces leads to a more complex structure of normal oscillation waves notably resulting in
the emergence of internal dissipative waves within the fluid region.
Let us state some important results and explain their physical meaning.

1) If the pendulum is preponderant, it is proved that the lowest equilibrium position of the considered
hydrodynamic system is stable in linear approximation.

2) For a large viscosity of the viscoelastic fluid, the spectrum consisting of three branches of real
eigenvalues

(
λ0

n

)
n
,
(
λ∞n

)
n and

(
λ
β
n

)
n

with limiting points 0,∞ and β, and corresponding to various
kinds of normal oscillation waves. If we take θ = 0, we have the same results for normal oscillations
of a viscoelastic fluid in an open container [2] (section 11.3) and [11].

3) It is proved that the new branch
(
λ
β
n

)
of finite multiplicity eigenvalues, that corresponds on the

viscoelastic parameter β = κ0
κ1

of the fluid satisfied : λβn → β (n→ +∞). This result confirms
the fundamental influence of the viscoelastic forces on the structure of the spectrum of the
considered hydrodynamic system. Physically, wave motions corresponding to these eigenvalues
are predominantly internal in nature and arise exclusively from the action of viscoelastic forces.
We remark that this effect disappears in the case of an ordinary viscous fluid [2, 19], where the
elastic parameter α = 0, then β = γ and I0(λ) = 1. This gives that the viscoelastic forces in fluids
have a significant impact onto the asymptotic distribution of the eigenvalues related to the internal
waves inside the region fluid.

4) For the limit points λ = ∞, we have the branch
(
λ∞n

)
n of finite multiplicity eigenvalues that

corresponds to the internal dissipative waves in the viscoelastic fluid and just as in the case of an
ordinary viscous fluid [2, 19]. For these waves, the fading decrements can be as large as possible.
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5) For the limit points λ = 0, we have the branch
(
λ0

n

)
n

of finite multiplicity eigenvalues that
corresponds to the surface waves with decrements of the oscillation fading as small as possible.
Their appearance is caused by the presence of the free surface of the fluid and by the influence of
the gravitation field. This type of wave motions in fluids disappears (in particular λ = 0 is not an
eigenvalue) in [16] where the cavity is completely filled by a viscoelastic fluid.

6) When the effects of elastic forces inside the viscoelastic fluid are absent the elastic parameter α = 0,
β = γ and I0(λ) = 1. Therefore, the problem (4.24) is reduced to the study of a classical Askerov,
Krein, Laptev pencil for studying small motions of viscous fluid in arbitrary open container. The
small motions of the system depend on the viscosity coefficient of the fluid, and we have the well
known results for a pendulum partially filled with an ordinary viscous liquid [2, 19].

i) For a large viscosity coefficient there is a set of real eigenvalues λ+
n →∞ corresponding to arbitrary

strongly damped aperiodic motions (internal dissipative waves) and a set of real eigenvalues
λ−n → 0 , corresponding to arbitrary weakly damped aperiodic motions (surface waves).

ii) For a small viscosity coefficient, there is a finite number of complex eigenvalues corresponding
to damped ”oscillatory” motions.

11. Concluding remarks

In conclusion, we can confirm that this problem is new both in its hydrodynamic statement and
as a problem in mathematical physics. It is shown that the visco-elastic forces are the cause of new
physical effects that are not characteristic for an ordinary viscous incompressible fluid filling completely
or partially a certain moving vessels. We believe that problems of this kind will capture the attention
of other researchers. These are two important directions in which we believe that the studies should
directed in the future.

1) For pendulum, piezoelectric materials can be used to examine mechanical behaviors on the stability
of pendulum with viscoelastic fluid in presence of an electric field.

2) For fluid inside the cavity, relaxation property can be introduced, and dynamical characteristics of
pendulum can be investigated in relation with this new physical fluid property.
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