The recent pandemic caused by the SARS-CoV-2 virus continues to be an enormous global challenge faced by the healthcare sector. Availability of new vaccines and drugs targeting SARS-CoV-2 and sequelae of COVID-19 has given the world hope in ending the pandemic. However, the emergence of mutations in the SARS-CoV-2 viral genome every couple of months in different parts of world is a persistent danger to public health. Currently there is no single treatment to eradicate the risk of COVID-19. The widespread transmission of SARS-CoV-2 due to the Omicron variant necessitates continued work on the development and implementation of effective vaccines. Moreover, there is evidence that mutations in the receptor domain of the SARS-CoV-2 spike glycoprotein led to the decrease in current vaccine efficacy by escaping antibody recognition. Therefore, it is essential to actively identify the mechanisms by which SARS-CoV-2 evades the host immune system, study the long-lasting effects of COVID-19 and develop therapeutics targeting SARS-CoV-2 infections in humans and preclinical models. In this review, we describe the pathogenic mechanisms of SARS-CoV-2 infection as well as the innate and adaptive host immune responses to infection. We address the ongoing need to develop effective vaccines that provide protection against different variants of SARS-CoV-2, as well as validated endpoint assays to evaluate the immunogenicity of vaccines in the pipeline, medications, anti-viral drug therapies and public health measures, that will be required to successfully end the COVID-19 pandemic.
Citation: Rakhi Harne, Brittany Williams, Hazem F. M. Abdelaal, Susan L. Baldwin, Rhea N. Coler. SARS-CoV-2 infection and immune responses[J]. AIMS Microbiology, 2023, 9(2): 245-276. doi: 10.3934/microbiol.2023015
The recent pandemic caused by the SARS-CoV-2 virus continues to be an enormous global challenge faced by the healthcare sector. Availability of new vaccines and drugs targeting SARS-CoV-2 and sequelae of COVID-19 has given the world hope in ending the pandemic. However, the emergence of mutations in the SARS-CoV-2 viral genome every couple of months in different parts of world is a persistent danger to public health. Currently there is no single treatment to eradicate the risk of COVID-19. The widespread transmission of SARS-CoV-2 due to the Omicron variant necessitates continued work on the development and implementation of effective vaccines. Moreover, there is evidence that mutations in the receptor domain of the SARS-CoV-2 spike glycoprotein led to the decrease in current vaccine efficacy by escaping antibody recognition. Therefore, it is essential to actively identify the mechanisms by which SARS-CoV-2 evades the host immune system, study the long-lasting effects of COVID-19 and develop therapeutics targeting SARS-CoV-2 infections in humans and preclinical models. In this review, we describe the pathogenic mechanisms of SARS-CoV-2 infection as well as the innate and adaptive host immune responses to infection. We address the ongoing need to develop effective vaccines that provide protection against different variants of SARS-CoV-2, as well as validated endpoint assays to evaluate the immunogenicity of vaccines in the pipeline, medications, anti-viral drug therapies and public health measures, that will be required to successfully end the COVID-19 pandemic.
[1] | Shaw-Taylor L (2020) An introduction to the history of infectious diseases, epidemics and the early phases of the long-run decline in mortality. Econ Hist Rev 73: E1-e19. https://doi.org/10.1111/ehr.13019 |
[2] | Mehandru S, Merad M (2022) Pathological sequelae of long-haul COVID. Nat Immunol 23: 194-202. https://doi.org/10.1038/s41590-021-01104-y |
[3] | Zhang Q, Wang Y, Qi C, et al. (2020) Clinical trial analysis of 2019-nCoV therapy registered in China. J Med Virol 92: 540-545. https://doi.org/10.1002/jmv.25733 |
[4] | Andersen KG, Rambaut A, Lipkin WI, et al. (2020) The proximal origin of SARS-CoV-2. Nat Med 26: 450-452. https://doi.org/10.1038/s41591-020-0820-9 |
[5] | Huang C, Wang Y, Li X, et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 |
[6] | Wu F, Zhao S, Yu B, et al. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579: 265-269. https://doi.org/10.1038/s41586-020-2008-3 |
[7] | Zhu N, Zhang D, Wang W, et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New Engl J Med 382: 727-733. https://doi.org/10.1056/NEJMoa2001017 |
[8] | Dong E, Du H, Gardner L (2020) An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 20: 533-534. https://doi.org/10.1016/S1473-3099(20)30120-1 |
[9] | WHO coronavirus (COVID-19) dashboard | WHO coronavirus (COVID-19) dashboard with vaccination data [internet] (2022). [cited 2022 OCT 11]. Available from: https://covid19.who.int/. |
[10] | CDC coronavirus COVID-19 Data tracker I CDC coronavirus COVID-19 Data tracker with total deaths [internet] (2022). [cited 2022 OCT 11]. Available from: https://covid.cdc.gov/covid-data-tracker/#datatracker-home. |
[11] | Wu X, Liu X, Zhou Y, et al. (2021) 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir Med 9: 747-754. https://doi.org/10.1016/S2213-2600(21)00174-0 |
[12] | Montefusco L, Ben Nasr M, D'Addio F, et al. (2021) Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab 3: 774-785. https://doi.org/10.1038/s42255-021-00407-6 |
[13] | Bridges JP, Vladar EK, Huang H, et al. (2022) Respiratory epithelial cell responses to SARS-CoV-2 in COVID-19. Thorax 77: 203-209. https://doi.org/10.1136/thoraxjnl-2021-217561 |
[14] | Jamil S, Mark N, Carlos G, et al. (2020) Diagnosis and management of COVID-19 disease. Am J Respir Crit Care Med 201: P19-P20. https://doi.org/10.1164/rccm.2020C1 |
[15] | Struyf T, Deeks JJ, Dinnes J, et al. (2021) Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst Rev 7: CD013665. https://doi.org/10.1002/14651858.CD013665.pub2 |
[16] | Soy M, Keser G, Atagündüz P, et al. (2020) Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 39: 2085-2094. https://doi.org/10.1007/s10067-020-05190-5 |
[17] | Ye Q, Wang B, Mao J (2020) The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 80: 607-613. https://doi.org/10.1016/j.jinf.2020.03.037 |
[18] | Hu B, Huang S, Yin L (2021) The cytokine storm and COVID-19. J Med Virol 93: 250-256. https://doi.org/10.1002/jmv.26232 |
[19] | Zanza C, Romenskaya T, Manetti AC, et al. (2022) Cytokine storm in COVID-19: immunopathogenesis and therapy. Medicina (Kaunas) 58: 144. https://doi.org/10.3390/medicina58020144 |
[20] | Sarma A, Christenson SA, Byrne A, et al. (2021) Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS. Nat Commun 12: 5152. https://doi.org/10.1038/s41467-021-25040-5 |
[21] | Sinha P, Matthay MA, Calfee CS (2020) Is a “Cytokine Storm” relevant to COVID-19?. JAMA Intern Med 180: 1152-1154. https://doi.org/10.1001/jamainternmed.2020.3313 |
[22] | Fogarty H, Townsend L, Morrin H, et al. (2021) Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost 19: 2546-2553. https://doi.org/10.1111/jth.15490 |
[23] | Lerum TV, Aaløkken TM, Brønstad E, et al. (2021) Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur Respir J 57: 2003448. https://doi.org/10.1183/13993003.03448-2020 |
[24] | Montani D, Savale L, Noel N, et al. (2022) Post-acute COVID-19 syndrome. Eur Respir Rev 31: 210185. https://doi.org/10.1183/16000617.0185-2021 |
[25] | McGroder CF, Zhang D, Choudhury MA, et al. (2021) Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length. Thorax 76: 1242-1245. https://doi.org/10.1136/thoraxjnl-2021-217031 |
[26] | Maccio U, Zinkernagel AS, Schuepbach R, et al. (2022) Long-Term Persisting SARS-CoV-2 RNA and Pathological Findings: Lessons Learnt From a Series of 35 COVID-19 Autopsies. Front Med 9: 778489. https://doi.org/10.3389/fmed.2022.778489 |
[27] | Chun HJ, Coutavas E, Pine A, et al. (2021) Immuno-fibrotic drivers of impaired lung function in post-acute sequelae of SARS-CoV-2 infection (PASC). medRxiv . https://doi.org/10.1101/2021.01.31.21250870 |
[28] | Long Q, Li J, Hu X, et al. (2021) Follow-Ups on persistent symptoms and pulmonary function among post-acute COVID-19 patients: a systematic review and meta-analysis. Front Med (Lausanne) 8: 702635. https://doi.org/10.3389/fmed.2021.702635 |
[29] | Cares-Marambio K, Montenegro-Jiménez Y, Torres-Castro R, et al. (2021) Prevalence of potential respiratory symptoms in survivors of hospital admission after coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Chron Respir Dis 18: 14799731211002240. https://doi.org/10.1177/14799731211002240 |
[30] | Sigfrid L, Drake TM, Pauley E, et al. (2021) Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg Health Eur 8: 100186. https://doi.org/10.1016/j.lanepe.2021.100186 |
[31] | Boehmer TK, Kompaniyets L, Lavery AM, et al. (2021) Association between COVID-19 and myocarditis using hospital-based administrative data—United States, March 2020–January 2021. MMWR Morb Mortal Wekly Rep 70: 1228-1232. https://doi.org/10.15585/mmwr.mm7035e5 |
[32] | Szarpak L, Pruc M, Filipiak KJ, et al. (2022) Myocarditis: A complication of COVID-19 and long-COVID-19 syndrome as a serious threat in modern cardiology. Cardiol J 29: 178-179. https://doi.org/10.5603/CJ.a2021.0155 |
[33] | Xie Y, Xu E, Bowe B, et al. (2022) Long-term cardiovascular outcomes of COVID-19. Nat Med 28: 583-590. https://doi.org/10.1038/s41591-022-01689-3 |
[34] | Soares MN, Eggelbusch M, Naddaf E, et al. (2022) Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle 13: 11-22. https://doi.org/10.1002/jcsm.12896 |
[35] | Blomberg B, Mohn KG-I, Brokstad KA, et al. (2021) Long COVID in a prospective cohort of home-isolated patients. Nat Med 27: 1607-1613. https://doi.org/10.1038/s41591-021-01433-3 |
[36] | Liu YH, Chen Y, Wang QH, et al. (2022) One-year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China. JAMA Neurol 79: 509. https://doi.org/10.1001/jamaneurol.2022.0461 |
[37] | Najt P, Richards HL, Fortune DG (2021) Brain imaging in patients with COVID-19: A systematic review. Brain Behav Immun Health 16: 100290. https://doi.org/10.1016/j.bbih.2021.100290 |
[38] | Douaud G, Lee S, Alfaro-Almagro F, et al. (2022) SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604: 697-707. https://doi.org/10.1038/s41586-022-04569-5 |
[39] | Loosen SH, Jensen BEO, Tanislav C, et al. (2022) Obesity and lipid metabolism disorders determine the risk for development of long COVID syndrome: a cross-sectional study from 50,402 COVID-19 patients. Infection . https://doi.org/10.1007/s15010-022-01784-0 |
[40] | Scherer PE, Kirwan JP, Rosen CJ (2022) Post-acute sequelae of COVID-19: A metabolic perspective. eLife 11. https://doi.org/10.7554/eLife.78200 |
[41] | Paneni F, Patrono C (2022) Increased risk of incident diabetes in patients with long COVID. Eur Heart J 43: 2094-2095. https://doi.org/10.1093/eurheartj/ehac196 |
[42] | Xie Y, Al-Aly Z (2022) Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol 10: 311-321. https://doi.org/10.1016/S2213-8587(22)00044-4 |
[43] | Mantovani A, Morrone MC, Patrono C, et al. (2022) Long Covid: where we stand and challenges ahead. Cell Death Differ 29: 1891-1900. https://doi.org/10.1038/s41418-022-01052-6 |
[44] | Su S, Wong G, Shi W, et al. (2016) Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol 24: 490-502. https://doi.org/10.1016/j.tim.2016.03.003 |
[45] | Verma J, Subbarao N (2021) A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics. Arch Virol 166: 697-714. https://doi.org/10.1007/s00705-021-04961-y |
[46] | Lu R, Zhao X, Li J, et al. (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395: 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8 |
[47] | Drosten C, Günther S, Preiser W, et al. (2003) Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New Engl J Med 348: 1967-1976. https://doi.org/10.1056/NEJMoa030747 |
[48] | Zaki AM, Van Boheemen S, Bestebroer TM, et al. (2012) Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. New Engl J Med 367: 1814-1820. https://doi.org/10.1056/NEJMoa1211721 |
[49] | Tracking SARS-CoV-2 Variants [internet] [cited 2022 OCT 11] (2022). Available from: https://www.who.int/activities/tracking-SARS-CoV-2-variants |
[50] | Gowrisankar A, Priyanka TMC, Banerjee S (2022) Omicron: a mysterious variant of concern. The Eur Phys J Plus 137. https://doi.org/10.1140/epjp/s13360-021-02321-y |
[51] | Mallapaty S (2022) COVID-19: How Omicron overtook Delta in three charts. Nature . https://doi.org/10.1038/d41586-022-00632-3 |
[52] | Chen Q, Zhang J, Wang P, et al. (2022) The mechanisms of immune response and evasion by the main SARS-CoV-2 variants. iScience : 105044. https://doi.org/10.1016/j.isci.2022.105044 |
[53] | SARS-CoV-2 Variant Classifications and Definitions from CDC [internet] [cited 2022 OCT 11] (2022). Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html. |
[54] | Volz E, Mishra S, Chand M, et al. (2021) Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593: 266-269. https://doi.org/10.1038/s41586-021-03470-x |
[55] | Tegally H, Wilkinson E, Giovanetti M, et al. (2021) Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592: 438-443. https://doi.org/10.1038/s41586-021-03402-9 |
[56] | Imai M, Halfmann PJ, Yamayoshi S, et al. (2021) Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc Natl Acad Sci USA 118: e2106535118. https://doi.org/10.1073/pnas.2106535118 |
[57] | Li B, Deng A, Li K, et al. (2022) Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nat Commun 13. https://doi.org/10.1038/s41467-022-28089-y |
[58] | Washington State Department of Health, Monitoring COVID-19 variants [internet] [cited 2022 OCT 11] (2022). Available from: https://doh.wa.gov/emergencies/covid-19/variants. |
[59] | Annavajhala MK, Mohri H, Wang P, et al. (2021) Emergence and Expansion of the SARS-CoV-2 Variant B.1.526 Identified in New York. Cold Spring Harbor Laboratory . https://doi.org/10.1101/2021.02.23.21252259 |
[60] | Menni C, Klaser K, May A, et al. (2021) Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis 21: 939-949. https://doi.org/10.1016/S1473-3099(21)00224-3 |
[61] | Karim SSA, Karim QA (2021) Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet 398: 2126-2128. https://doi.org/10.1016/S0140-6736(21)02758-6 |
[62] | Tian F, Tong B, Sun L, et al. (2021) N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10. https://doi.org/10.7554/eLife.69091 |
[63] | Kidd M, Richter A, Best A, et al. (2021) S-variant SARS-CoV-2 lineage B1.1.7 is associated with significantly higher viral load in samples tested by taqpath polymerase chain reaction. J Infect Dis 223: 1666-1670. https://doi.org/10.1093/infdis/jiab082 |
[64] | Davies NG, Jarvis CI, Edmunds WJ, et al. (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Cold Spring Harbor Laboratory . https://doi.org/10.1101/2021.02.01.21250959 |
[65] | Davies NG, Abbott S, Barnard RC, et al. (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372. https://doi.org/10.1126/science.abg3055 |
[66] | Challen R, Brooks-Pollock E, Read JM, et al. (2021) Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ 372: n579. https://doi.org/10.1136/bmj.n579 |
[67] | Alenquer M, Ferreira F, Lousa D, et al. (2021) Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. PLOS Pathog 17: e1009772. https://doi.org/10.1371/journal.ppat.1009772 |
[68] | Zhou D, Dejnirattisai W, Supasa P, et al. (2021) Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184: 2348-2361.e2346. https://doi.org/10.1016/j.cell.2021.02.037 |
[69] | Li Q, Nie J, Wu J, et al. (2021) SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 184: 2362-2371.e2369. https://doi.org/10.1016/j.cell.2021.02.042 |
[70] | O'Toole A, Hill V, Pybus OG, et al. (2021) Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Wellcome Open Res 6: 121. https://doi.org/10.12688/wellcomeopenres.16661.1 |
[71] | Faria NR, Mellan TA, Whittaker C, et al. (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372: 815-821. https://doi.org/10.1126/science.abh2644 |
[72] | Collier DA, Ferreira IATM, Kotagiri P, et al. (2021) Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 596: 417-422. https://doi.org/10.1038/s41586-021-03739-1 |
[73] | Wheatley AK, Juno JA (2022) COVID-19 vaccines in the age of the delta variant. Lancet Infect Dis 22: 429-430. https://doi.org/10.1016/S1473-3099(21)00688-5 |
[74] | Baral P, Bhattarai N, Hossen ML, et al. (2021) Mutation-induced changes in the receptor-binding interface of the SARS-CoV-2 Delta variant B.1.617.2 and implications for immune evasion. Biochem Biophys Res Commun 574: 14-19. https://doi.org/10.1016/j.bbrc.2021.08.036 |
[75] | Grabowski F, Kochańczyk M, Lipniacki T (2022) The spread of SARS-CoV-2 variant Omicron with a doubling time of 2.0–3.3 days can be explained by immune evasion. Viruses 14: 294. https://doi.org/10.3390/v14020294 |
[76] | Callaway E, Ledford H (2021) How bad is Omicron? What scientists know so far. Nature 600: 197-199. https://www.nature.com/articles/d41586-021-03614-z |
[77] | Xia S, Wang L, Zhu Y, et al. (2022) Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages. Signal Transduction Target Ther 7: 241. https://doi.org/10.1038/s41392-022-01105-9 |
[78] | Viana R, Moyo S, Amoako DG, et al. (2022) Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603: 679-686. https://doi.org/10.1038/s41586-022-04411-y |
[79] | Yamasoba D, Kimura I, Nasser H, et al. (2022) Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 185: 2103-2115.e2119. https://doi.org/10.1016/j.cell.2022.04.035 |
[80] | Weekly epidemiological update on COVID-19-28 September 2022 (2022). Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---28-september-2022 |
[81] | CDC coronavirus COVID-19 Data tracker I CDC coronavirus COVID-19 Variants and Genomic Surveillance US VOC [internet]. [cited 2022 OCT 11] (2022). Available from: https://covid.cdc.gov/covid-data-tracker/#variant-proportions. |
[82] | Shang J, Ye G, Shi K, et al. (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581: 221-224. https://doi.org/10.1038/s41586-020-2179-y |
[83] | Wrapp D, Wang N, Corbett KS, et al. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260-1263. https://doi.org/10.1126/science.abb2507 |
[84] | Conceicao C, Thakur N, Human S, et al. (2020) The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLOS Biol 18: e3001016. https://doi.org/10.1371/journal.pbio.3001016 |
[85] | Lu L, Liu X, Jin R, et al. (2020) Potential Roles of the Renin-Angiotensin System in the Pathogenesis and Treatment of COVID-19. BioMed Res Int 2020: 1-7. https://doi.org/10.1155/2020/5204348 |
[86] | Jackson CB, Farzan M, Chen B, et al. (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23: 3-20. https://doi.org/10.1038/s41580-021-00418-x |
[87] | Luan B, Wang H, Huynh T (2021) Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Lett 595: 1454-1461. https://doi.org/10.1002/1873-3468.14076 |
[88] | Alipoor SD, Mirsaeidi M (2022) SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep 49: 10715-10727. https://doi.org/10.1007/s11033-022-07700-x |
[89] | Russell MW, Moldoveanu Z, Ogra PL, et al. (2020) Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front Immunol 11: 611337. https://doi.org/10.3389/fimmu.2020.611337 |
[90] | Alfi O, Yakirevitch A, Wald O, et al. (2021) Human nasal and lung tissues infected ex vivo with SARS-CoV-2 provide insights into differential tissue-specific and virus-specific innate immune responses in the upper and lower respiratory tract. J Virol 95: e0013021. https://doi.org/10.1128/JVI.00130-21 |
[91] | Ahn JH, Kim J, Hong SP, et al. (2021) Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest 131. https://doi.org/10.1172/JCI148517 |
[92] | Zhang S, Wang L, Cheng G (2022) The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Mol Ther 30: 1869-1884. https://doi.org/10.1016/j.ymthe.2022.02.014 |
[93] | Zindel J, Kubes P (2020) DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol 15: 493-518. https://doi.org/10.1146/annurev-pathmechdis-012419-032847 |
[94] | Lowery SA, Sariol A, Perlman S (2021) Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe 29: 1052-1062. https://doi.org/10.1016/j.chom.2021.05.004 |
[95] | Martin-Sancho L, Lewinski MK, Pache L, et al. (2021) Functional landscape of SARS-CoV-2 cellular restriction. Mol Cell 81: 2656-2668.e2658. https://doi.org/10.1016/j.molcel.2021.04.008 |
[96] | Xu D, Biswal M, Neal A, et al. (2021) Review Devil's tools: SARS-CoV-2 antagonists against innate immunity. Curr Res Virol Sci 2: 100013. https://doi.org/10.1016/j.crviro.2021.100013 |
[97] | Han L, Zhuang MW, Deng J, et al. (2021) SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. J Med Virol 93: 5376-5389. https://doi.org/10.1002/jmv.27050 |
[98] | Zheng Y, Zhuang M-W, Han L, et al. (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduction Targe Ther 5: 299. https://doi.org/10.1038/s41392-020-00438-7 |
[99] | Tay MZ, Poh CM, Rénia L, et al. (2020) The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 20: 363-374. https://doi.org/10.1038/s41577-020-0311-8 |
[100] | Cabaro S, D'Esposito V, Di Matola T, et al. (2021) Cytokine signature and COVID-19 prediction models in the two waves of pandemics. Sci Rep 11: 20793. https://doi.org/10.1038/s41598-021-00190-0 |
[101] | Xu Z, Shi L, Wang Y, et al. (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8: 420-422. https://doi.org/10.1016/S2213-2600(20)30076-X |
[102] | Liao M, Liu Y, Yuan J, et al. (2020) Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 26: 842-844. https://doi.org/10.1038/s41591-020-0901-9 |
[103] | Clinical Characteristics of Covid-19 in China. New Engl J Med (2020) 382: 1859-1862. https://doi.org/10.1056/NEJMc2005203 |
[104] | Wang Y, He Y, Tong J, et al. (2020) Characterization of an asymptomatic cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected individuals outside of Wuhan, China. Clin Infect Dis 71: 2132-2138. https://doi.org/10.1093/cid/ciaa629 |
[105] | Sallusto F, Lanzavecchia A, Araki K, et al. (2010) From vaccines to memory and back. Immunity 33: 451-463. https://doi.org/10.1016/j.immuni.2010.10.008 |
[106] | Guo X, Guo Z, Duan C, et al. (2020) Long-term persistence of IgG antibodies in SARS-CoV infected healthcare workers. Cold Spring Harbor Laboratory . https://doi.org/10.1101/2020.02.12.20021386 |
[107] | Li CK-F, Wu H, Yan H, et al. (2008) T cell responses to whole SARS coronavirus in humans. J Immunol 181: 5490-5500. https://doi.org/10.4049/jimmunol.181.8.5490 |
[108] | Lam JH, Smith FL, Baumgarth N (2020) B cell activation and response regulation during viral infections. Viral Immunol 33: 294-306. https://doi.org/10.1089/vim.2019.0207 |
[109] | Elsner RA, Shlomchik MJ (2020) Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53: 1136-1150. https://doi.org/10.1016/j.immuni.2020.11.006 |
[110] | Allen CDC, Okada T, Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27: 190-202. https://doi.org/10.1016/j.immuni.2007.07.009 |
[111] | Palm AKE, Henry C (2019) Remembrance of things past: Long-term B cell memory after infection and vaccination. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01787 |
[112] | Traggiai E, Becker S, Subbarao K, et al. (2004) An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10: 871-875. https://doi.org/10.1038/nm1080 |
[113] | Song G, He W-T, Callaghan S, et al. (2021) Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat Commun 12. https://doi.org/10.1038/s41467-021-23074-3 |
[114] | Dugan HL, Stamper CT, Li L, et al. (2021) Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity 54: 1290-1303.e1297. https://doi.org/10.1016/j.immuni.2021.05.001 |
[115] | Suthar MS, Zimmerman MG, Kauffman RC, et al. (2020) Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Rep Med 1: 100040. https://doi.org/10.1016/j.xcrm.2020.100040 |
[116] | Piccoli L, Park YJ, Tortorici MA, et al. (2020) Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 183: 1024-1042.e1021. https://doi.org/10.1016/j.cell.2020.09.037 |
[117] | Premkumar L, Segovia-Chumbez B, Jadi R, et al. (2020) The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol 5. https://doi.org/10.1126/sciimmunol.abc8413 |
[118] | Robbiani DF, Gaebler C, Muecksch F, et al. (2020) Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584: 437-442. https://doi.org/10.1038/s41586-020-2456-9 |
[119] | Sakharkar M, Rappazzo CG, Wieland-Alter WF, et al. (2021) Prolonged evolution of the human B cell response to SARS-CoV-2 infection. Sci Immunol 6: eabg6916. https://doi.org/10.1126/sciimmunol.abg6916 |
[120] | Carvalho T, Krammer F, Iwasaki A (2021) The first 12 months of COVID-19: a timeline of immunological insights. Nat Rev Immunol 21: 245-256. https://doi.org/10.1038/s41577-021-00522-1 |
[121] | Liu X, Wang J, Xu X, et al. (2020) Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg Microb Infect 9: 1269-1274. https://doi.org/10.1080/22221751.2020.1773324 |
[122] | Long QX, Liu BZ, Deng HJ, et al. (2020) Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 26: 845-848. https://doi.org/10.1038/s41591-020-0897-1 |
[123] | Dan JM, Mateus J, Kato Y, et al. (2021) Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371: eabf4063. https://doi.org/10.1126/science.abf4063 |
[124] | Kuri-Cervantes L, Pampena MB, Meng W, et al. (2020) Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol 5: eabd7114. https://doi.org/10.1126/sciimmunol.abd7114 |
[125] | Shenoy S (2021) SARS-CoV-2 (COVID-19), viral load and clinical outcomes; lessons learned one year into the pandemic: A systematic review. World J Crit Care Med 10: 132-150. https://doi.org/10.5492/wjccm.v10.i4.132 |
[126] | Sterlin D, Mathian A, Miyara M, et al. (2021) IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med 13. https://doi.org/10.1126/scitranslmed.abd2223 |
[127] | Zhao J, Zhao J, Ashutosh, et al. (2016) Airway memory CD4 + T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44: 1379-1391. https://doi.org/10.1016/j.immuni.2016.05.006 |
[128] | McMahan K, Yu J, Mercado NB, et al. (2021) Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590: 630-634. https://doi.org/10.1038/s41586-020-03041-6 |
[129] | Zhao J, Zhao J, Perlman S (2010) T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 84: 9318-9325. https://doi.org/10.1128/JVI.01049-10 |
[130] | Wang Z, Yang X, Zhong J, et al. (2021) Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun 12: 1724. https://doi.org/10.1038/s41467-021-22036-z |
[131] | Le Bert N, Clapham HE, Tan AT, et al. (2021) Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med 218. https://doi.org/10.1084/jem.20202617 |
[132] | Bertoletti A, Le Bert N, Qui M, et al. (2021) SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol Immunol 18: 2307-2312. https://doi.org/10.1038/s41423-021-00743-3 |
[133] | Wang Z, Yang X, Zhong J, et al. (2021) Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun 12. https://doi.org/10.1038/s41467-021-22036-z |
[134] | Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. (2020) Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183: 158-168.e114. https://doi.org/10.1016/j.cell.2020.08.017 |
[135] | Tan AT, Linster M, Tan CW, et al. (2021) Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep 34: 108728. https://doi.org/10.1016/j.celrep.2021.108728 |
[136] | Le Bert N, Tan AT, Kunasegaran K, et al. (2020) SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584: 457-462. https://doi.org/10.1038/s41586-020-2550-z |
[137] | Kingstad-Bakke B, Lee W, Chandrasekar SS, et al. (2022) Vaccine-induced systemic and mucosal T cell immunity to SARS-CoV-2 viral variants. Proc Natl Acad Sci 119. https://doi.org/10.1073/pnas.2118312119 |
[138] | Le Bert N, Clapham HE, Tan AT, et al. (2021) Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med 218. https://doi.org/10.1084/jem.20202617 |
[139] | Codo AC, Davanzo GG, Monteiro LDB, et al. (2020) Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/Glycolysis-dependent axis. Cell Metabo 32: 437-446.e435. https://doi.org/10.2139/ssrn.3606770 |
[140] | Moga E, Lynton-Pons E, Domingo P (2022) The robustness of cellular immunity determines the fate of SARS-CoV-2 infection. Front Immunol 13: 904686. https://doi.org/10.3389/fimmu.2022.904686 |
[141] | Sherina N, Piralla A, Du L, et al. (2021) Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6–8 months after the infection. Med (NY) 2: 281-295.e284. https://doi.org/10.1016/j.medj.2021.02.001 |
[142] | Shomuradova AS, Vagida MS, Sheetikov SA, et al. (2020) SARS-CoV-2 epitopes are recognized by a public and diverse repertoire of human T cell receptors. Immunity 53: 1245-1257.e1245. https://doi.org/10.1016/j.immuni.2020.11.004 |
[143] | Cohen KW, Linderman SL, Moodie Z, et al. (2021) Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep Med 2: 100354. https://doi.org/10.1016/j.xcrm.2021.100354 |
[144] | Grau-Expósito J, Sánchez-Gaona N, Massana N, et al. (2021) Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat Commun 12. https://doi.org/10.1038/s41467-021-23333-3 |
[145] | Balcom EF, Nath A, Power C (2021) Acute and chronic neurological disorders in COVID-19: potential mechanisms of disease. Brain 144: 3576-3588. https://doi.org/10.1093/brain/awab302 |
[146] | Wiech M, Chroscicki P, Swatler J, et al. (2022) Remodeling of T cell dynamics during long COVID is dependent on severity of SARS-CoV-2 infection. Front Immunol 13: 886431. https://doi.org/10.3389/fimmu.2022.886431 |
[147] | Grifoni A, Weiskopf D, Ramirez SI, et al. (2020) Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181: 1489-1501.e1415. https://doi.org/10.1016/j.cell.2020.05.015 |
[148] | Nelde A, Bilich T, Heitmann JS, et al. (2021) SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol 22: 74-85. https://doi.org/10.1038/s41590-020-00808-x |
[149] | Schulien I, Kemming J, Oberhardt V, et al. (2021) Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nat Med 27: 78-85. https://doi.org/10.1038/s41591-020-01143-2 |
[150] | Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. (2020) Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183: 996-1012.e1019. https://doi.org/10.1016/j.cell.2020.09.038 |
[151] | Szabo PA, Dogra P, Gray JI, et al. (2021) Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54: 797-814.e796. https://doi.org/10.1016/j.immuni.2021.03.005 |
[152] | Luangrath MA, Schmidt ME, Hartwig SM, et al. (2021) Tissue-resident memory T cells in the lungs protect against acute respiratory syncytial virus infection. ImmunoHorizons 5: 59-69. https://doi.org/10.4049/immunohorizons.2000067 |
[153] | Olson MR, Hartwig SM, Varga SM (2008) The number of respiratory syncytial virus (RSV)-specific memory CD8 T cells in the lung is critical for their ability to inhibit RSV vaccine-enhanced pulmonary eosinophilia. J Immunol 181: 7958-7968. https://doi.org/10.4049/jimmunol.181.11.7958 |
[154] | Masopust D, Soerens AG (2019) Tissue-resident T cells and other resident leukocytes. Annu Rev Immunol 37: 521-546. https://doi.org/10.1146/annurev-immunol-042617-053214 |
[155] | Worbs T, Hammerschmidt SI, Förster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17: 30-48. https://doi.org/10.1038/nri.2016.116 |
[156] | Lee JS, Park S, Jeong HW, et al. (2020) Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol 5: eabd1554. https://doi.org/10.1126/sciimmunol.abd1554 |
[157] | Lan J, Ge J, Yu J, et al. (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581: 215-220. https://doi.org/10.1038/s41586-020-2180-5 |
[158] | Wang K, Chen W, Zhang Z, et al. (2020) CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 5: 283. |
[159] | Ni L, Ye F, Cheng M-L, et al. (2020) Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity 52: 971-977.e973. https://doi.org/10.1016/j.immuni.2020.04.023 |
[160] | Xu Z, Shi L, Wang Y, et al. (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8: 420-422. https://doi.org/10.1016/S2213-2600(20)30076-X |
[161] | Luo XH, Zhu Y, Mao J, et al. (2021) T cell immunobiology and cytokine storm of COVID-19. Scand J Immunol 93: e12989. https://doi.org/10.1111/sji.12989 |
[162] | Zhang Q, Bastard P, Liu Z, et al. (2020) Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370: eabd4570. https://doi.org/10.1126/science.abd4570 |
[163] | Lucas C, Wong P, Klein J, et al. (2020) Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584: 463-469. https://doi.org/10.1038/s41586-020-2588-y |
[164] | Martonik D, Parfieniuk-Kowerda A, Rogalska M, et al. (2021) The role of Th17 response in COVID-19. Cells 10: 1550. https://doi.org/10.3390/cells10061550 |
[165] | Liu L, Wei Q, Lin Q, et al. (2019) Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4. https://doi.org/10.1172/jci.insight.123158 |
[166] | Liu B, Li M, Zhou Z, et al. (2020) Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?. J Autoimmun 111: 102452. https://doi.org/10.1016/j.jaut.2020.102452 |
[167] | Hasanvand A (2022) COVID-19 and the role of cytokines in this disease. Inflammopharmacology 30: 789-798. https://doi.org/10.1007/s10787-022-00992-2 |
[168] | Crotty S (2011) Follicular Helper CD4 T Cells (TFH). Annu Rev Immunol 29: 621-663. https://doi.org/10.1146/annurev-immunol-031210-101400 |
[169] | Ueno H, Banchereau J, Vinuesa CG (2015) Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 16: 142-152. https://doi.org/10.1038/ni.3054 |
[170] | Turner JS, O'Halloran JA, Kalaidina E, et al. (2021) SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596: 109-113. https://doi.org/10.1038/s41586-021-03738-2 |
[171] | Turner JS, Zhou JQ, Han J, et al. (2020) Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 586: 127-132. https://doi.org/10.1038/s41586-020-2711-0 |
[172] | Bok K, Sitar S, Graham BS, et al. (2021) Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 54: 1636-1651. https://doi.org/10.1016/j.immuni.2021.07.017 |
[173] | Hou X, Zaks T, Langer R, et al. (2021) Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6: 1078-1094. https://doi.org/10.1038/s41578-021-00358-0 |
[174] | Blakney AK, McKay PF, Yus BI, et al. (2019) Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther 26: 363-372. https://doi.org/10.1038/s41434-019-0095-2 |
[175] | Chaudhary N, Weissman D, Whitehead KA (2021) mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 20: 817-838. https://doi.org/10.1038/s41573-021-00283-5 |
[176] | Seneff S, Nigh G, Kyriakopoulos AM, et al. (2022) Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol 164: 113008. https://doi.org/10.1016/j.fct.2022.113008 |
[177] | Röltgen K, Nielsen SCA, Silva O, et al. (2022) Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185: 1025-1040.e1014. https://doi.org/10.1016/j.cell.2022.01.018 |
[178] | Bos R, Rutten L, Van Der Lubbe JEM, et al. (2020) Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. npj Vaccines 5. https://doi.org/10.1038/s41541-020-00243-x |
[179] | Joe CCD, Jiang J, Linke T, et al. (2022) Manufacturing a chimpanzee adenovirus-vectored SARS-CoV-2 vaccine to meet global needs. Biotechnol Bioeng 119: 48-58. https://doi.org/10.1002/bit.27945 |
[180] | Dunkle LM, Kotloff KL, Gay CL, et al. (2022) Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. N Engl J Med 386: 531-543. https://doi.org/10.1056/NEJMoa2116185 |
[181] | Jacob-Dolan C, Barouch DH (2022) COVID-19 xaccines: adenoviral vectors. Annu Rev Med 73: 41-54. https://doi.org/10.1146/annurev-med-012621-102252 |
[182] | Mendonça SA, Lorincz R, Boucher P, et al. (2021) Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines 6. https://doi.org/10.1038/s41541-021-00356-x |
[183] | Li M, Wang H, Tian L, et al. (2022) COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther 7: 146. https://doi.org/10.1038/s41392-022-00996-y |
[184] | Young M, Crook H, Scott J, et al. (2022) Covid-19: virology, variants, and vaccines. BMJ Med 1: e000040. https://doi.org/10.1136/bmjmed-2021-000040 |
[185] | Dunkle LM, Kotloff KL, Gay CL, et al. (2022) Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. New Engl J Med 386: 531-543. https://doi.org/10.1056/NEJMoa2116185 |
[186] | Li Q, Wang Y, Sun Q, et al. (2022) Immune response in COVID-19: what is next?. Cell Death Differ 29: 1107-1122. https://doi.org/10.1038/s41418-022-01015-x |
[187] | De Gier B, Andeweg S, Joosten R, et al. (2021) Vaccine effectiveness against SARS-CoV-2 transmission and infections among household and other close contacts of confirmed cases, the Netherlands, February to May 2021. Euro surveill 26. https://doi.org/10.2807/1560-7917.ES.2021.26.31.2100640 |
[188] | Prunas O, Warren JL, Crawford FW, et al. (2022) Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel. Science 375: 1151-1154. https://doi.org/10.1126/science.abl4292 |
[189] | Lipsitch M, Krammer F, Regev-Yochay G, et al. (2022) SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat Rev Immunol 22: 57-65. https://doi.org/10.1038/s41577-021-00662-4 |
[190] | Polack FP, Thomas SJ, Kitchin N, et al. (2020) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New Engl J Med 383: 2603-2615. https://doi.org/10.1056/NEJMoa2034577 |
[191] | Baden LR, El Sahly HM, Essink B, et al. (2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New Engl J Med 384: 403-416. https://doi.org/10.1056/NEJMoa2035389 |
[192] | Sadoff J, Gray G, Vandebosch A, et al. (2022) Final analysis of efficacy and safety of single-dose Ad26.COV2.S. New Engl J Med 386: 847-860. https://doi.org/10.1056/NEJMoa2117608 |
[193] | Falsey AR, Sobieszczyk ME, Hirsch I, et al. (2021) Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 vaccine. New Engl J Med 385: 2348-2360. https://doi.org/10.1056/NEJMoa2105290 |
[194] | Zhang Y, Belayachi J, Yang Y, et al. (2022) Real-world study of the effectiveness of BBIBP-CorV (Sinopharm) COVID-19 vaccine in the Kingdom of Morocco. BMC Public Health 22. https://doi.org/10.1186/s12889-022-14016-9 |
[195] | Tanriover MD, Doğanay HL, Akova M, et al. (2021) Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 398: 213-222. https://doi.org/10.1016/S0140-6736(21)01429-X |
[196] | Erasmus JH, Khandhar AP, O'Connor MA, et al. (2020) An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci Transl Med 12. https://doi.org/10.1126/scitranslmed.abc9396 |
[197] | Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJC, et al. (2015) A Practical Guide to Immunoassay Method Validation. Front Neuro 6. https://doi.org/10.3389/fneur.2015.00179 |
[198] | Burd Eileen M (2010) Validation of Laboratory-Developed Molecular Assays for Infectious Diseases. Clin Microbiol Rev 23: 550-576. https://doi.org/10.1128/CMR.00074-09 |
[199] | Larsen SE, Berube BJ, Pecor T, et al. (2021) Qualification of ELISA and neutralization methodologies to measure SARS-CoV-2 humoral immunity using human clinical samples. J Immunol Methods 499: 113160. https://doi.org/10.1016/j.jim.2021.113160 |