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Abstract: In this paper, we consider a Schrodinger operator L = —Ag + V on the stratified Lie
group H. First, we establish fractional heat kernel estimates related to I, 8 € (0,1). By utilizing
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1. Introduction

Over the past few years, the Schrodinger operator L := —A + V has attracted considerable attention,
where A = 37, % and V is a nonnegative potential. In 1995, Shen [1] investigated the estimate of the
fundamental solution of L assuming that the nonnegative potential V belongs to a reverse Holder class
B, for some s > n/2. Since then, there have been a lot of researches which focus on the related problems
on L, see [2—-11]. During the same period, function spaces related to L were also studied extensively.
Similarly to the classical Hardy spaces, one can define the Hardy space H; (R"), related to L, as the
set of all L'-functions f that satisfy the property M;(f) € L'(R"), where M, (f)(x) := sup,., le”"L f(x)|
and {e"''}.( denotes the heat semigroup related with L. In [12], Dziubariski and Zienkiewicz utilized
the local Hardy space to explore the atomic characterization and Riesz transform characterization of
H i(R”), see also [13] for the formulation of Hf(R”), p € (0,1). As the dual space of H i(R"), the BMO
type space BMO;(R") was introduced by Dziubanski et al. in [14]. As an analogue of the case of
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Euclidean spaces, Li in [15] investigated the fundamental solution of L and related singular integral
operators in the context of nilpotent groups. Similarly to the idea of [12] and [14], the Hardy space and
BMO type space related to L were investigated by Lin Liu and Liu. [16] and Lin and Liu [17] on the
Heisenberg group, respectively. For more information, we recommend referring to [18-24] and the
references therein.

One of objectives of this paper is to study the fractional heat kernel related to L?, 8 € (0, 1), within
the context of stratified Lie groups. In stratified Lie groups H, the Schrodinger operator is defined as
L = —Ayg + V, where Ay is the sub-Laplacian on H.

Definition 1.1. A nonnegative potential V is said to belong to By (co > s > 1) if there exists C > 0 such

that, for every ball B,
(i f Vi(g)dg) " < < f V(g)dg
|B| Jg Bl U

holds.

In the sequel, we always assume that the nonnegative potential 0 # V € B, for some s, where d is the
homogeneous dimension of H and d/2 < s < d. Let oy =2 —d/s € (0,1) and 6 < min{28, dy}. In the
whole paper, we maintain the assumption and definitions of 6y, 6 and s.

Let —A be the Laplace operator on R”. The fractional heat semigroup related to (—AY?, 8 € (0, 1), can
be defined as -

e u(x) = ™), Be(O,1), (1.1)

where fdenotes the Fourier transform of f.

The fractional heat semigroup {e7'="},_ has found extensive application in the fields of partial
differential equations and mathematical physics, owing to the background of quantum mechanics. It is
well-known that {e"(‘A)ﬁ}M can aid in constructing the linear component of solutions to fluid equations
in mathematical physics, including the generalized Navier-Stokes equation and the MHD equation. We
refer readers to [25-28] and the references therein. In [27], Miao Yuan and Zhang proved that the kernel
of {¢7 "}, has the following regularity estimate in the Euclidean space:

—1(-AY e n+1
e (x) < P )P Y(x,1) € R
In [22], Wang et al. got the estimate of "d"e™""2%)(:), m € Z,, on the Heisenberg group G. In this
paper, we extend the estimate of "9"¢~""2¢)(-) to the fractional case on the stratified Lie group, which

is defined as
e A (), (1.2)

By the aid of the estimate of #"d"e~""2%)(-), we can obtain the estimate of (1.2). In particular, when
B = 1, the estimate of (1.2) returns to the estimate of "d"e""42)(-). See Lemma 3.2.

For If = (~Ay + V), B € (0, 1), the fractional heat semigroup {e~"Z’},-( not be defined by the Fourier
transform as in (1.1). Therefore, the formula in [27] cannot be used for the kernel estimate of e

In Section 3, we give some regularity estimates of {e"LB}M. Unlike {e‘f(‘A)ﬁ}Do, we utilize the
following subordinative formula to represent e (cf. [25]), that is,

e (g, h) = f ) 1 (s)e™ (g, hyds ¥ g, h € H, (1.3)
0
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where 77,3 (+) is a continuous function on (0, co) satisfying
(s) = 1/ (s/1'1B);
() <t/s""P Vs,t>0;

[ s f{(s)ds < o0, 7> 0;
1 (s) =~ t/s"F Vs> 18 >0,

So, the identity (1.3) and the estimate of e~"Z(-, -) can be used to estimate e‘tLﬁ(-, ).
In Section 4, applying Carleson measures generated by {e},., we can characterize the Campanato
type space BM O} (H), which is defined in Definition 1.2. Define

y(g):sup{r>0:%fV(h)dhsl} VgeH, B=Bgr).
B

Let f3 denote the mean of f on B, that is, fz = |B|™! fB f(h)dh and

fB’ r< ’}/(g),
0, rz=vy@.
Definition 1.2. Let 0 < v < §/d. If a locally integrable function f satisfies

f(B,V)={

d
1P llswor = sup{|B|-V( f £(@) - £(B, v>|2—g)”2} < oo,
BcH B |B|

we say that it belongs to the Campanato type space BM O} (H).
Section 4.2 is devoted to the BM O} (H)-boundedness of the following square functions:

* G dzdt\1/2
St =( [ [ e rop ) g e

GL () = ( f |t2ﬂmmﬂe—f””f<g>|2?)”Z, g cH.
0

We also prove that square functions S - pand GZ,,@ are bounded from L*(H) to BM O} (H). See Theorem
4.6.

Remark 1.3. When v = 0, we can see that BM OQ(H) = BMO;(H). Hence, if 8 = 1 and m = 1, Theorem
4.6 returns to [17, Theorem 6]. When v # 0, if 8 = 1, Theorem 4.6 returns to [22, Theorem 4.12].

Finally, inspired by [17,29], using Theorem 4.6, Lemma 4.2 and an interpolation argument, we
show that square functions St pand Gi,ﬂ are bounded on L”(H) for 1 < p < co. See Theorem 4.7. As
applications of Theorem 4.7, we also obtain the boundednesses of S pand Gt  on the Morrey space

Lgﬁ(H) and the weak Morrey space WL?:f(H). See Theorems 5.4 & 5.5.
Remark 1.4. In this paper, if we assume that the nonnegative potential 0 # V € B, for some s > d/2,
where d is the homogeneous dimension of H, then § < min{28, d, 1}.

Throughout this article, we will use the following notation. Let Z, = {0,1,2,---}and N = {1,2,- - -}.
We shall write ¢ and C for various positive constants that are independent of the main variables involved
and may be different at each occurrence. The notation B; < B, means that the inequality B; < CB,
holds. The notation B; ~ B, means that there exists a constant C > 1 such that C~' < B,/B, < C.
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2. Preliminaries

As in [30], a Lie group H is known as stratified if it is nilpotent, connected and simple connected,
and its Lie algebra g is equipped with a family of dilations: {6, : r > 0} and g can be expressed as a
direct sum Gazflzlgj such that [g;, g;] C gi+j, 81 generates g, and 6,(X) = r’X for X e gj.d= 2'721 Jjdjis
called the homogeneous dimension of H, where d; = dim g;. H is topologically identified with g by the
map exp :g — H. Moreover, we also view 9, as an automorphism of H. For a homogeneous norm of H,
it needs to satisfy

2.1

lghl < y(gl+|hl) Vg, heH, y>1;
llghl — Igll < ylhl VYg,h € H,|h|l <|g|/2.

Denote by B(g,r) = {h € H : |g"'h| < r} a ball of radius r centered at g. The Haar measure on H is
simply the Lebesgue measure on R” under the identification of H with g and the identification of g with
R", where n = ZT d;. The measure of B(g,r) is |B(g,7)| = b'r!, where b’ is a constant.

We identify g with g;, the Lie algebra of left-invariant vector fields on H. Let {X;: j=1,...,d,} be a
basis of g;. The sub-Laplacian Ay is defined by Ay := Z‘/’l | X; Also, the gradient operator V is denoted
by V= (X], ...,Xdl).

The notation S denote the semidirect extension of H by the one parameter group of dilations.

(g,a)(h,b) = (g(6,h),ab),g,h € H,a,b >0
is the group law of S. The Carleson box Q(B) = Q(g, r) is defined as
Qg,r)={(h,s) eS: Ig_lhl <r,0<s<r}

Lemma 2.1. ([17, Lemmas 4 & 5]) There exist C > 0 and Ny > 1 such that, for all g, h € H,

_ _ —-N _ No/(1+Ny)
Cy@)(1+1g7'h/¥(®) <y < (1 +1g ' hl/v) (2.2)
Specifically, y(h) ~ y(g) if Ih™'g| < Cy(g).
Using (2.2), we obtain that for each fixed k € N
(14 20 2Ty o4 2T 23
¥(g) y(©)/ ™ y(h) '

holds for any / € B(g, r) with g € H and r € (0, o0), where the constant C is the same as in (2.2).

Below we state some basic facts about the Hardy type space H; (H), d/(d + 6) < p < 1. Denote by
M, the maximal operator, that is, M.(f)(g) := sup,., le ™= f(g)|, g € H. According to [22, Theorem
3.12], as a distribution in (BM Oi/ P=Y(H))*, it is known that M;, f is well defined. Then, for d/(d + 9) <
p < 1, we have the following definition

HY(H) := {f € (BMO,'"'(H))" : M.f € L"(HD)}
and its norm is defined as ||f||H£ = [IMpfller.
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Definition 2.2. Assume that p € (d/(d + 0),1], g € [1,00] and p # ¢q. If a function a satisfies
supp a C B(go, 1), llalle < |B(go, r)|4717 and fB(gOJ) a(h)dh = 0, r < y(go), then we say that a is an
HY-atom related to a ball B(go, r).

The atomic norm of Hz(H) is defined by || f]| HP—atom *= inf{(} |c jlp)l/ P}, where the infimum is taken

over all decompositions f = Xc;a; with a; being H}?-atoms and c; being scalars.

Let p € (0,00) and g € [1, oo]. If a function ¢ on S satisfies the following two cases: for g € [1, ),
dhdt\1/q
( f f le(h. 0l —55) € L7
{(ho): 1g~ hl<t)

sup lp(h, ] € LP(H), g = oo,
(h0)el(h): g~ hl<1)

and

then we say that ¢ belongs to the tent space 77 (S).
Let T5(S) = {u(h, ) : measurable on S and [lull;s~ < co}, where

1 ,dhdt\1/2
”u”Té)’m = Sup 1/p_1/2(f |l/l(h, t)' ) .
BcH |B (o) g~ k<) t

3. Estimates of the kernels

Similarly to the proof of [31, Proposition 1], we have the following estimates of Q;,,(-).

Lemma 3.1. Letm € Z,.

(1) There exist C,c > 0 such that
|tmartne—t(—AH)(g)| < Ct—d/ze—ct_llglz.
(i1) There exist C,c > 0 such that for |w| < |g|/2,
|tm@',"e_t(_AH)(ga)) _ tmaltne—t(—AH)(g)l < Cl(,t)ll_(d+1)/2€_cflIglz.
Lemma 3.2. Let0 < < 1.

(1) There exists C > 0 such that

m ,—t(—Ag)
"d'e (@l = (11128 + |g|)d+2~

(i1) There exists C > 0 such that for |w| < |g|/2,

Clwl|

m _—t(—Ag)? m _—t(—Ag)?
|tm(9te’ H (gw)—lmatel H (g)|§W

Proof: By (1.3), we have
wﬁﬁzj‘fmf”wmm. (3.1)
0
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Then,

e (g)] < f @l e™ T (g)ldr < f (o) Pyl I P g,
0 0
Note that 1ﬁ (1) < C/t'*#. We obtain
"3} e ™ ()] < (MY f B gl g
0
Let |g|>/t""Pt = v. It holds that
|tma:ne—t(—AH)/3(g)| < t|g|—25—d f V1+'B+d/2_2€_cvdv < t/|g|2'3+d
0

On the other hand,
e A ()] 5 f @O PryPdr < 4%,
0

If 1'% < |g|, then

m ,—H(—Ag) t

If t'/? > |g|, then
Ct

t
<
1412p+1 — (tl/Zﬁ + |g|)d+2ﬁ'

e A5 (g)] <

Now we prove (ii). Applying (1.3) again, we can get
"m A f (e (gw) - e"”BT(‘AH)(g))dT)'
0

© _ _ 2 /41/B
f o ()lwl(t )@ DR gmele 11 Pe g
0

IA

tma;ne—f(—AH)ﬁ(gw) _ tmaltne—t(—AH)ﬁ (g)'

A

Similarly to (i), we can verify that (ii) holds. So, the details are omitted.

Below, we investigate the kernel estimate of e"Lﬁ, Be(0,1).

Lemma 3.3. ( [28, Proposition 3.3]) Let 0 < 8 < 1.
(1) There exists Cy > 0 such that for any M > 0

2B 2By
1+ + ) .
Y@ y(h)

(ii) Let 0 < 6 < min{2B, 6o} . For any M > 0, there exists Cy; > 0 such that for all |w| < t'/%,

Cut
—l‘L’B M
‘e @ h)| < (1128 + |g—1h|)d+2,8(

lw| \o 1 2B 2By
) 1+ + )
11287 (11128 + |g=Lh[)d+28 y(g)  y(h)

Lemma 3.4. ( [28, Proposition 3.4]) Let0 <8 < 1 and m € Z,.

‘e_tLﬁ(gw, h) — e"Lﬁ(g, h)‘ < CM(
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(1) For any M > 0, there exists Cy; > 0 such that

(28 2By
+—) .

v v(h)

(ii) Let 0 < 6 < min{2B, 6o} . For any M > 0, there exists Cy; > 0 such that for all |w| < t'/%,

Cyt
m —tIP M
|l‘m(9[ e (g h)| < (tl/zﬁ I |g—1h|)d+2ﬁ(1 +

128 A28y
N + -
Y@ ¥

_ _ Cyt lw]| \o
m —t1f mam —tIf M
["0)'e™™ (gw, h) — 179 e ™ (g, )] < (125 1 |g—1h|)d+2ﬁ(t1/2,3) (1 +

(iii) For any M > 0, there exists Cy; > 0 such that

Cu@'y(g))°
(1 + 1172 [y(g)M”

f 3" (g, hydh| <

Let F,B,t(" N = tma;ne—zLﬁ(.’ ) _ ﬂna:ne—t(—An{)ﬁ(.)_

Lemma 3.5. Let 0 < 8 < 1. There exist C > 0 such that

Ct 1128 (s
126 4 [ d+2,B( )Oa % > 7 gl;
|Fﬁ (g Z)' < J @ +lzlel) ¥(©)
t D) —
’ Ct 7 'gl\ _
(| 8|) 0’ 1% < Iz lgl.

(1128 + |71 g)¥ 28\ y(g)

Proof: Since ¢/ = fo . ;ff(r)e"”ﬁ“dr, we can get
mam —tIP (g’ Z) tmam —1(— AH)B(g, Z)‘ ‘t f T]ﬁ(T)am( —t /ﬂ-rL(g’ ) —t Br(- AH)(g, Z))
Then we first recall that the higher-order derivative formula of the composite function: if y = f(«) and

u = ¢(g), then
Z pm1(g)f(t)( )
i=1

where p,,.i(g) = Xjoo(— 1) Cru 5’" u*. So, let f(u) = e and u = t'"Pr, we obtain
[ are ™ (g,2) - e A (g, 2)

& o (-DECE 1B-mi( i p=sL oS
< ‘fm 2.2 i! fo (@) P (e (g, Dl ompiine — D™ A, Z)|S=’”"T)dT’

i=1 k=0

<D fo 1|y e (g, D)ine — (P8, D) cpine| T
i=1

Note that 'lmam “il(g,z) — "O"e " "M)(g, Z)’ < 2 dl /t( ) (cf. [22]). Then, we obtain

282172 s
—T) dt.
v(©)

t’"(’)’fe"Lﬂ(g, 7 — l,ma:ne—t(—AH)B(g’ Z)| < I) nf(T)(tl/ﬁT)—d/ze—dz—lglz/tl/ﬁr(
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One the one hand, since 77‘13 (1) < C/TP*!, we get

128 s,

e 5y e of Y [ g g
’ ’ v(©) 0

Let |z~ 'g|>/t""T = v. We obtain

12 1/8\d/2—60/2 o0
t—d/z,g(t / ﬁ)50 (1'/BydI2=00/2+ f o=V 12602+ 14
y(g) |z lglorb
F1-60/28 (t1/2;;)50
|1 gld+28-00 \y(g))

tma:ne—t[ﬁ(g’ 7) - tma;ne—f(—AH)ﬁ(g’ Z)'

A

(3.2)

On the other hand,

mam —tL# m—t(—Ay)? 1B —d)2 1282172 5,
P P (o e (s )

/ﬂ
(iﬂ) (tl/ﬁ)—d/zf Iﬁ(T)T_d/zJ"SOdT
0

i ( A28 s

Y(©)

N

) (3.3)

Hence, we can deduce that (3.2) and (3.3) satisfy

Ct (tl/Zﬁ)éo PIIN Iz_lgl'
(11178 + |77 g|) 2B y(g) ’

Ct IZ_18|)50 1% < |77 lg]
(1'% + |21 g2\ y(g) 7 - '

|Fﬁ,t(g, z)‘ <

4. Square functions and characterizations of BM O] (H)

4.1. Carleson measure characterization of BM O} (H)

Similarly to [22], we can also get the following lemmas.
Lemma4.1. Letm € Z, and 0 < 8 < 1. The operators Géﬂ and S ,fqﬁ are bounded on L*(H).
Lemma 4.2. The operators GL and S, L g are bounded from L'(H) to L' (H).

Proof: Since the proofs of G, , and S, , are similar, we only give the proof for S, ,. Using the
Calder6n-Zygmund decomposmon (cf [32, Chapter 1, §4]), given f € L'(H) and a > 0, there holds the
decomposition f = fi + f», with f, = 3, b, such that

@ i@l < Ca,a.e. g € H;

(i1) each b; is supported on a ball B;,

f |bj(g)ldg < CalB)| and fbj(g)dg =0;
B;

B;

Communications in Analysis and Mechanics Volume 15, Issue 3, 410-435.
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(ii1) {B;} has finite overlaps property and }; |B;| < éll fllor.
It is easy to see that

{geH:S)sfi(g) > a/2} ‘ IIfIILz < _”f”Ll-
Let B; = B(go,rj) and E = |J; B(g;,4r;). Then,

1
L5 ) 1Bl < ~lIflo.
J

By the same arguments as [22], we have

f Snpbi(@)dg < f Ibj(g)ldg < alBjl,
lg~1gjl=4r; B;

J

which implies

1

e £ stuno>an] < L [ stanwds

Ec
1 f L
- Snpbi(8)dg
“Zj: gt
1
< =Sl
(04
The above discussion gives
(g €2 5@ > o < Ll

This proves that S ,’;1,[3 is bounded from L'(H) to L"*(H).

To establish the (H}, L') boundedness, we need the following lemma.

Lemma 4.3. ([16, Lemma 18]) If T is a bounded sublinear operator from L'(H) to L' (H) and satisfies
ITall, < C for any H;-atom a, then T is bounded from H!(H) to L' (H).

When v = 1, from [28, Lemma 4.2] and Lemmas 4.2 & 4.3, we obtain
Lemma 4.4. G,Lnﬁ and S ,ﬁﬁ are bounded from H} (H) to L' (H).
Theorem 4.5. Let O <v < 6/d. Then, we have
(1)

_ ,dgdt1
p ([ P P ) < Ol )

where f € BMOY (H) and B denote the tent based on B = B(go, ), ie, B=1{(g,1): g g0l < r—1}.
(ii) Suppose f belongs to L'((1 + |g|) (d+v+2) dg) for some & > 0 and

dgdt\1
f e ™ fpPER) T < o

|B|v+l/2

Then, f € BMO)(H) and
_ ,dgdt\1
||f||BM02(H) < CS | +1/2 f|l2ﬁmLm'B zﬂLﬁf( )| 8 )

Communications in Analysis and Mechanics Volume 15, Issue 3, 410-435.
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Proof: Let f € BMO}(H). Then, f € L'((1 + |g])"“*"**'dg). By Lemma 3.4, we can see that

e f(g) = f L (g, ) f(h)d
H

is absolutely convergent. In order to prove (i) , we only need to show that for any ball B = B(go, r),

my m, - ﬁ[ﬁ g
|B|2v+1 f|t2'3 Le f(g)|2 S ||f”BMO”'

Denote by By the ball B(g,, 2¢r). Let
f = (f_fBl)XBl + (f - fBl))([;? +fBl = }‘: +E +fBl‘

Using Lemma 4.1, we have

dgdt ~
[ FrtE < [ 6t fierds
B
s IFIE s f 1£() - fiPdg
B
< IBE Ry

Note that |f, — f5,| < 2%|Bsl"ll fllzmo; - Therefore,

faeo2t1 = Soigozn| < kIB(go, 2 PPl fllsmo; - 4.1)

For g € B(go, r), by Lemma 3.4 (i) and (4.1), we have

mymB —~28LF 7
PP L e ()

N

1?8
fB = ol

A

Ak ondiOB — k. ~d _
; (zkr)d+2ﬁ(f3k+1\3k F ) = faddh + ry e, f51|)

N

B @
4 2: k(dv—28) 2
=1

2B

< m“f”BMOZ,

where we have used the fact 0 < v < ¢/d to get dv — 28 < 0 in the last step.
Thus, we have

pmymp P18, pd8dl 2
o fB L F@P T < 1 By

If r < y(go), taking ko such that 2°r < y(go) < 2*'r, we have |f3,| < (1 + log, 7(50))|Bk0+1|v||f||BM02-
Note that y(g) ~ y(go) > r for any g € B(go, r), by Lemma 3.4 (iii), we obtain

1 ” _pepp dt |, 17 ro\2s di
t mLmﬁ t+P 1 1 Zd < 1 f do—
|B|2v+1fg' U@ s e ) () e
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By P! ¥(20)
s (1410 1o
(#1080 (s W
S 1A Byo;

where we have used the fact dv < ¢ in the last step. For r > ¥(gp), we obtain |fp, 2| <

1B(go, 20"l fll a0y eny-
Noticing that y(g) < r for any g € B(go, r), by (ii1) of Lemma 3.4 again, we have

1 _ dt
e f L (1 ) g

|f31|2 | ZﬁmLmﬁ o h dh‘ d

IBIM (8 h) g—
IfBll2 f f Y(g) ! Zﬁdf f f i
IBIZV+1 )’(8) O ® V(g) t g

< Aoy

Suppose f € L'((1 + |g)"“@**9)dg) and A" L™e Y f(g) € Tzl/ +D*(S). We want to prove that
f € BMOj(H). Using [22, Theorem 3.13], we can see that for every u € H i/ (V“)(H)

u L(u) := fH f(gulg)dg

satisfies
_2BIB
L@l S 1L ™ fllposns lull e,

Then, we obtain

dgdt
Ll = | f f(@u(g)dg| = C| f P () e () 52
H s
S PP fllpeene PP L e
_1?BIp
< ||l‘2'BmLm'8€ 1 f||T21/(V+1),oo||u||HZ/<v+|).
This proves Theorem 4.5.

4.2. The BM O -boundedness of square functions
In this section, we will show that S, ; and G, ; are bounded on BMO (H).

Theorem 4.6. Letme Z,,0<B<1landand (0 <v < d/d.
(i) The square function G;ﬁ is bounded on BM O} (H).
(i) The square function S* s is bounded on BMO; (H).

Proof: Let ¢ € BMO; (H) B = B(g,, r). Denote by 2B the ball B(gg,2r). We consider the following
two cases.
Case 1: r > y(go). Let f = fxo+ fxoB: = fi + f2. By the Holder inequality, we get

f ST fi(e)fdg < f @R < /1By 4.2)

|B|2v+1 |ZB|2v+l
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By Lemma 3.4, if |g”!z| < ¢, we obtain

12Em e (2 w) < (lg t |) “@B(] + @)‘M. (4.3)

Since g € B(go, r) and (4.3), we deduce that y(g) < r and

[ee)

Shafi@)’ < (200 [ i)
k=1 gy w2t
S 1B oy

which, together with (4.2), implies that

[ 15t ar@Pde < 18P 11y
B

Similarly, we also have

fB GE o f (@)Pdg < 1BE* 110,

Case 2: r < y(go). We begin by giving an estimate of Giﬁ.We set f = f; + fg + f>p, Where
ﬁ = (f — fop)x2p and E := (f — f8)x2By. Denote by G, 5 the Littlewood-Paley g-function, that is,

Gnp(f)(g0) = (j(; 28 (= AgyY™Be™ ﬂ(_AH)ﬂf(go)IZTt)l/z

Set o
80 ,dt\1/2
Ay o= ( f P (A" fr(go)P—)
0

Therefore, we know that A, < oo is a constant and |GL mp f(g) — Ayl < Li(g) + Ly(g) + Ls(g), where
28m mﬁ —PBLP dt 172
Li(g) = ( e FOP—)
¥(80)
Lz(g) = ‘(f |t2ﬁm( A )mﬁ —PB( AH)Bf( )| ) —Az';
0

¥(g0) dt 1/2
Ly(9) = ( f (PP f(g) = PP (= AP f(g)P )
0

Using Lemma 2.1, we deduce that y(g) ~ y(go) for any g € B(go, r). By Lemma 3.4 (i), we have, for
8 € B(gO’ 7"),

A

L@? s e [ il Zy(g e [ ]
B(g.y(g)

B(g.2Fy(g))
2 2
1B 1/ 10 - 4.4)

A
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Since (= Ay )y™Be 251 = 0, we write Ly(g) < Lo 1(g) + Lr2(g), where

Y(80) dl 12,
Loi(9) = ( f P (= Ar)ye A fi(g)P—)
0

¥(80) — ,dty1/2
Lz,z(g) = (f |tzﬁm(_AH)m,Be—[ZB(—AH)ﬁfZ(g) 2,6'm( AH)mﬁ %= AH[)ﬁf (g )l )
0
Similarly to the case of Gm 5 G on L*(H) is also bounded. Therefore,
[ Maa@Pde < e | 1P < 11
B+, 2.1 S 2B, 1 ~ BMO;
By Lemma 3.2,
- — 2 - — 2
(Loa (@ s | 27*@n™ f A@ldz] +] Y @ f ARz
=1 lgg ' zl~2kr k=1 lgg ' zl~2kr
< BP0,

It remains to estimate L3(g). Using the Lemma 2.1 and Lemma 3.5,

L@P < f Pz < 1BP 1 By

It can be seen from (4.4)-(4.7) that

1
T fB GE (@) = Aoldg < I1f1}ys0,

4.5)

(4.6)

4.7)

Below we provide an estimate of SL Suppose 4B = B(go, 4r), we write f = ¢ + ¢, + fip, Where

¢ = (f — fap)yap and ¢ = (f — f43))((43)c Denote by S, 4 the area function, that is,

mﬁ(f)(g) = f I l |12:3m( A )m,B —B(- AH)ﬁf( )lzéf[idlt)lﬂ.
771 gl<t

Set

- B 126 dzdt\1/2
L I e e O
760 (g) A

where I7®0)(g0) = {(z,) € S : |77 g0l < t,t < ¥(go)}. We can see that A3 is a constant and |S£ _f(g) —
8 m,B

As| < Zi(g) + Zy(g) + Z3(g), where

*® oy B dzdt\1/2
Zi(g) = ( f f LY f QP )
¥(go) Yz lgl<t

v(80) d dt 12
2| [ [ encaomet et for SRy -
== gl<t

9

Y(g()) B B dzdt 1/2
Z5(g) = f f PP LY () — PP (AP foP )
271 gl<t
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Similarly to (4.4), we utilize (4.3) to obtain, for g € B(gy, r),

0 -1 —(d+q —2q d
Z(9)* < f N fH (Mgl (e S o] < B 48)
Y(8o

To estimate Z,(g), using the triangle inequality, we can see that Z,(g) < Z,1(g) + Z>2(g), where

" B -5 dzdi\172
Zp1(8) = ( fr o 5 (AP e g () th) ;

dzdt)l/z

Zya(g) = f [P (= AP e gy ()P
P760) (g7 40)(g0) 1

Here 0,10, = (0; \ 0,) J(O; \ O) denotes the symmetric difference of two sets O and O,. Using the
functional calculus, similarly to [17, page 168] and [30, Chapter 7], we obtain S ,, g is bounded on L*(H).
Hence,

1 2 1 2 2
B fl;zz,l(g) dg < W”Sm,ﬁ(ﬁl”y S |4B|2V+1 f l¢1(9)N"dg < ||f||BM0‘
For Z, ,, it is easy to see that Z>5(g)* < Z32.1(8) + Z222(g), where

2r
n B _ 2dzdt
Zooa(g) = f f f PP (B e o Dligaldw)
B(g.01B(go.1) ~ (4B)

Y(80) 2 dzdt
Z22(9) —jﬁ \[ (]\IﬂM(A)W‘M(MWW 2)llga(w)ldw) e
B(g.0IB(go0.1) 4B)°

If 2r > y(go), then Z,,,(g) = 0. For g € B(go,r), w € (4B)° and |z”'g| < t, we have

" ()" e ()
< PP (=Ag)"Pe N (w1 2) = PP (= Ag) e (w9l + 1P (= Ar) e A ()

S+ wlgol) .

Thus, for g € B(go, r),

Z521(8)

N

2r
W gol\—(@+1/2) 2dzdt
L L L sy oy 55
B(g.0|B(g0.H) ~ J (4B

2r
f ( f ! gol 4 lga(wldw) dr
0 (4B)

[irl/Z(zkr)—(dH/Z) f |¢2(w)|dw]2

k:2 |g01w|~27‘r
2 2
IBPI Ao

A

A

N

Note that [{B(g, 1)|B(go, D}| < rt*~! for 1 > 2r > |g;'g|. Therefore, for g € B(go. 1),

V(s g W gol\-@+1/4) 2dzdt
£22(8) f f ( f F(=ER) T gawlaw) T
B(g.0|B(g0.1) ~ J(4B) ! t
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7

V(E()) 2 dt
-1 —(d+1/4
f il f ™ ol iga(wldw) —

2r
[se]

(Z r1/4(2kr)—(d+1/4)f |¢2(w)|dw)2

k=1 |g61w|~2kr

2 2
BP0

7

N

This proves

1
B

Finally, we estimate Z3(g). Using Lemma 2.1, /(1) < (1 + |g”'z|/¥(g))™t/y(g). For g € B(go,r)
and (z, 1) € [7¢9)(g), we obtain |g~'z] < ¢ < y(go) ~ ¥(g). By Lemma 3.5, if |g~'w| > ¢, we can get

|Fgps(z, W) < |Fgps(z, w) — Fgps(g, Wl + |Fs(g, w)|
Ct?# ( t )5+ Cr* (|g_1W|)‘5
(t+ wlgh™ 2 \y(g))  (t+w g%\ y(g) /-

Similarly to the estimate of G, we get, for g € B(go, 1),

¥(g0) dzd
Zx9) < fo f|g 1,,|<,[ fH [Eg sz WL )] tif

v(80) Cr? t 6 Cs¥ |g_1W| s > di
f(; [L((z‘ + |W_1g|)d+2/3(»y(g)) + (r + |W—1g|)d+2ﬂ( y(g) ) )lf(W)ldw] "

Bl f 0, (4.10)

A

A

It follows from (4.8)-(4.10) that

1

which gives the estimate for S, ,.

Theorem 4.7. The operators S slﬁ and G,Lnﬁ are bounded from H 1(H) to L'(H) and bounded from L'(H)
to L' (H). Moreover, S anﬁ and G,Lnﬁ are bounded on LP(H) for 1 < p < co with

IS 5 s SNl ~ G s flle ~ 11 f1lo-

Proof: When v = 1, it is easy to see that Theorem 4.6 implies that S ,Lnﬁ and G,Lnﬂ are bounded from
L>(H) to BMO,(H). Then, using Lemmas 4.2 & 4.4 and an interpolation argument, S an,ﬁ and G,Lnﬁ are
bounded on LP(H) for 1 < p < oo.
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5. The LZ:Z(]H[)-boundedness of square functions

The classical Morrey space Mﬁ(R“) has been studied intensively and extensively applied to the
fields of analysis, mathematical physics and other related fields. As a promotion of Lebesgue spaces,
Morrey [33] originally introduced the classical Morrey space to investigate the local behavior of solutions
of second order elliptic partial differential equations. For the properties and applications of the classical
Morrey space, please refer to [29,34-36] and the references therein.

We first recall some related facts for the classical Morrey space M;}(R”), which consists of all
p-locally integrable functions f on R" such that

) -1
||f||M;(Rn) ‘= Ssup r /p”f”Ll’(B(x,r)) < 00,
xeR”,r>0

where 1 < p < o0 and 0 < 2 < n. Denote by WM} (R") the weak Morrey space, which consists of all
measurable functions f on R” such that

||f||WMf(R") ‘= Ssup r_/l”f”WL](B(x,r)) = Sup rt supolly € B(x,r) : |f(Y)| > o} < oo,

xeR”,r>0 xeR”,r>0 o>0

Below, we introduce Morrey spaces related to L on the stratified Lie group (which also can be seen
from [29]).

Definition 5.1. Assume that 1 < p < 00,0 <k <1 and 0 < 6 < co. The Morrey space Lﬁ(H) is defined
as the set of all p-locally integrable functions f on H such that

1 1/p ro\0
R — Pd <((1
(IB(go, rIx fmgo,r) 7(e) g) : ( +7(go))

with norm

o8 1 1/p
1AWz = sup (1+ \f‘ elds) < oo
Mzt B(goli)< 7(30)) (IB(go,V)V Blgon) fhde)

Define
Ly = | L.

0<f<co

Definition 5.2. Assume that p = 1,0 < x < 1 and 0 < < co. The weak Morrey space WL{:f(H) is
defined as the set of all measurable functions f on H such that

r ]
_ A- B(gg, 1) : A <Cl1
Blgo P4 llg € Blgo.n) : 1f (@)1 > 4l < (+7@o)

with norm

ro\-f 1
IF s 760 := sup (1 + supA-|{g € B(go,7) : |f(g)| > A}| < 0.
M = b (14 5005) Thgerm Sup A Mo & Blaunn) - UfGe

Correspondingly, we define

WLISE) = || WL,

0<f<o0
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Remark 5.3. () If § = 0 or V = 0, the Morrey space LZ,’ﬁ(H) (or weak Morrey space WLlyf(H)) is just the
Morrey space L}‘,(H) (or weak Morrey space WL{(H)), which is introduced by Guliyev et al. (see [37]).
(i1) From the definition, we can see

LS(H) € L% (H) < L% (H); (5.1)

WL;(H) ¢ WL (H) ¢ WL} *(H), (5.2)

whenever 0 < 6; < 6, < c. Hence,
Ly H) c L2 (H) and WL(H) C WL?:?’(H)

for (p,x) € [1,00) X [0, 1).
(iii) Define a norm such that the space LZ:}”(H) is a Banach space. In view of (5.1), for any given
f e Ly (H), let
6" :=inf{0 > 0: f € LV(H)}.

Define
b = WAl e = Al e s

which satisfies the axioms of a norm.
(iv) In view of (5.2), for any given f € WL (H), let

6™ :=infl0 > 0: f € WLI'/(H)).
Similarly, we can also define by

We can check that this functional || - ||, satisfies the axioms of a (quasi-) norm. Hence WLT’,‘:’(H) isa
(quasi-) normed linear space.

Since Morrey space LZﬁ(H) (or weak Morrey space WLT:f(H)) could be viewed as an extension of the
Lebesgue (or the weak Lebesgue) space on H, it is accordingly natural to investigate the boundedness
properties of operators S anﬁ and G% p in the framework of Morrey spaces. Therefore, we extend Theorem
4.7 to the Morrey spaces on H.

Theorem 5.4. Assume that 0 < k < 1.

(i) For 1 < p < oo, there exists a constant C such that for all functions f € L, (H),

L
G pf ”L;’f(H) <Clf ||L;:Z°(H)-

(11) Let p = 1. There exists a constant C such that for all functions f € L?f(H)
||G§1,ﬁf||WL{::"(H) < C”f”L{':O(]HD-
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Proof: (i) For any given f € L), (H) with 1 < p < coand 0 < « < 1, suppose that f € LW (H) for

some 0° > 0, where
0" =inf(6 > 0: f € L(H)} and WAl ey = IIfIILys '

Then, we will prove that, for each fixed ball B(gy, r), there exist some v > 0 such that

1 L N
(|B<go,r)|K fg(gor)'G srd) " < (1 7(80))

holds true for f € LY (H), (p, &) € (1,00) x (0, 1).

We split f as
f=h+fely @),
fi =1 x5
f= 71 xesr

Then, we write

1
Rlo. Mk Gt Pd I+ L,
(|B(go,r)|K fB(gor)l mp()(Q)] g) <Ii+L

where

1
I =—— Gt Pd ;
| (|B(g0,r)|K ey |G ) g) "

1
Li=—— Gt Pd
> (|B(x0,r)|’< B(xor)l ()@ g)

For I, using Theorem 4.7, we obtain

|ZB|K/p 2r \¢
Pd ye 1 '
( fH @) " S 11 T (14 ~25)

<
= g

Moreover, observe that for any fixed 6* > 0,

2r \¢ - o
ls(1+ r) §29(1+ ! )
¥(8o) ¥(8o)
which further implies that

I < ||f||L;§°(H)(1 + ﬁ)m

Next we estimate the other term I,. We can easily get

1 | gl\-~
G- < f 1 h)\|dh.
ns PO | |h—1g|d( + y(g)) £

In fact, from Lemma 3.4, it follows that

G s(£)(©) < G (H)(8) + Grg(f)(@),

(5.3)

(5.4)

(5.5)
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where

Lo . ~ Cys 5112 2ds\ 1
G5 (2)(8) = (flg-lhlzﬁ(»ﬁﬂ (s1/28 + |g—1h|)d+2,8(1 + y(g)) le(h)ldh) )

lg~"nP# Cys gl/28 2ds\1/2
Go(f)(g) = (fo (fH (51725 + |g—1h|)d+2ﬁ(1 * y(g)) le(h)ldh) )

When s > |g'h|?2, then s'/% > |g~'h|. Hence,
0 1 lg~'h 2ds\1
Gv < f f 1+ h)|dh
USRS |g1h|zﬁ( ; 7l y(g)] k) ) =y

lg~th|y-N * ds \12
LS o [ )

lg7'Aly-v 1
< 1+ |f(mldh,
f(zB)c [ ¥(8) ] lg~thl /

where we have used the Minkowski inequality in the third step. On the other hand, since 0 < s < |g~'h|%,
a trivial computation leads to that

Cys sl/zf6 -N 1, 528 open lg~'hl-N
| hlthI—— 1+ | A(h)|dh.
f sl o) 0l s | enn(g) [ ] e

A

Then, by the Minkowski’s inequality for integrals, we can get

g~ nI?%P §1/28 2ﬁ+N lg~" Al 2dsil
Grg(f)(8) < f f |g—1h|d |g—‘h| |1+ y(g)] |f2(h)|dh) )

gy 1
< 1 h\dh.
fw[ v =il

Consequently, we have obtain the desired inequality (5.5) for any g € B(go, ).
Since g € B(go, r) and h € (2B)", then |g~'h| ~ |g51h|. Along with (5.5), we have for any g € B(go, r),

k

L L 2r\-n
IGE () < ; B (1+ y(g)) | ()\dh.

gyt hl<2+1r

In view of (2.3) and (5.4), we can deduce that

No k+1

N 1 r N- r\—N
Gt <)y ——— 1 Mo (1 h)|dh. 5.6
| mﬁ(f”(g)'<;|B<go,2k+1r>| () (5 v 60

B(go,Zk“ r)

Using Holder’s inequality, we obtain

1
|B(g0’2k+1r)| B(go,2k*1r)

1 f 1/p 1/p
S0 |f(h)|Pdh f 1dh
|B(o, 2k+17’)|( B(go,2¢+1r) / ) ( B(go,2k+1r) )
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|B(g0’2k+1r)|/</p 2k+1r o

S Wl |B(go, 251 r)|\/p " ¥(8o)
Then,
12 3 Hf” ) |B(809 r)ll/p Z |B(g0,2k+1r)|K/p(1 N r )N-NI:S](I N 2k+1r)—N+9*
S Lyx © | B(go, 17 4= |B(go, 251 r)| /P ¥(80) 7(80)
N0+1 |B(g0’ r)l(l—K)/P 2k+lr —N+6*
< ||f||Ly9 (H)(l + Z |B(go, 2k+1r)|(l—k)/p(1 + y(go))

Consequently, Let N large enough such that N > 6*. we can see that the last series is convergent. Then,
by the fact that 1 — k > 0, we have

oWk O B8, Dl N1/
L < lfllpec@ll+——) ™ —_—
2 Ly (H)( Y(go)) kZ:; (|B(go, 2k+1r)|)
r\Nmh
S A=l +——=) .
ol 505

By adding the two estimates of /; and I, above, we get (5.3) by making v = max{8*, N - N]:J‘:l LN > 6.
(ii) It is only to prove that

. supd-l{g € Blg.r) : |Gt <1+ —Y 57
Blgo P4 N8 € Blgo.n) :1G,(N)(e) > s ( +y(go)) (5.7)

holds true for given f € L?f (H) with some 6 > 0, v > 0and 0 < x < 1. We split f as
f=fi+feLly E;

fi =1 x2B:
f :f'X(zB)f-

Then, for any given A > 0, we can write

1
ot 8 € Beor) 1G] > Ul < i+ 2
where 1
R S )
N Bt 18 € Blso 1) [G(f1)(8)] > 47241
= B e € Blgo.n) Gyl > 4/2)1

We first give the estimate for the term J,. By the Lemma 4.2, we have

2B 2r 6
1
)| BJ« ( Y(go))

IS o f 1Fi(ldg) < Il
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Therefore, in view of (5.4), we have
roAG
T S Al=an(1 + ——) .

For J,, by (5.6) and Chebyshev’s inequality, we obtain

1
J _ d
> 5 B fB o Grs((8) 8)
1B(g0, 1| < 1 AN, Dktlp N
1 (1 h)|dh. 5.8
IB(go,r)|KkZ:;|B(go,2k+lr)| B(go,Z"'*‘r)( +Y(go)) ( +7(go)) 7l (5-8)

We consider the sum of (5.8) for each term, separately. We can see that

1 1B(go, 2111, 2%*1po
S — \f(W\dh < CIIfIl,»
1B(20, 2 1)| Jpigoneoin) L@ 1B(g0, 25TV ¥(g0)

Consequently,

Nt Z |B(go, r)| 2kl _N+er | B(go, 241 )<
|

J S v.0* 1 .
2 ”f”LLf (H)( B(go,r)lk Y(go)) |B(go, 25417)|

Hence, let N large enough such that N > 6*. Then, we can get

+1 - |B(g0’ r)l (1 —K)
Jo < | fllpe o
2 5 Wlgze(1 + Z B0, 2]
r N'W
S g1+ R
sren(l+ 7(80))
Let v = max{6*, N - N +1 } with N > 6*. Summing up the above estimates for J; and J;, and then taking

the supremum over all A > 0, we obtain the desired inequality (5.7).

Theorem 5.5. Suppose 0 < k < 1.

(i) Let 1 < p < co. There exists a constant C such that for all functions f € L7 (H),
mﬁf||L7K @ < ClliAllye @y

(i1) Let p = 1. There exists a constant C such that for all functions f € L?::o(H),

L
IS ﬁf”WLV‘”(H) < C||f||L7°°(H)

Proof: For any given f € L)°(H) with 1 < p < coand 0 < k < 1, suppose that f € LPK (H) for some
6* > 0, where
0 =inf{6>0: f € LIED) and Ifllgee = 1fllye g
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Below, we only need to show that

1 r 0
S — Skt Pd 1
(|B<go,r>|K fB(M' L Prds) " s +7’(80))

holds true for f € Lﬁ* (H) with some 8 > 0 and (p, «) € (1, 00) x (0, 1).

We split f as
f=h+fely @),
fi =1 xaB;
fa =1 xasy,
Then, we can write
(o [ IsErdg) " <1+ 1

1B(go> NI JBigo.r)

where |
I := —f ISE (fi) (@I d ;
! (|B(go,")|’< B(go.r) s g)

/.

L=(—
? (|B<xo, )k
For I, by Theorem 4.7 and (5.4), we can get

ISEs)ePdg) "

B(xo,r)

1o gl [ rerds)”
< ||f||L7" (H)||B|,|</;p(1 + y?gro))e*
< ||f||L7K(H)( 7((’;’0))9*'
For I, we assert that the inequality
SL ()R < f L1+ N e (59
(4B)° Iz gl Y(@)

is valid for any g € B(go, r).
—1 —1
Similarly to the proof of Theorem 5.4, we consider below two cases: s > (%)zﬁ and0 < s < (%)Zﬁ .
In fact, from Lemma 3.4, it follows that

Sk s(£)(Q) < S5 (H)(8) + S s (H)(8),

where

* Cys st/ 2 dhds \1/2
L, . N .
Snp () 1= (ﬁ—lgm ﬁ‘1g|<s'/2ﬁ(f]}ﬂ (517 + |Z—1h|)d+2,3(1 + Y(Z)) le(Z)le) d/2ﬂ+l) :

Iz~ glz'6

sl/28 2 dhds \1/2
%(fZ)(g) - f j;llg|<sl/2ﬂ f(S1/2ﬁ+|Z_lh|)d+2ﬁ(l ()) |f2(Z)|dZ) d/zﬁH) .
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When s > |77 'g|*2/2%, then 5'/% > |77'g|/2. Hence,

00 1 |Z_1g| -N 2 dhds 1/2
L, T 1
G, ()8 < f;glzﬁ j;l |<s1/2ﬁ(f Sd/ZB[l + (z)] |f2(Z)|dZ) Sd/2ﬁ+1)
I gl dhds 172
< jﬂ;[l + e ) |f2( )| - glzﬁ -l ghesl28 Sd/ﬁ+d/2[3+l) dzdh

Iz gl 1
< 1 dz,
& me[ * 7(2)] ~lgld F@ldz

where we have used the Minkowski inequality in the third step. On the other hand, it is easy to see that
Cys s1/2 s \op, V2B Nz (2 |y
1+ + dz.
f eyl Y(Z)) |f(2)ldz = f =) () D | 1@z

Note that when 0 < s < & zzgﬁl and |h~'g| < s then |z7'h| > |z7'g|/2. Hence, we have

Cns s N f 1 s1/2B \opn Iz gl
1+ dz < 1+ dz.
fJ}HIZ_lhld+2ﬂ( )’(Z)) Rz le—lgld(lz—lgl) | 7(z)] Valalds

Hence, along with Minkowski’s inequality, we obtain

"g\zﬁ
gl/28 2ﬁ+N |7 g|-N 2 dhds \1/2
§Lo < f f f 1+ d
mﬂ(fZ)(g) 1 gles! 8 Iz gld Iz‘lgl [ ¥(2) ] 12@)] ) d/2,3+1)
I~ glzﬁ
1 |z~ gl f f st/2p 4ﬂ+2N dhds \1/2
< 1+ Z dz
fH|Z—1g|d[ ),() |f2( )l h-1gl<s1/28 Iz gI sd/zﬁ“)

gl 1
" ! dz.
s ‘f(;lB)c [ + v(2) ] IZ‘lgId |f(@)ldz

Taking the above two estimates together gives the required inequality (5.9) for any g € B(go, r). If
x € B(go,r) and z € (4B), |z 'g| ~ Iz7"gol. Then using (5.9) and (5.4), we have

k

. - 1 2kp \-N
|Sm,B(f2)(g)| < kZ:; m (1 + %) |f(2)ldz.

|z~ gol<2k+1r

Moreover, in view of (2.3), we can deduce that

No 2k+1

- 1 r\N-
Sk _ 1
ISEA(B@ < ;w(go’ 7T ( +y(go))

B(go,2¢*1r)

The rest of the proof is similar to the proof of Theorem 5.4, so it is omitted.
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