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Abstract: We detail a calculation of the second order normal form of the Stark effect Hamiltonian
after regularization, using the Kustaanheimo-Stiefel mapping. After reduction, we obtain an integrable
two degree of freedom system on S ﬁ xS Z, which we reduce again to obtain a one degree of freedom
Hamiltonian system.
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1. Introduction

In the study of perturbations of the three degree of freedom Kepler Hamiltonian pulling back,
the regularized Hamiltonian by the Kustaanheimo-Stiefel (KS) map, gives a perturbation of the four
degree of freedom harmonic oscillator Hamiltonian, when restricted to the zero level set of the KS
symmetry. We use the formulation of the KS transformation in [6] which allows us to reduce the KS
symmetry using invariant theory for the first time. As an illustration, we apply this procedure to the
regularized Stark Hamiltonian, which is normalized after applying the KS transformation. We do not
expect this Hamiltonian to be completely integrable (see Lagrange [4] and also [5]). Our treatment
follows that of [3] and gives the full details of obtaining the second order normal form [1]. We use the
notation of [2] and note that our procedure of regularization, pull back by the KS map, normalization
and reduction may be used to study three degree of freedom perturbed Keplerian systems.

2. The basic set up

On ToR? = (R?\ {0}) x R? with coordinates (x,y) and standard symplectic form w; = 37, dx; A dy;
consider the Stark Hamiltonian

1
K(x,y) = 33,y - i fxs. 2.1)
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Here, ( , ) is the Euclidean inner product on R* with associated norm | |. On the negative energy level

—%kz with k& > 0 rescaling time df — %ds, we obtain

1 Jxd
0= g (Ixlty. ) + Kla) = 7 + foa .

In other words, (x, y) lies in the % level set of

|x]

K(x.5) = gbxl((3) + Rxl) + fra .

(2.2)

(2.3)

We assume that f is small, namely, f = gB. After the symplectic coordinate change (x,y) — (%x, ky)

the Hamiltonian K becomes the preregularized Hamiltonian

K(x,y) = 31, ¥) + 1x]) + exs)x

on the level set K~'(1).

2.4)

Let ToR* = (R* \ {0}) x R* have coordinates (g, p) and a symplectic form w, = Y7, dg; A dp;. Pull

back K by the Kustaanheimo-Stiefel mapping

KS: ToR* = ToR? : (g, p) = (x,),

where
x1 = 2(q193 + q294) = Uy — K,
X2 = 2(q194 — q2q3) = U3 — K>
3=qi+q— a3 —q; = Us— Ks
yi = (@) (q1p3 + g2pa + g3p1 + qap2) = (Ha + Vi)'V
y2 = (g @) (q1ps — @203 — @3p2 + qap1) = (Ha + V1) 'V3
¥s = (g @) (q1p1 + @2p2 — @3p3 — qapa) = (Ha + Vi)'V
and

H=Ypi+p+p3+ 0+ @i+ 4+ 5+ 43)
== q1p2 — q2P1 Y q3P4 — qaps,

\S]
Il

1]

to get the regularized Stark Hamiltonian
H = H, + 8ﬂ(U4V] + H,U, — K3V1 - H2K3)
on Z7(0), since |x| = {(¢,q) = H, + V,. Here

K\ = —(q193 + 294 + p1p3 + p2P4)
K> = —(q194 — 293 + p1ps — p2p3)
Ky=XN@B+q;+p3+ps—ai— 45— pi— p>)

(2.5)
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Ly =qap1 — q3p2 + q2P3 — q1P4

Ly = qip3 + @2ps — q3p1 — qap>

Ly = q3ps — qap3 + @2p1 — q1P2

Ui = —(qip1 + @2p2 + q3p3 + qapa)

U> = q195 + 9294 — p1P3 — P2Ps

Us = 9194 — 4293 + p2p3 — P1Ps

Us=3(q7 + 45— 45 — 45 + P3 + D3 — P — P3)
Vi=35(qi+ G+ a3+ 45— pi— P — P~ pa)
Vo= qip3 + @ops + q3p1 + qap>

Vi =qips — q2p3 — q3p2 + qupr

Vi =qip1 + @202 — 43P3 — qapa.

generate the algebra of polynomials invariant under the S' action ¢= given by the flow of Xz on
(TR* = R®, w,). The Hamiltonian H (2.5) is invariant under this S ' action and thus is a smooth function
on the orbit space Z7'(0)/S! € R!6 with coordinates (K, L, H,=Z; U, V).

3. The first order normal form on =~'(0)/S

The harmonic oscillator vector field Xy, on (TR*, w,) induces the vector field Yy, = Zj‘zl (2Via%,~ -
2U;2-) on the orbit space R¥/S ' C R'S, which leaves Z7'(0)/S ' invariant.

We now compute the first order normal form of the Hamiltonian H (2.5) on the reduced space
=10)/S' CR¥/S 1.

The average of H,U, — K5V over the flow
¢,"(K,L,H>,E; U, V) = (K, L, Hy, Z; U cos 2¢ + V sin 2t, —U sin 2 + V cos 2¢)
of Yy, is
HUy - K3V, = ,lrf (¢, ") (HyUy — K3Vy) dt
0

= 711 f (U4 COSs 2t + V, sin 2t)dtH2 - 711 f (_Ul sin 2t + Vi cos 2t)dtK3 =0.
0 0

The second equality above follows because Ly, K3 = 0 and the third because cos 2¢ = sin2¢ = 0. The
average of U,V over the flow of Yy, on = 10)/S ! is

UV =1 f (@) (UsVy) dr
0

—%Ul U, sindt + UyV, cos2 2t — U, Vy sin® 2t + %Vl V, sin 4t
= %(U4V1 -UVy) = —%H2K3,
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since cos? 2 = sin® 2t = % and sin4¢ = 0. The last equality above follows from the explicit description
of the orbit space R3/S! as the semialgebraic variety in R!¢ with coodinates (K, L, U, V; H,, E) given by

(UUy=U+U2+ U+ U =H;-Z*>20 H, >0
(VVy=V?+ V24 Vi+VI=H:-Z>0
(U, VY= U,Vi + UsVy + UsV3 + UgVy = 0 (3.1)
U,V — UV, = LiE — K\ H,
UsV, — U\Vs = L,E — K, H,
U,Vy — UV, = LiE — K3H,
U,Vs — UsVy = K\2 — L1H,
UsVy = UyVs = K2 — L H)
UsVy — UsVs = K3E — LyHy.

So the average of U,V + HyUs — K3V, — H>K; over the flow of Yy, is —3H,K3 on 27'(0)/S '. Thus the
first order normal form of the regularized Stark Hamiltonian 9 (2.5) on Z71(0)/S ' is

H' = H, — 3peH K. (3.2)
4. The second order normal form on Z~'(0)/S'

In order to compute the second order normal form of the Hamiltonian H on Z7!(0)/S !, we need
to find a function F on R'® such that changing coordinates by the time & value of the flow of the
Hamiltonian vector field Yy brings the regularized Hamiltonian H (2.5) into first order normal form.
Choose F so that

Ly.H, =B(— UsV, - %H2K3 - H,Uy + K3V). 4.1

The following calculation shows that this choice does the job.

(@Y H = H + eLy, H + %SZL%/FW + 0
= H, + eB(U,V, + HyUy — K3V, — HyK3) + €Ly, H,
+&BLy, (UsVi + HyUs — K3Vy — HoK3) + 1°L5, Hy + O(&”)
= H, + s8(U,V, + H, U, — K3V, — H>K3)
+&B(— UsVy — sH K3 — HyUy + K3V))
+ & [Ly, (- Ly, H> - 3BH,K3) + 113 H,] + O(eY)
= H, — 3eBH, K5 — 16°(L}_H, + 3Ly, (H,K3)) + O(&). 4.2)

To determine the function F, we solve equation (4.1). Write F = F; + F,, where Ly, Fy =
B(U4V: + 3H,K3) and Ly, F, = B(H,Us — K3V)). Then

LYFHZ = _LYHZF = —LYH2F1 - LYH2F2
= —BU4V; + %HzKa) - BH Uy — K3V1). 4.3)
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Since LyH2 Vy=-2U4 and LyH2 U, = 2V, it follows that

Fy = -£(H, Vs + K3U)). (4.4a)
Now
Fi=t fo ;") (UsVy + SHoKs) dt = & fo e, (UsV)dt + FHKs,
see [1], and

E f 1) ") (UsVy)dt =

0

L wuy! foﬂz sin4rdt + B(U4Vy) 4 foﬂ t cos” 2tdt

—ﬁ(UIVA;)j—lrfO”tsin2 2tdt + §(V1V4)}Tfont sin 4rdt
= §(U1U4 - ViVy) + %(U4V1 - U Vy),
since 1 ["# sindrdr = - and L ["#sin’ 2¢dr = 1 ["fcos? 2¢ds = 2. Thus
Fy = §(U\Us = ViVa) + F(UsVy = UVi + HoK3) = §(U Uy = Vi Vi)

on Z71(0)/S !, see (3.1). Hence on = !(0)/S"'

F=F+F,=5UU; - ViVy) = 5(HL, Vs + K3U)). (4.5)

We now calculate the average over the flow of Yy, of
—3BLy,(H,K3) — 113 H,, (4.6)

which is the & term in the transformed Hamiltonian ((,05‘”) H, see (4.2). This determines the second
order normal form of H on Z7!(0)/S !. We begin with the term

—3BLy,(H2K3) = =3B[K3(Ly, Hy) — Hy(Ly, F)].

The average of
—%beta K3(LYFH2) = %ﬁz K3(U4V1 + %H2K3 + H,U,; — K3V1)

vanishes on Z1(0)/S'. The term

3BHy(Ly, F) = 3°Hy Ly, (5(U\Us = ViVa) = J(HL Vi + K3UY)

0 0 0 0
= 38’H 2L 2L 2K 2K
= 187 H,[( - S 1+ AT + '35
i, 0 0 .
-2U 2U 2V. 2V Lu,u,-wvv.
30 + TR TA + P NGEWULUL = ViVy)

— 1(H,Vs + K3U))), see [2, table 1]
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= 3B°H,[(-U; + U + Vi = V}) — HyVy + K3U4].

Next we calculate 3,8H2(LyK F). Since H,V; = 0 = K3U, we need only calculate the average of U 2, Uy, 2
Vi and V;. We get U2 JUT+VH = V2 and U2 U+ V) = V2 Thus 2,8H2(LYK F) =0. So the

average —3SLy, (H,K3) of the first term in expression (4.6) vanishes on Z7'(0)/S .

Next we calculate the average of the term LZYFHZ in expression (4.6) on Z7'(0)/S'. We have

L Hy = —Ly,(Ly, F)
= —BLy,(UsV\ + 1H,K3 + HyUy — K5V1), using (4.3)

I i 1 v
= Bl (Ly,, F)V\ + Us(Ly, F) =5 (Ly,Hy)K3 +35 Ha(Ly, F)
v vI Vil Vi

— (Ly,H2)Us + Hy(Ly, F) — (Ly,, F)V1 — K5(Ly, F) I.

We begin by finding
0 0 0 0 0 0
Ly, F =B[22V +2V +2V +2V, U — —2Uy—
i, £ = Bl( You, 26U2 30U, You, “Tlov, 29V,
0
_2U3W —2U4—)]( (U Uy = V1 V4) - §(H2V4 + K3U)))
=,3[%(V1U4 + U Vy) + H2U4 - K3V ;
0 0 o o 0 0
Ly F = 2L, —— + 2L - 2K 2K 2U 2U
A= 2oz + 131@ TP T T/ T
]
-2V +2vi—Y &, u, - vivy) - YL HV, + KU
9y 16V4)(8( 1Us = ViVy) = 5(HVy + K3UY)))
=Bl3(=U; + Ui + Vi = V]) = HbVy + K3 U]
o 0 0 0 0 0
Ly, F=8[(-2U— —2Us— +2U,— — 2V, 2K +2L
o, F = Bl( YK, 0L, 0L, *OH, oU, 20U,
0 o
+2V. 2H,—) (LU, U, -V, V) - L1,V + KU
3(9U3 2(9V4)(8( 1V4 1 4) 2( 2V4 3 1))]
=B[V; + K5 — X(K3Us — HVy) + H; + UT);
0 0 0 | ] 0
Ly, F = B[(2Vo— + 2V3— + 2V,— + 2U;—— + 2H,—— + 2K
m =Bl 20K, 36[(2 YOk, 'oH, 20U, Yov,

0
+2Ky— + 2K3—)(§(U1 Us = ViVy) — 3(H Vs + K3UY))|
oV oV,

= B[-2(U\ V4 + HyK3) + 1(H Uy — K3V))).

So the average of term I on Z1(0)/S ! is

B(Ly,, F)Vy = B (ViV} + K3Vi = 1K3UsVy + {H Vi + HVy + URV))
= B (sH. K5 + s Hy(UT + VD)),

(4.7a)
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since the average of V;VZ, K3V, H3V;, and U}V, are each 0, U,V = —3H,K; and V_12 = (UL + VD).
Term 11 is
BU4(Ly, F) = (= 2U U4V — 2H,K3Us + 1HLUZ — 1 K3UsV)).

So

BUs(Ly, F) = 41‘;,321‘12@ - %ﬁz KU,V
= 1P H,(U; + V) + LB HLKG. (4.7b)

For term III, we have already shown that
~£(Ly,HyK; = 0. (4.7¢)
and for term IV we have already shown that
EHy(Ly, F) = 0. (4.7d)

Term V is
—B(Ly, H)Us = B (RUVy + LU ULV, + HhU; — K3ULVY).

So

—B(Ly, Hy)Uy = B (3U3V: + U UsVy + HyU; — K3UyV))
2 2
= LH)(U; + V) = EK3(Us V) - Ui V), (4.7e)
since the average of U2V, and U, U,V vanish; while Fﬁ = (U + V) and UV, = 3(UsV, — U V).

Term VIis
BH(Ly, F) = B°Hy(V; + K3 — 2K3Uy + {H,Vy + H; + U?).

So

BHA(Ly, F) = B HyV2 + > HoK3 + B2 H3 + B2 H,U?

= 1P H,(U; + V) + BPHL K5 + B°H; + 187 Hy(UT + V), 4.7f)
since K2U4 =0= H2V1~
Term VII is

—B(Ly,, F)Vy = B (GIUV) = UiVy = Vi Vi + Vi1 + HyV] = K3UVy).

So

~B(Ly,, Vi = BH,V? - 2 K; ULV,

2 2
= SH,(U} + V}) = 5K3(UsVi = U Va). (4.7g)

Term VIII is

~BK3(Ly, F) = B(2K3UVy + 2H K3 — HL KUy + K3 V)).

Communications in Analysis and Mechanics Volume 15, Issue 3, 457-469.
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So
—BK3(Ly, F) = 28°K3U V4 + 28° HoK; = 35° H,K3, (4.7h)

since UV, = %H2K3. Collecting together the results of all the above term calculations gives

L%/FHz = B(Ly,, F)Vi + BU4(Ly, F) — B(Ly, H)Uy + BH>(Ly,, F)
= B(Ly, F)V = BK3(Ly, F)
= B ([§HaK; + s Hy (U + VD1 + [ Ha(Uj + V3) + s HLK3]
+ [§Ha(U; + Vi) = 3K3(UsVy = U\ Vo)l + [3Ho(U; + V3) + HoK3 + H;
+ 1H,(UT + VD1 + [SHa(UT + VD) = AK5(Us V) = U V)] + 3H,K3)
= B3 HoK; + Hy + 3Ho(UT + V) + S Ha (U + V)],

using U,V — UV, = —K3H,. Thus the second order normal form of the regularized Stark Hamiltonian
H on Z71(0)/S ' is

HY = Hy - 3epH Ky — 16’L] Hy = Hy — 3eBHHK;
— 1B H (2K + Hy + 3(UT + VD) + 3(U; + V). 4.8)
5. The first order normal form of 7—(15? onT,S ?

Since LXH H; @ — by construction, the second order normal form H @ (4.8) is a smooth function
on (Hy'(h) N :‘1(0)) /S' = T},S3, the tangent h-sphere bundle of the unit 3 sphere S3, given by
H = h - LB — 3eBhK;
—1EBh[AK; + 3(UT + VD) + 2(U; + V). (5.1

We now show that the Hamiltonian H (5.1) on T},S f can be normalized again. On (TR*, wy) the
Hamiltonian

K3(q.p) = 5(q3 + 43 + P3 + Ps — 4i — 45 — Py — P3)
gives rise to the Hamiltonian vector field Xk, whose flow goi% (g, p)is

(g1 cost— pysint,g, cost — ppsint, g3 CoSt + p3sint, g, CoSt + pysint,

g1 Sint + pycoSt, gy sint + p, cost,—qz Sint + p3 COSt, —qy Sint + py cOSt),

which is periodic of period 2.

The vector field Xg, on TR* induces the vector field

d d 9 9
Yg, = —2L 2L 2Ky —— + 2K| —
29K, ek, Mar, T Mern
9 9 d 9
—2U +2U Ve + 2V —
You, You, “tov, Lav,
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on Z71(0)/S' € R'® with coordinates (K, L, H,, Z; U, V), whose flow

0 (K, L, Hy, Z; U, V) = (= Ly sin2s + K, cos 2, L; sin 2s + K3 cos 25, K3
— K>sin2s + Lycos2s,K;sin2s + Lycos2s, Lz, Hy,Z; U; cos2s — Uy sin 25,
U,, Us, Uy sin2s + Uy cos 2s, Vi cos 2s — Vysin 2s, Vo, V3, Vi sin 2s + V4 cos 2s)

is periodic of period 7. Since Ly, maps the ideal of smooth functions which vanish identically on
=71(0)/S ! into itself, Y, is a vector field on Z7'(0)/S . Since Lx, H, = 0, it follows that Y, induces a
vector field on 7,5} with periodic flow. So we can normalize again.

To compute the normal form of the Hamiltonian H (5.1) on ThS? we need only calculate the average
of the term
T=2K+3U+V)+3U;+V))

over the flow gofK3. Since LYK3 K5 = 0, we need only calculate ﬁ, Fﬁ, 712, and 7}. Now
712 = 71? f (U, cos2s — Uy sin 2s5)* ds
0

= }rf (Uicos®2s — U Uy sin4s + Ujsin® 2s5)ds = 3(UT + U).
0

Similarly, V2 = 1(V? + V2), U2 = L(U? + U?), and V2 = L(V2 + V2). Thus
T =2K3 + 2n(UT + Vi + U; + V), (5.2)
which is no surprise since LYK3 T = 0. So the first order normal form of H (5.)onT,S f is

HY = h— 12821 - 3eBnk;
~ EB°h[EK; + 2(U + Vi + U + V1. (5.3)

6. The reduced Hamiltonian 7?(&) onS;xS?

The polynomial U; + V7 + Uj + V; is invariant under the flows gof”z, @)%, and thus is a polynomial
on the orbit space 7;,S7/S' = §7 x S2, defined by

Ki+K+K+Li+ 15+ L5 =1
KL+ KL, + K315 =0.

We now find this polynomial. From the explicit description of R3/S! in (3.1) it follows that on
(Hy' () N ET1(0))/S*

U,V, = U,V, = -hK,
U3V1 - U1 V3 = —hKZ
U4V1 - U2V4 = —l’lK:;.
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SoonS7xS;

(K + K3 + K3) = (UaVy — Ui Vo)? + (UsVy = U Vi) + (U V) = U, Vy)?
= (Ul +U; +U; +Up)Vi - UiV}
—2(UV))(U V) + Uy Vy + UsVs + UyVy) + 2UTVE
+(Vi+ V3 + Vi+ VHUT - UiV}
= (Vi + Up),
since (U, Uy = h*,(V, V) = h*, and (U, V) = 0. Thus U + V? = K? + K7 + K3. Again from the explicit
description of (H;'(h) N E7'(0))/S' we have

U,Vs — UV, = —hL,
UV, — UsVy = hl,
UV, - U,V = —hKs.

SoonS; xS}

(L3 + L5 + K3) = (U Vs — UsVy)* + (UsVay — Uy Vi) + (U4 V) — U, V)
=(Vi+V; + V3 +V)U; - UV,
— 2UVa)(U Vi + UpVy + UsVs + UyVy) + 2URVE
+ Ui+ U+ Us + UDV; - UiV;
= WX (U; + V).

Thus U + V; = LT + L; + K3. Consequently

Ul +Vi+U;+V;=K; +K; +2K; + L} + L;
2 2 2 2 2 2 2 2
=Ki+K +Ks+Li+ L5+ L5+ K5 - L3
=2hn* + K3 - L.

onS?xS7. HenceonS7xS?
H=HY = h - B0 — 2ephK; - L2B2hK? + 22B2hL2. 6.1)
7. The Hamiltonian system (H, S AxSE{L )

Using the coordinates (£,77) = (K + L)/2, (K — L)/2) on R? x R?, the space of smooth functions on
the reduced space S; X S, defined by
G+E+E =1 and g +my+m =12,

has a Poisson structure with bracket relations

3

3
{fi,é:j} = Zeijkgka r]l’ 77] Zeljknk, §l9 77] =0.

k=1 k=1

Communications in Analysis and Mechanics Volume 15, Issue 3, 457-469.
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Since {K3, L3} = 0, it follows that {K3, H } = 0. Thus the flow gof’“ of the Hamiltonian vector field Z,
on (S; x S7.{, }) generates an §' symmetry of the Hamiltonian system (H, S} x S7,{, }). So this
system is completely integrable.

We reduce this S! symmetry as follows. Consider the vector field Zg, on R? x R?® corresponding to
the Hamiltonian K3 = %(53 + 173). Its integral curves satisfy

& =16, K3} = 3é.6) = 36
& =16, K3} = &, &) = 36
& =1{6,K31=0

m = {m, K3} = 3{m.m3) = 3m
o = {m, K3} = 3. ms} = —5m
&=, K3} =0

Thus the flow of Zg, on R? x R? is

0 (Em) = (€ cost)2 — & sint)2, & sint/2 + & cos t/2, &,
nycost/2 +nysint/2,m; sint/2 — 1, cost/2,n3),

which preserves S7 x S and is periodic of period 4.

We now determine the space (S; x $7)/S" of orbits of the vector field Zg,. We use invariant theory.

The algebra of polynomials on R? x R3, which are invariant under the S action given by the flow (p,ZK3,
is generated by

o =6+8 oy =11+ 1 03 = &1 — &1

oy=&m+ém os=3(EG+m) 06 =365 ),

which are subject to the relation

o3+ 0% = (Em — Em) + (Em + Eamp)?
= (E+E) +m3) =000, 0120 & 0y 2 0. (7.1a)

In terms of invariants the defining equations of §7 X S7 become

oL (Os+oe) =& +E+E =N (7.1b)

0+ (05 — 06)° = n% + ng + 17% = . (7.1¢c)
Eliminating o; and o, from (7.1a) using (7.1b) and (7.1c) gives
03+ 05 = (I = (05 + 7)) = (05 = 06)°), o5 + 7| < h & o5 — 7| < n, (7.2a)

which defines (S7 x S7)/S' as a semialgebraic variety in R* with coordinates (073, 074, 0°s, o). Thus the
reduced space (K3'(2k) N (S} x §7))/S" is defined by (7.2a) and

os = 3(& +m) = 1Ks = k. (7.2b)
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Consequently, (K;'(2k) N (S7 x S7))/S" is the semialgebraic variety

o5+ 05 = (B = (k+ 06)*)(h* = (k — 06)%)
=((h=k? - o) ((h+ k) —07), losl < h— || (7.3)

in R? with coordinates (073,04, 0%). When O < |k| < h the reduced space (7.3) is a smooth 2-sphere.
When |k| = h it is a point. When k& = 0 it is a topological 2-sphere with conical singular points at
(0,0, +h). These singular points correspond to the fixed points 4(0,0, +1,0,0, F1) of the S' action on
S7x S7 generated by the flow of the vector field Z,.

By (6.1) the reduced Hamiltonian on (K;'(2k) N (S7 x S3))/S ! is
Hiea = 26°B2h o, (7.4)
using Ly = & — 13 = 207, having dropped the constant i — 2&28°h* — 3ephk — L& hk?.
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