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1. Introduction

In this article, we study the following anisotropic singular
→
p(·)-Laplace equation

−
∑N

i=1 ∂xi

(
|∂xiu|

pi(x)−2∂xiu
)

= f (x)u−β(x) + g(x)uq(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω; f ∈ L1(Ω) is a positive
function; g ∈ L∞(Ω) is a nonnegative function; β ∈ C(Ω) such that 1 < β(x) < ∞ for any x ∈ Ω;
q ∈ C(Ω) such that 0 < q(x) < 1 for any x ∈ Ω; pi ∈ C(Ω) such that 2 ≤ pi(x) < N for any x ∈ Ω,
i ∈ {1, ...,N}.
The differential operator

N∑
i=1

∂xi

(
|∂xiu|

pi(x)−2∂xiu
)
,
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that appears in problem (1.1) is an anisotropic variable exponent
→
p (·)-Laplace operator, which repre-

sents an extension of the p(·)-Laplace operator

N∑
i=1

∂xi

(
|∂xiu|

p(x)−2∂xiu
)
,

obtained in the case for each i ∈ {1, ...,N}, pi(·) = p(·).
In the variable exponent case, p(·), the integrability condition changes with each point in the

domain. This makes variable exponent Sobolev spaces very useful in modeling materials with
spatially varying properties and in studying partial differential equations with non-standard growth
conditions [1–8].

Anisotropy, on the other hand, adds another layer of complexity, providing a robust mathematical
framework for modeling and solving problems that involve complex materials and phenomena
exhibiting non-uniform and direction-dependent properties. This is represented mathematically
by having different exponents for different partial derivatives. We refer to the papers [9–21] and
references for further reading.

The progress in researching anisotropic singular problems with
→
p(·)-growth, however, has been

relatively slow. There are only a limited number of studies available on this topic in academic
literature. We could only refer to the papers [22–24] that were published recently. In [22], the author
studied an anisotropic singular problems with constant case p(·) = p but with a variable singularity,
where existence and regularity of positive solutions was obtained via the approximation methods.
In [23], the author obtained the existence and regularity results of positive solutions by using the
regularity theory and approximation methods. In [24], the authors showed the existence of positive
solutions using the regularity theory and maximum principle. However, none of these papers studied
combined effects of variable singular and sublinear nonlinearities.

We would also like to mention that the singular problems of the type
−∆u = f (x)u−β in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

have been intensively studied because of their wide applications to physical models in the study of
non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogenous catalysts,
glacial advance, etc. (see, e.g., [25–30]).

These studies, however, have mainly focused on the case 0 < β < 1, i.e., the weak singularity (see,
e.g. [31–36]), and in this case, the corresponding energy functional is continuous.
When β > 1 (the strong singularity), on the other hand, the situation changes dramatically, and
numerous challenges emerge in the analysis of differential equations of the type (1.2), where the
primary challenge encountered is due to the lack of integrability of u−β for u ∈ H1

0(Ω) [37–41].

To overcome these challenges, as an alternative approach, the so-called “compatibility relation”
between f (x) and β has been introduced in the recent studies [37, 40, 42]. This method, used along
with a constrained minimization and the Ekeland’s variational principle [43], suggests a practical
approach to obtain solutions to the problems of the type (1.2). In the present paper, we generalize

Communications in Analysis and Mechanics Volume 16, Issue 3, 554–577.



556

these results to nonstandard p(·)-growth.

The paper is organized as follows. In Section 2, we provide some fundamental information for the
theory of variable Sobolev spaces since it is our work space. In Section 3, first we obtain the auxiliary
results. Then, we present our main result and obtain a positive solution to problem (1.1). In Section 4,
we provide an example to illustrate our results in a concrete way.

2. Preliminaries

We start with some basic concepts of variable Lebesgue-Sobolev spaces. For more details, and the
proof of the following propositions, we refer the reader to [1, 2, 44, 45].

C+

(
Ω
)

=
{
p; p ∈ C

(
Ω
)
, inf p (x) > 1, for all x ∈ Ω

}
.

For p ∈ C+(Ω) denote
p− := inf

x∈Ω
p(x) ≤ p(x) ≤ p+ := sup

x∈Ω

p(x) < ∞.

For any p ∈ C+

(
Ω
)
, we define the variable exponent Lebesgue space by

Lp(·)(Ω) =

{
u | u : Ω→ R is measurable,

∫
Ω

|u(x)|p(x)dx < ∞
}
,

then, Lp(·)(Ω) endowed with the norm

|u|p(·) = inf
{
λ > 0 :

∫
Ω

∣∣∣∣∣u(x)
λ

∣∣∣∣∣p(x)

dx ≤ 1
}
,

becomes a Banach space.

Proposition 2.1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∫
Ω

|uv|dx ≤ C(p−, (p−)′)|u|p(·)|v|p′(·)

where Lp′(x)(Ω) is the conjugate space of Lp(·)(Ω) such that 1
p(x) + 1

p′(x) = 1.

The convex functional Λ : Lp(·)(Ω)→ R defined by

Λ(u) =

∫
Ω

|u(x)|p(x)dx,

is called modular on Lp(·)(Ω).

Proposition 2.2. If u, un ∈ Lp(·)(Ω) (n = 1, 2, ...), we have

(i) |u|p(·) < 1(= 1;> 1)⇔ Λ(u) < 1(= 1;> 1);
(ii) |u|p(·) > 1 =⇒ |u|p

−

p(·) ≤ Λ(u) ≤ |u|p
+

p(·);
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(iii) |u|p(·) ≤ 1 =⇒ |u|p
+

p(·) ≤ Λ(u) ≤ |u|p
−

p(·);
(iv) lim

n→∞
|un|p(·) = 0⇔ lim

n→∞
Λ(un) = 0; lim

n→∞
|un|p(·) = ∞ ⇔ lim

n→∞
Λ(un) = ∞.

Proposition 2.3. If u, un ∈ Lp(·)(Ω) (n = 1, 2, ...), then the following statements are equivalent:

(i) lim
n→∞
|un − u|p(·) = 0;

(ii) lim
n→∞

Λ(un − u) = 0;
(iii) un → u in measure in Ω and lim

n→∞
Λ(un) = Λ(u).

The variable exponent Sobolev space W1,p(·)(Ω) is defined by

W1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)},

with the norm
‖u‖1,p(·) = |u|p(·) + |∇u|p(·),

or equivalently

‖u‖1,p(·) = inf
{
λ > 0 :

∫
Ω

(∣∣∣∣∣∇u(x)
λ

∣∣∣∣∣p(x)

+

∣∣∣∣∣u(x)
λ

∣∣∣∣∣p(x))
dx,≤ 1

}
for all u ∈ W1,p(·)(Ω).

As shown in [46], the smooth functions are in general not dense in W1,p(·)(Ω), but if the variable
exponent p ∈ C+(Ω) is logarithmic Hölder continuous, that is

|p(x) − p(y)| ≤ −
M

log(|x − y|)
, for all x, y ∈ Ω such that |x − y| ≤

1
2
, (2.1)

then the smooth functions are dense in W1,p(·)(Ω) and so the Sobolev space with zero boundary values,
denoted by W1,p(·)

0 (Ω), as the closure of C∞0 (Ω) does make sense. Therefore, the space W1,p(·)
0 (Ω) can be

defined as C∞0 (Ω)
‖·‖1,p(·)

= W1,p(·)
0 (Ω), and hence, u ∈ W1,p(·)

0 (Ω) iff there exists a sequence (un) of C∞0 (Ω)
such that ‖un − u‖1,p(·) → 0.

As a consequence of Poincaré inequality, ‖u‖1,p(·) and |∇u|p(·) are equivalent norms on W1,p(·)
0 (Ω)

when p ∈ C+(Ω) is logarithmic Hölder continuous. Therefore, for any u ∈ W1,p(·)
0 (Ω), we can define an

equivalent norm ‖u‖ such that
‖u‖ = |∇u|p(·).

Proposition 2.4. If 1 < p− ≤ p+ < ∞, then the spaces Lp(·)(Ω) and W1,p(·)(Ω) are separable and
reflexive Banach spaces.

Proposition 2.5. Let q ∈ C(Ω). If 1 ≤ q(x) < p∗(x) for all x ∈ Ω, then the embedding W1,p(·)(Ω) ↪→
Lq(·)(Ω) is compact and continuous, where

p∗(x) =

 N p(x)
N−p(x) , if p(x) < N,

+∞, if p(x) ≥ N.
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Finally, we introduce the anisotropic variable exponent Sobolev spaces.
Let us denote by

→
p : Ω → RN the vectorial function

→
p(·) = (p1(·), ..., pN(·)) with pi ∈ C+(Ω), i ∈

{1, ...,N}. We will use the following notations.
Define

−→
P+,
−→
P− ∈ RN as

−→
P+ =

(
p+

1 , ..., p+
N
)
,
−→
P− =

(
p−1 , ..., p−N

)
,

and P+
+, P

+
−, P

−
− ∈ R

+ as

P+
+ = max

{
p+

1 , ..., p+
N
}
, P+

− = max
{
p−1 , ..., p−N

}
, P−− = min

{
p−1 , ..., p−N

}
,

Below, we use the definitions of the anisotropic variable exponent Sobolev spaces as given in [12]
and assume that the domain Ω ⊂ RN satisfies all the necessary assumptions given in there.

The anisotropic variable exponent Sobolev space is defined by

W1,
→
p(·)(Ω) = {u ∈ LP+

+(Ω) : ∂xiu ∈ Lpi(·)(Ω), i ∈ {1, ...,N}},

which is associated with the norm

‖u‖
W1,

→
p (·)(Ω)

= |u|P+
+(·) +

N∑
i=1

|∂xiu|pi(·).

W1,
→
p(·)(Ω) is a reflexive Banach space under this norm.

The subspace W1,
→
p(·)

0 (Ω) ⊂ W1,
→
p(·)(Ω) consists of the functions that are vanishing on the boundary, that

is,
W1,

→
p(·)

0 (Ω) = {u ∈ W1,
→
p(·)(Ω) : u = 0 on ∂Ω},

We can define the following equivalent norm on W1,
→
p(·)

0 (Ω)

‖u‖→p(·) =

N∑
i=1

|∂xiu|pi(·).

since the smooth functions are dense in W1,
→
p(·)

0 (Ω), as the variable exponent pi ∈ C+(Ω), i ∈ {1, ...,N}
is logarithmic Hölder continuous.

The space W1,
→
p(·)

0 (Ω) is also a reflexive Banach space (for the theory of the anisotropic Sobolev
spaces see, e.g., the monographs [2, 47, 48] and the papers [12, 15]).

Throughout this article, we assume that

N∑
i=1

1
p−i

> 1, (2.2)

and define P∗− ∈ R
+ and P−,∞ ∈ R+ by

P∗− =
N∑N

i=1
1
p−i
− 1

, P−,∞ = max
{
P+
−, P

∗
−

}
.
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Proposition 2.6. [ [15],Theorem 1] Suppose that Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth
boundary and relation (2.2) is fulfilled. For any q ∈ C

(
Ω
)

verifying

1 < q (x) < P−,∞ for all x ∈ Ω,

the embedding

W1,
→
p(·)

0 (Ω) ↪→ Lq(·) (Ω) ,

is continuous and compact.

3. The main results

We define the singular energy functional J : W1,
→
p(·)

0 (Ω)→ R corresponding to equation (1.1) by

J(u) =

∫
Ω

N∑
i=1

|∂xiu|
pi(x)

pi(x)
dx −

∫
Ω

g(x)|u|q(x)+1

q(x) + 1
dx +

∫
Ω

f (x)|u|1−β(x)

β(x) − 1
dx.

Definition 3.1. A function u is called a weak solution to problem (1.1) if u ∈ W1,
→
p(·)

0 (Ω) such that u > 0
in Ω and ∫

Ω

 N∑
i=1

|∂xiu|
pi(x)−2∂xiu · ∂xiϕ − [g(x)uq(x) + f (x)u−β(x)]ϕ

 dx = 0, (3.1)

for all ϕ ∈ W1,
→
p(·)

0 (Ω).

Definition 3.2. Due to the singularity of J on W1,
→
p(·)

0 (Ω), we apply a constrained minimization for
problem (1.1). As such, we introduce the following constrains:

N1 =

u ∈ W1,
→
p(·)

0 (Ω) :
∫

Ω

 N∑
i=1

|∂xiu|
pi(x) − g(x)|u|q(x)+1 − f (x)|u|1−β(x)

 dx ≥ 0

 ,
and

N2 =

u ∈ W1,
→
p(·)

0 (Ω) :
∫

Ω

 N∑
i=1

|∂xiu|
pi(x) − g(x)|u|q(x)+1 − f (x)|u|1−β(x)

 dx = 0

 .
Remark 1. N2 can be considered as a Nehari manifold, even though in general it may not be a manifold.
Therefore, if we set

c0 := inf
u∈N2
J(u),

then one might expect that c0 is attained at some u ∈ N2 (i.e., N2 , ∅) and that u is a critical point of
J .

Throughout the paper, we assume that the following conditions hold:

(A1) β : Ω→ (1,∞) is a continuous function such that 1 < β− ≤ β(x) ≤ β+ < ∞.
(A2) q : Ω→ (0, 1) is a continuous function such that 0 < q− ≤ q(x) ≤ q+ < 1 and q+ + 1 ≤ β−.
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(A3) 2 ≤ P−− ≤ P+
+ < P∗− for almost all x ∈ Ω.

(A4) f ∈ L1(Ω) is a positive function, that is, f (x) > 0 a.e. in Ω.
(A5) g ∈ L∞(Ω) is a nonnegative function.

Lemma 3.3. For any u ∈ W1,
→
p(·)

0 (Ω) satisfying
∫

Ω
f (x)|u|1−β(x)dx < ∞, the functional J is well-defined

and coercive on W1,
→
p(·)

0 (Ω).

Proof. Denote by I1,I2 the indices sets I1 = {i ∈ {1, 2, ...,N} : |∂xiu|pi(·) ≤ 1} and I2 = {i ∈
{1, 2, ...,N} : |∂xiu|pi(·) > 1}. Using Proposition 2.2, it follows

|J(u)| ≤
1

P−−

N∑
i=1

∫
Ω

|∂xiu|
pi(x)dx −

|g|∞
q+ + 1

∫
Ω

|u|q(x)+1dx +
1

β− − 1

∫
Ω

f (x)|u|1−β(x)dx

≤
1

P−−

∑
i∈I1

|∂xiu|
P−−
pi(·)

+
∑
i∈I2

|∂xiu|
P+

+

pi(·)

 − |g|∞
q+ + 1

min{|u|q
++1

q(x)+1, |u|
q−+1
q(x)+1}

+
1

β− − 1

∫
Ω

f (x)|u|1−β(x)dx

≤
1

P−−

 N∑
i=1

|∂xiu|
P+

+

pi(·)
+

∑
i∈I1

|∂xiu|
P−−
pi(·)

 − |g|∞
q+ + 1

min{|u|q
++1

q(x)+1, |u|
q−+1
q(x)+1}

+
1

β− − 1

∫
Ω

f (x)|u|1−β(x)dx

≤
1

P−−

 N∑
i=1

|∂xiu|
P+

+

pi(·)
+ N

 − |g|∞
q+ + 1

min{|u|q
++1

q(x)+1, |u|
q−+1
q(x)+1}

+
1

β− − 1

∫
Ω

f (x)|u|1−β(x)dx (3.2)

which shows that J is well-defined on W1,
→
p(·)

0 (Ω).
Applying similar steps and using the generalized mean inequality for

∑N
i=1 |∂xiu|

P−−
pi(·)

gives

J(u) ≥
1

P+
+

N∑
i=1

∫
Ω

|∂xiu|
pi(x)dx −

|g|∞
q− + 1

∫
Ω

|u|q(x)+1dx +
1

β+ − 1

∫
Ω

f (x)|u|1−β(x)dx

≥
1

P+
+

∑
i∈I1

|∂xiu|
P+

+

pi(·)
+

∑
i∈I2

|∂xiu|
P−−
pi(·)

 − |g|∞
q− + 1

∫
Ω

|u|q(x)+1dx

+
1

β+ − 1

∫
Ω

f (x)|u|1−β(x)dx

≥
N
P+

+


‖u‖P

−
−

→
p(·)

NP−−
− 1

 − |g|∞
q− + 1

‖u‖q
++1
→
p(·)

+
1

β+ − 1

∫
Ω

f (x)|u|1−β(x)dx (3.3)

That is, J is coercive (i.e., J(u)→ ∞ as ‖u‖→p(·) → ∞), and bounded below on W1,
→
p(·)

0 (Ω).
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Next, we provide a-priori estimate.

Lemma 3.4. Assume that (un) ⊂ N1 is a nonnegative minimizing sequence for the minimization prob-
lem limn→∞J(un) = infN1 J . Then, there are positive real numbers δ1, δ2 such that

δ1 ≤ ‖un‖→p(·) ≤ δ2

Proof. We assume by contradiction that there exists a subsequence (un) (not relabelled) such that un →

0 in W1,
→
p(·)

0 (Ω). Thus, we can assume that ‖un‖→p(·) < 1 for n large enough, and therefore, |∂xiun|Lpi(·) < 1.
Then, using Proposition 2.2, we have∫

Ω

N∑
i=1

|∂xiun|
pi(x)dx ≤

N∑
i=1

|∂xiun|
p−i
pi(·)
≤

N∑
i=1

|∂xiun|
P−−
pi(·)

(3.4)

We recall the following elementary inequality: for all r, s > 0 and m > 0 it holds

rm + sm ≤ K(r + s)m (3.5)

where K := max{1, 21−m}. If we let r = |∂x1un|
P−−
Lp1(·) , s = |∂x2un|

P−−
Lp2(·) and m = P−− in (3.5), it reads

|∂x1un|
P−−
Lp1(·) + |∂x2un|

P−−
Lp2(·) ≤ K(|∂x1un|Lp1(·) + |∂x2un|Lp2(·))P−− (3.6)

where K = max{1, 21−P−−} = 1. Applying this argument to the following terms in the sum
∑N

i=1 |∂xiun|
P−−
pi(·)

consecutively leads to ∫
Ω

N∑
i=1

|∂xiun|
pi(x)dx ≤

N∑
i=1

|∂xiun|
p−i
pi(·)
≤

N∑
i=1

|∂xiun|
P−−
pi(·)

≤

 N∑
i=1

|∂xiun|pi(·)

P−−

≤ ‖un‖
P−−
→
p(·)

(3.7)

Now, using (3.7) and the reversed Hölder’s inequality, we have(∫
Ω

f (x)1/β−dx
)β− (∫

Ω

|un|dx
)1−β−

≤

∫
Ω

f (x)|un|
1−β−dx ≤

∫
Ω

f (x)|un|
1−β(x)dx (3.8)

By the assumption, (un) ⊂ N1. Thus, using (3.8) and Proposition 2.2 leads to(∫
Ω

f (x)1/β−dx
)β− (∫

Ω

|un|dx
)1−β−

≤

∫
Ω

f (x)|un|
1−β−dx

≤ ‖un‖
P−−
→
p(·)
−
|g|∞

q− + 1
‖un‖

q++1 → 0 (3.9)

Considering the assumption (A2), this can only happen if
∫

Ω
|un|dx→ ∞, which is not possible. There-

fore, there exists a positive real number δ1 such that ‖un‖→p(·) ≥ δ1.
Now, let’s assume, on the contrary, that ‖un‖→p(·) > 1 for any n. We know, by the coerciveness of J , that
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the infimum of J is attained, that is, ∞ < m := inf
u∈W1,

→
p (·)

0 (Ω)
J(u). Moreover, due to the assumption

limn→∞J(un) = infN1 J , (J(un)) is bounded. Then, applying the same steps as in (3.3), it follows

C‖un‖→p(·) +J(un)

≥
N
P+

+


‖un‖

P−−
→
p(·)

NP−−
− 1

 − |g|∞
q− + 1

‖un‖
q++1
→
p(·)

+
1

β+ − 1

∫
Ω

f (x)|un|
1−β(x)dx

for some constant C > 0. If we drop the nonnegative terms, we obtain

C‖un‖→p(·) +J(un) ≥
1

P+
+


‖un‖

P−−
→
p(·)

NP−−−1
− N

 − |g|∞
q− + 1

‖u‖q
++1
→
p(·)

Dividing the both sides of the above inequality by ‖un‖
q++1
→
p(·)

and passing to the limit as n → ∞ leads to

a contradiction since we have q− + 1 < P−−. Therefore, there exists a positive real number δ2 such that
‖un‖→p(·) ≤ δ2.

Lemma 3.5. N1 is closed in W1,
→
p(·)

0 (Ω).

Proof. Assume that (un) ⊂ N1 such that un → û (strongly) in W1,
→
p(·)

0 (Ω). Thus, un(x)→ û(x) a.e. in Ω,
and ∂xiun → ∂xi û in Lpi(·)(Ω) for i = 1, 2, ...,N. Then, using Fatou’s lemma, it reads∫

Ω

 N∑
i=1

|∂xiun|
pi(x) − g(x)|un|

q(x)+1 − f (x)|un|
1−β(x)

 dx ≥ 0

lim inf
n→∞

∫
Ω

N∑
i=1

|∂xiun|
pi(x)dx

 − ∫
Ω

g(x)|û|q(x)+1dx ≥ lim inf
n→∞

[∫
Ω

f (x)|un|
1−β(x)dx

]
and hence, ∫

Ω

 N∑
i=1

|∂xi û|
pi(x) − g(x)|û|q(x)+1 − f (x)|û|1−β(x)

 dx ≥ 0

which means û ∈ N1. N1 is closed in W1,
→
p(·)

0 (Ω).

Lemma 3.6. For any u ∈ W1,
→
p(·)

0 (Ω) satisfying
∫

Ω
f (x)|u|1−β(x)dx < ∞, there exists a unique continuous

scaling function u ∈ W1,
→
p(·)

0 (Ω) → (0,∞) : u 7−→ t(u) such that t(u)u ∈ N2, and t(u)u is the minimizer
of the functional J along the ray {tu : t > 0}, that is, inft>0J(tu) = J(t(u)u).

Proof. Fix u ∈ W1,
→
p(·)

0 (Ω) such that
∫

Ω
f (x)|u|1−β(x)dx < ∞. For any t > 0, the scaled functional, J(tu),

determines a curve that can be characterized by

Φ(t) := J(tu), t ∈ [0,∞). (3.10)
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Then, for a t ∈ [0,∞), tu ∈ N2 if and only if

Φ′(t) =
d
dt

Φ(t)
∣∣∣∣∣
t=t(u)

= 0. (3.11)

First, we show that Φ(t) attains its minimum on [0,∞) at some point t = t(u).
Considering the fact 0 <

∫
Ω

f (x)|u|1−β(x)dx < ∞, we will examine two cases for t.
For 0 < t < 1:

Φ(t) = J(tu) ≥
tP+

+

P+
+

N∑
i=1

∫
Ω

|∂xiu|
pi(x)dx −

tq−+1

q− + 1

∫
Ω

g(x)|u|q(x)+1dx

+
t1−β−

β+ − 1

∫
Ω

f (x)|u|1−β(x)dx := Ψ0(t)

Then, Ψ0 : (0, 1)→ R is continuous. Taking the derivative of Ψ0 gives

Ψ′0(t) = tP+
+−1

N∑
i=1

∫
Ω

|∂xiu|
pi(x)dx − tq−

∫
Ω

g(x)|u|q(x)+1dx

+

(
1 − β−

β+ − 1

)
t−β

−

∫
Ω

f (x)|u|1−β(x)dx (3.12)

It is easy to see from (3.12) that Ψ′0(t) < 0 when t > 0 is small enough. Therefore, Ψ0(t) is decreasing
when t > 0 is small enough. In the same way,

Φ(t) = J(tu) ≤
tP−−

P−−

N∑
i=1

∫
Ω

|∂xiu|
pi(x)dx −

tq++1

q+ + 1

∫
Ω

g(x)|u|q(x)+1dx

+
t1−β+

β− − 1

∫
Ω

f (x)|u|1−β(x)dx := Ψ1(t)

Then, Ψ1 : (0, 1)→ R is continuous. Taking the derivative of Ψ1 gives

Ψ′1(t) = tP−−−1
N∑

i=1

∫
Ω

|∂xiu|
pi(x)dx − tq+

∫
Ω

g(x)|u|q(x)+1dx

+

(
1 − β+

β+ − 1

)
t−β

+

∫
Ω

f (x)|u|1−β(x)dx (3.13)

But (3.13) also suggests that Ψ′1(t) < 0 when t > 0 is small enough. Thus, Ψ1(t) is decreasing when
t > 0 is small enough. Therefore, since Ψ0(t) ≤ Φ(t) ≤ Ψ1(t) for 0 < t < 1, Φ(t) is decreasing when
t > 0 is small enough.
For t > 1: Following the same arguments shows that Ψ′0(t) > 0 and Ψ′1(t) > 0 when t > 1 is large
enough, and therefore, both Ψ0(t) and Ψ1(t) are increasing. Thus, Φ(t) is increasing when t > 1 is large
enough. In conclusion, since Φ(0) = 0, Φ(t) attains its minimum on [0,∞) at some point, say t = t(u).
That is, d

dt Φ(t)|t=t(u) = 0. Then, t(u)u ∈ N2 and inft>0J(tu) = J(t(u)u).

Next, we show that scaling function t(u) is continuous on W1,
→
p(·)

0 (Ω).
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Let un → u in W1,
→
p(·)

0 (Ω)\{0}, and tn = t(un). Then, by the definition, tnun ∈ N2. Defined in this way,
the sequence tn is bounded. Assume on the contrary that tn → ∞ (up to a subsequence). Then, using
the fact tnun ∈ N2 it follows∫

Ω

N∑
i=1

|∂xitnun|
pi(x)dx −

∫
Ω

g(x)|tnun|
q(x)+1dx =

∫
Ω

f (x)|tnun|
1−β(x)dx

tP−−
n

∫
Ω

N∑
i=1

|∂xiun|
pi(x)dx − tq−+1

n

∫
Ω

g(x)|un|
q(x)+1dx ≤ t1−β−

n

∫
Ω

f (x)|un|
1−β(x)dx

which suggests a contradiction when tn → ∞. Hence, sequence tn is bounded. Therefore, there exists
a subsequence tn (not relabelled) such that tn → t0, t0 ≥ 0. On the other hand, from Lemma 3.4,
‖tnun‖→p(·) ≥ δ1 > 0. Thus, t0 > 0 and t0u ∈ N2. By the uniqueness of the map t(u), t0 = t(u), which

concludes the continuity of t(u). In conclusion, for any ∈ W1,
→
p(·)

0 (Ω) satisfying
∫

Ω
f (x)|u|1−β(x)dx < ∞,

the function t(u) scales u ∈ W1,
→
p(·)

0 (Ω) continuously to a point such that t(u)u ∈ N2.

Lemma 3.7. Assume that (un) ⊂ N1 is the nonnegative minimizing sequence for the minimization
problem limn→∞J(un) = infN1 J . Then, there exists a subsequence (un) (not relabelled) such that

un → u∗ (strongly) in W1,
→
p(·)

0 (Ω).

Proof. Since (un) is bounded in W1,
→
p(·)

0 (Ω) and W1,
→
p(·)

0 (Ω) is reflexive, there exists a subsequence (un),

not relabelled, and u∗ ∈ W1,
→
p(·)

0 (Ω) such that

• un ⇀ u∗ (weakly) in W1,
→
p(·)

0 (Ω),
• un → u∗ in Ls(·)(Ω), 1 < s(x) < P−,∞, for all x ∈ Ω,
• un(x)→ u∗(x) a.e. in Ω.

Since the norm ‖ · ‖→p(·) is a continuous convex functional, it is weakly lower semicontinuous. Using this
fact along with the Fatou’s lemma, and Lemma 3.4, it reads

inf
N1
J = lim

n→∞
J(un)

≥ lim inf
n→∞

∫
Ω

N∑
i=1

|∂xiun|
pi(x)

pi(x)
dx

 − ∫
Ω

g(x)|u∗|q(x)+1

q(x) + 1
dx

+ lim inf
n→∞

[∫
Ω

f (x)|un|
1−β(x)

β(x) − 1
dx

]
≥

∫
Ω

N∑
i=1

|∂xiu
∗|pi(x)

pi(x)
dx −

∫
Ω

g(x)|u∗|q(x)+1

q(x) + 1
dx +

∫
Ω

f (x)|u∗|1−β(x)

β(x) − 1
dx

= J(u∗) ≥ J(t(u∗)u∗) ≥ inf
N2
J ≥ inf

N1
J (3.14)

The above result implies, up to subsequences, that

lim
n→∞
‖un‖→p(·) = ‖u∗‖→p(·). (3.15)

Thus, (3.15) along with un ⇀ u∗ in W1,
→
p(·)

0 (Ω) show that un → u∗ in W1,
→
p(·)

0 (Ω).
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The following is the main result of the present paper.

Theorem 3.8. Assume that the conditions (A1)−(A5) hold. Then, problem (1.1) has at least one positive

W1,
→
p(·)

0 (Ω)-solution if and only if there exists u ∈ W1,
→
p(·)

0 (Ω) satisfying
∫

Ω
f (x)|u|1−β(x)dx < ∞.

Proof. (⇒) : Assume that the function u ∈ W1,
→
p(·)

0 (Ω) is a weak solution to problem (1.1). Then, letting
u = ϕ in Definition (3.1) gives∫

Ω

f (x)|u|1−β(x)dx =

∫
Ω

N∑
i=1

|∂xiu|
pi(x)dx −

∫
Ω

g(x)|u|q(x)+1dx

≤ ‖u‖PM
→
p(·)
− |g|∞|u|

qM
q(x)+1

≤ ‖u‖PM
→
p(·)

< ∞,

where PM := max{P−−, P
+
+} and qM := max{q−, q+}, changing according to the base.

(⇐) : Assume that there exists u ∈ W1,
→
p(·)

0 (Ω) such that
∫

Ω
f (x)|u|1−β(x)dx < ∞. Then, by Lemma 3.6,

there exists a unique number t(u) > 0 such that t(u)u ∈ N2.
The information we have had about J so far and the closeness of N1 allow us to apply Ekeland’s
variational principle to the problem infN1 J . That is, it suggests the existence of a corresponding
minimizing sequence (un) ⊂ N1 satisfying the following:

(E1) J(un) − infN1 J ≤
1
n ,

(E2) J(un) − J(ν) ≤ 1
n‖un − ν‖→p(·), ∀ν ∈ N1.

Due to the fact J(|un|) = J(un), it is not wrong to assume that un ≥ 0 a.e. in Ω. Additionally,
considering that (un) ⊂ N1 and following the same approach as it is done in the (⇒) part, we can
obtain that

∫
Ω

f (x)|un|
1−β(x)dx < ∞. If all this information and the assumptions (A1), (A2) are taken into

consideration, it follows that un(x) > 0 a.e. in Ω.
The rest of the proof is split into two cases.
Case I: (un) ⊂ N1 \ N2 for n large.

For a function ϕ ∈ W1,
→
p(·)

0 (Ω) with ϕ ≥ 0, and t > 0, we have

0 < (un(x) + tϕ(x))1−β(x) ≤ un(x)1−β(x) a.e. in Ω.

Therefore, using (A1),(A2) gives∫
Ω

f (x)(un + tϕ)1−β(x)dx ≤
∫

Ω

f (x)u1−β(x)
n dx

≤

∫
Ω

N∑
i=1

|∂xiun|
pi(x)dx −

∫
Ω

g(x)uq(x)+1
n dx < ∞ (3.16)

Then, when t > 0 is small enough in (3.16), we obtain∫
Ω

f (x)(un + tϕ)1−β(x)dx ≤
∫

Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)dx −
∫

Ω

g(x)(un + tϕ)q(x)+1dx (3.17)
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which means that ν := un + tϕ ∈ N1. Now, using (E2), it reads

1
n
‖tϕ‖→p(·) ≥ J(un) − J(ν)

=

∫
Ω

N∑
i=1

|∂xiun|
pi(x)

pi(x)
dx −

∫
Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)

pi(x)
dx

−

∫
Ω

g(x)uq(x)+1
n

q(x) + 1
dx +

∫
Ω

g(x)(un + tϕ)q(x)+1

q(x) + 1
dx

+

∫
Ω

f (x)u1−β(x)
n

β(x) − 1
dx −

∫
Ω

f (x)(un + tϕ)1−β(x)

β(x) − 1
dx

Dividing the above inequality by t and passing to the infimum limit as t → 0 gives

lim inf
t→0

‖ϕ‖→p(·)

n
+ lim inf

t→0

∫
Ω

N∑
i=1

[
|∂xi(un + tϕ)|pi(x) − |∂xiun|

pi(x)
]

tpi(x)
dx

︸                                                           ︷︷                                                           ︸
:=I1

− lim inf
t→0

∫
Ω

g(x)

[
(un + tϕ)q(x)+1 − uq(x)+1

n

]
t(q(x) + 1)

dx

︸                                                    ︷︷                                                    ︸
:=I2

≥ lim inf
t→0

∫
Ω

f (x)

[
(un + tϕ)1−β(x) − u1−β(x)

n

]
t(1 − β(x))

dx

︸                                                    ︷︷                                                    ︸
:=I3

Calculation of I1, I2 gives

I1 =
d
dt

∫
Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)

pi(x)
dx

 ∣∣∣∣∣
t=0

=

∫
Ω

N∑
i=1

|∂xiun|
pi(x)−2∂xiun · ∂xiϕdx (3.18)

and

I2 =
d
dt

(∫
Ω

g(x)
(un + tϕ)q(x)+1

q(x) + 1
dx

) ∣∣∣∣∣
t=0

=

∫
Ω

g(x)uq(x)
n ϕdx. (3.19)

For I3: Since for t > 0 it holds

u1−β(x)
n (x) − (un(x) + tϕ(x))1−β(x) ≥ 0, a.e. in Ω

we can apply Fatou’s lemma, that is,

I2 = lim inf
t→0

∫
Ω

f (x)

[
(un + tϕ)1−β(x) − u1−β(x)

n

]
t(1 − β(x))

dx

≥

∫
Ω

lim inf
t→0

f (x)

[
(un + tϕ)1−β(x) − u1−β(x)

n

]
t(1 − β(x))

dx
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≥

∫
Ω

f (x)u−β(x)
n ϕdx (3.20)

Now, substituting I1, I2, I3 gives

‖ϕ‖→p(·)

n
+

∫
Ω

N∑
i=1

|∂xiun|
pi(x)−2∂xiun · ∂xiϕdx −

∫
Ω

g(x)uq(x)
n ϕdx ≥

∫
Ω

f (x)u−β(x)
n ϕdx

From Lemma 3.7, we know that un → u∗ in W1,
→
p(·)

0 (Ω). Thus, also considering Fatou’s lemma, we
obtain ∫

Ω

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiϕdx −
∫

Ω

g(x)(u∗)q(x)ϕdx −
∫

Ω

f (x)(u∗)−β(x)ϕdx ≥ 0, (3.21)

for any ϕ ∈ W1,
→
p(·)

0 (Ω) with ϕ ≥ 0. Letting ϕ = u∗ in (3.21) shows clearly that u∗ ∈ N1.
Lastly, from Lemma 3.7, we can conclude that

lim
n→∞
J(un) = J(u∗) = inf

N2
J ,

which means
u∗ ∈ N2, (with t(u∗) = 1) (3.22)

Case II: There exists a subsequence of (un) (not relabelled) contained in N2 .
For a function ϕ ∈ W1,p(x)

0 (Ω) with ϕ ≥ 0, t > 0, and un ∈ N2, we have∫
Ω

f (x)(un + tϕ)1−β(x)dx ≤
∫

Ω

f (x)u1−β(x)
n dx

=

∫
Ω

N∑
i=1

|∂xiu|
pi(x)dx −

∫
Ω

g(x)uq(x)+1
n dx < ∞, (3.23)

and hence, there exists a unique continuous scaling function, denoted by θn(t) := t(un + tϕ) > 0,
corresponding to (un + tϕ) so that θn(t)(un + tϕ) ∈ N2 for n = 1, 2, .... Obviously, θn(0) = 1. Since
θn(t)(un + tϕ) ∈ N2, we have

0 =

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)dx −
∫

Ω

g(x)(θn(t)(un + tϕ))q(x)+1dx

−

∫
Ω

f (x)(θn(t)(un + tϕ))1−β(x)dx

≥

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)dx − θqM+1
n (t)

∫
Ω

g(x)(un + tϕ)q(x)+1dx

− θ1−βm
n (t)

∫
Ω

f (x)(un + tϕ)1−β(x)dx, (3.24)
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and

0 =

∫
Ω

N∑
i=1

|∂xiun|
pi(x)dx −

∫
Ω

g(x)uq(x)+1
n dx −

∫
Ω

f (x)u1−β(x)
n dx. (3.25)

where βm := min{β−, β+}. Then, using (3.24) and (3.25) together gives

0 ≥
[
−(q+ + 1)[θn(0) + τ1(θn(t) − θn(0))]qm

∫
Ω

g(x)(un + tϕ)q(x)+1dx

−(1 − βm)[θn(0) + τ2(θn(t) − θn(0))]−βm

∫
Ω

f (x)(un + tϕ)1−β(x)dx
]

(θn(t) − θn(0))

+

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)dx −
∫

Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)dx

+

∫
Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)dx −
∫

Ω

N∑
i=1

|∂xiun|
pi(x)dx

−

[∫
Ω

g(x)(un + tϕ)q(x)+1dx −
∫

Ω

g(x)uq(x)+1
n dx

]
−

[∫
Ω

f (x)(un + tϕ)1−β(x)dx −
∫

Ω

f (x)u1−β(x)
n dx

]
(3.26)

for some constants τ1, τ2 ∈ (0, 1). To proceed, we assume that θ′n(0) = d
dtθn(t)|t=0 ∈ [−∞,∞]. In case

this limit does not exist, we can consider a subsequence tk > 0 of t such that tk → 0 as k → ∞.
Next, we show that θ′n(0) , ∞.
Dividing the both sides of (3.26) by t and passing to the limit as t → 0 leads to

0 ≥

P−− ∫
Ω

N∑
i=1

|∂xiun|
pi(x)dx + (βm − 1)

∫
Ω

f (x)u1−β(x)
n dx

−(q+ + 1)
∫

Ω

g(x)uq(x)+1
n dx

]
θ′n(0)

+ P−−

∫
Ω

N∑
i=1

|∂xiun|
pi(x)−2∂xiun · ∂xiϕdx − (q+ + 1)

∫
Ω

g(x)uq(x)
n ϕdx

+ (βm − 1)
∫

Ω

f (x)u−β(x)
n ϕdx (3.27)

or

0 ≥

(P−− − q+ − 1)
∫

Ω

N∑
i=1

|∂xiun|
pi(x)dx + (βm + q+)

∫
Ω

f (x)u1−β(x)
n dx

 θ′n(0)

+ P−−

∫
Ω

N∑
i=1

|∂xiun|
pi(x)−2∂xiun · ∂xiϕdx − (q+ + 1)

∫
Ω

g(x)uq(x)
n ϕdx

+ (βm − 1)
∫

Ω

f (x)u−β(x)
n ϕdx (3.28)
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which, along with Lemma 3.4, concludes that −∞ ≤ θ′n(0) < ∞, and hence, θ′n(0) ≤ c, uniformly in all
large n.
Next, we show that θ′n(0) , −∞.
First, we apply Ekeland’s variational principle to the minimizing sequence (un) ⊂ N2(⊂ N1). Thus,
letting ν := θn(t)(un + tϕ) in (E2) gives

1
n

[
|θn(t) − 1|‖un‖→p(·) + tθn(t)‖ϕ‖→p(·)

]
≥ J(un) − J(θn(t)(un + tϕ))

=

∫
Ω

N∑
i=1

|∂xiun|
pi(x)

pi(x)
dx −

∫
Ω

g(x)uq(x)+1
n

q(x) + 1
dx +

∫
Ω

f (x)u1−β(x)
n

β(x) − 1
dx

−

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)

pi(x)
dx +

∫
Ω

g(x)[θn(t)(un + tϕ)]q(x)+1

q(x) + 1
dx

−

∫
Ω

f (x)[θn(t)(un + tϕ)]1−β(x)

β(x) − 1
dx

≥

∫
Ω

N∑
i=1

|∂xiun|
pi(x)

pi(x)
dx −

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)

pi(x)
dx

−

∫
Ω

g(x)uq(x)+1
n

q(x) + 1
dx +

∫
Ω

g(x)[θn(t)(un + tϕ)]q(x)+1

q(x) + 1
dx

−
1

β− − 1

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)dx (3.29)

If we use Lemma 3.4 to manipulate the norm ‖u + tϕ‖→p(·), the integral in the last line of (3.29) can be
written as follows

1
β− − 1

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)dx ≤
θPM

n (t)
β− − 1

∫
Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)dx

≤
θPM

n (t)
β− − 1

‖un + tϕ‖PM
→
p(·)

≤

2P+
+−1θPM

n (t)CPM (δ2)‖ϕ‖PM
→
p(·)

β− − 1
t (3.30)

Then,

1
n

[
|θn(t) − 1|‖un‖→p(·) + tθn(t)‖ϕ‖→p(·)

]
+

∫
Ω

N∑
i=1

[
|∂xi(un + tϕ)|pi(x) − |∂xiun|

pi(x)
]

pi(x)
dx +

2P+
+−1θPM

n (t)CPM (δ2)‖ϕ‖PM
→
p(·)

β− − 1
t

≥

[(
1

q− + 1

)
[θn(0) + τ1(θn(t) − θn(0))]qm

∫
Ω

g(x)(un + tϕ)q(x)+1dx
]

(θn(t) − θn(0))

≥ −

∫
Ω

N∑
i=1

[
|∂xiθn(t)(un + tϕ)|pi(x) − |∂xi(un + tϕ)|pi(x)

]
pi(x)

dx
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+
1

q− + 1

∫
Ω

g(x)
[
(un + tϕ)q(x)+1 − uq(x)+1

n

]
dx (3.31)

Dividing by t and passing to the limit as t → 0 gives

1
n
‖ϕ‖→p(·) +

2P+
+−1θPM

n (t)CPM (δ2)‖ϕ‖PM
→
p(·)

β− − 1

≥

(−1 +
1

q− + 1

) ∫
Ω

N∑
i=1

|∂xiun|
pi(x)dx −

1
q− + 1

∫
Ω

f (x)u1−β(x)
n dx

−
‖un‖→p(·)

n
sgn[θn(t) − 1]

 θ′n(0)

−

∫
Ω

N∑
i=1

|∂xiun|
pi(x)−2∂xiun · ∂xiϕdx +

∫
Ω

g(x)uq(x)
n dx (3.32)

which concludes that θ′n(0) , −∞. Thus, θ′n(0) ≥ c uniformly in large n.
In conclusion, there exists a constant, C0 > 0 such that |θ′n(0)| ≤ C0 when n ≥ N0, N0 ∈ N.

Next, we show that u∗ ∈ N2.
Using (E2) again, we have

1
n

[
|θn(t) − 1|‖un‖→p(·) + tθn(t)‖ϕ‖→p(·)

]
≥ J(un) − J(θn(t)(un + tϕ))

=

∫
Ω

N∑
i=1

|∂xiun|
pi(x)

pi(x)
dx −

∫
Ω

g(x)uq(x)+1
n

q(x) + 1
dx +

∫
Ω

f (x)u1−β(x)
n

β(x) − 1
dx

−

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)

pi(x)
dx +

∫
Ω

g(x)[θn(t)(un + tϕ)]q(x)+1

q(x) + 1
dx

−

∫
Ω

f (x)[θn(t)(un + tϕ)]1−β(x)

β(x) − 1
dx

= −

∫
Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)

pi(x)
dx +

∫
Ω

N∑
i=1

|∂xiun|
pi(x)

pi(x)
dx

−

∫
Ω

f (x)(un + tϕ)1−β(x)

β(x) − 1
dx +

∫
Ω

f (x)u1−β(x)
n

β(x) − 1
dx

−

∫
Ω

N∑
i=1

|∂xiθn(t)(un + tϕ)|pi(x)

pi(x)
dx +

∫
Ω

N∑
i=1

|∂xi(un + tϕ)|pi(x)

pi(x)
dx

−

∫
Ω

f (x)[θn(t)(un + tϕ)]1−β(x)

β(x) − 1
dx +

∫
Ω

f (x)(un + tϕ)1−β(x)

β(x) − 1
dx∫

Ω

g(x)[θn(t)(un + tϕ)]q(x)+1

q(x) + 1
dx −

∫
Ω

g(x)(un + tϕ)q(x)+1

q(x) + 1
dx

−

∫
Ω

g(x)uq(x)+1
n

q(x) + 1
dx +

∫
Ω

g(x)(un + tϕ)q(x)+1

q(x) + 1
dx (3.33)
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Dividing by t and passing to the limit as t → 0 gives

1
n

[
|θ′n(0)|‖un‖→p(·) + ‖ϕ‖→p(·)

]
≥ −

∫
Ω

N∑
i=1

|∂xiun|
pi(x)−2∂xiun · ∂xiϕdx +

∫
Ω

f (x)u−β(x)
n ϕdx +

∫
Ω

g(x)uq(x)
n ϕdx−∫

Ω

N∑
i=1

|∂xiun|
pi(x)dx +

∫
Ω

g(x)uq(x)+1
n dx +

∫
Ω

f (x)u1−β(x)
n dx

 θ′n(0)

= −

∫
Ω

N∑
i=1

|∂xiun|
pi(x)−2∂xiun · ∂xiϕdx +

∫
Ω

g(x)uq(x)
n ϕdx +

∫
Ω

f (x)u−β(x)
n ϕdx (3.34)

If we consider that |θ′n(0)| ≤ C0 uniformly in n, we obtain that
∫

Ω
f (x)u−β(x)

n dx < ∞. Therefore, for
n→ ∞ it reads∫

Ω

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiϕdx −
∫

Ω

g(x)(u∗)q(x)ϕdx −
∫

Ω

f (x)(u∗)−β(x)ϕdx ≥ 0 (3.35)

for all ϕ ∈ W1,
→
p(·)

0 (Ω), ϕ ≥ 0. Letting ϕ = u∗ in (3.35) shows clearly that u∗ ∈ N1.
This means, as with the Case I, that we have

u∗ ∈ N2 (3.36)

By taking into consideration the results (3.21), (3.22), (3.35), and (3.36), we infer that u∗ ∈ N2 and
(3.35) holds, in the weak sense, for both cases. Additionally, since u∗ ≥ 0 and u∗ , 0, by the strong
maximum principle for weak solutions, we must have u∗(x) > 0 almost everywhere in Ω.

Next, we show that u∗ ∈ W1,
→
p(·)

0 (Ω) is a weak solution to problem (1.1).

For a random function φ ∈ W1,
→
p(·)

0 (Ω), and ε > 0, let ϕ = (u∗ + εφ)+ = max{0, u∗ + εφ}. We split Ω into
two sets as follows:

Ω≥ = {x ∈ Ω : u∗(x) + εφ(x) ≥ 0}, (3.37)

and
Ω< = {x ∈ Ω : u∗(x) + εφ(x) < 0}. (3.38)

If we replace ϕ with (u∗ + εφ) in (3.35), it follows

0 ≤
∫

Ω

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiϕdx −
∫

Ω

[g(x)(u∗)q(x) + f (x)(u∗)−β(x)]ϕdx

=

∫
Ω≥

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xi(u
∗ + εφ)dx

−

∫
Ω≥

[g(x)(u∗)q(x)(u)∗ + f (x)(u∗)−β(x)](u∗ + εφ)dx

=

∫
Ω

−

∫
Ω<

 N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xi(u
∗ + εφ)
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− [g(x)(u∗)q(x) + f (x)(u∗)−β(x)](u∗ + εφ)
]

dx

=

∫
Ω

N∑
i=1

|∂xiu
∗|pi(x)dx + ε

∫
Ω

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiφdx

−

∫
Ω

f (x)(u∗)1−β(x)dx − ε
∫

Ω

f (x)(u∗)−β(x)φdx

−

∫
Ω

g(x)(u∗)q(x)+1dx − ε
∫

Ω

g(x)(u∗)q(x)φdx

−

∫
Ω<

 N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xi(u
∗ + εφ)

−[g(x)(u∗)q(x) + f (x)(u∗)−β(x)](u∗ + εφ)
]

dx (3.39)

Since u∗ ∈ N2, we have

0 ≤ ε

∫
Ω

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiφ − [g(x)(u∗)q(x) + f (x)(u∗)−β(x)]φ

 dx

− ε

∫
Ω<

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiφdx + ε

∫
Ω<

g(x)(u∗)q(x)φdx

+ ε

∫
Ω<

f (x)(u∗)−β(x)φdx (3.40)

Dividing by ε and passing to the limit as ε→ 0, and considering that |Ω<| → 0 as ε→ 0 gives∫
Ω

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiφdx −
∫

Ω

g(x)(u∗)q(x)φdx

≥

∫
Ω

f (x)(u∗)−β(x)φdx, ∀φ ∈ W1,
→
p(·)

0 (Ω) (3.41)

However, since the function φ ∈ W1,
→
p(·)

0 (Ω) is chosen randomly, it follows that∫
Ω

N∑
i=1

|∂xiu
∗|pi(x)−2∂xiu

∗ · ∂xiφdx −
∫

Ω

g(x)(u∗)q(x)φdx

=

∫
Ω

f (x)(u∗)−β(x)φdx (3.42)

which concludes that u∗ ∈ W1,
→
p(·)

0 (Ω) is a weak solution to problem (1.1).

4. Example

Suppose that 
g(x) = ek cos(|x|),

and
f (x) =

(1−|x|)k

β(x) , x ∈ B1(0) ⊂ RN , k > 0.
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Then equation (1.1) becomes
−

∑N
i=1 ∂xi

(
|∂xiu|

pi(x)−2∂xiu
)

=
(1−|x|)k

β(x) u−β(x) + ek cos(|x|)uq(x) in B1(0),

u > 0 in B1(0),
u = 0 on ∂B1(0).

(4.1)

Theorem 4.1. Assume that the conditions (A1) − (A3) hold. If 1 < β+ < 1 + k+1
α

and α > 1/2, then,

problem (4.1) has at least one positive W1,
→
p(·)

0 (B1(0))-solution.

Proof. Function f (x) =
(1−|x|)k

β(x) ≤
(1−|x|)k

β−
is clearly non-negative and bounded above within the unit ball

B1(0) since |x| < 1. Hence, f (x) ∈ L1(B1(0)).
Now, let’s choose u = (1 − |x|)α. Since u is also non-negative and bounded within B(0, 1), it is in
u ∈ LP+

+(B(0, 1)). Indeed,

N∑
i=1

∫
B1(0)

((1 − |x|)α)pi(x)dx

≤ N
[∫

B1(0)
((1 − |x|)α)P−−dx +

∫
B1(0)

((1 − |x|)α)P+
+dx

]
< ∞.

Next, we show that ∂xiu ∈ Lpi(·)(B1(0)) for i ∈ {1, ...,N}. Fix i ∈ {1, ...,N}. Then

∂xi(1 − |x|)
α = α(1 − |x|)α−1−xi

|x|

Considering that x ∈ B1(0), we obtain∫
B1(0)
|∂xi(1 − |x|)

α|pi(x)dx ≤ αPM

∫
B1(0)

(1 − |x|)(α−1)P−−dx

Therefore,

N∑
i=1

∫
B1(0)
|∂xi(1 − |x|)

α|pi(x)dx ≤ NαPM

N∑
i=1

∫
B(0,1)

(1 − |x|)(α−1)P−−dx < ∞

if α > P−−−1
P−−

. Thus, ∂xiu ∈ Lpi(·)(B1(0)) for i ∈ {1, ...,N}, and as a result, u ∈ W1,
→
p(·)

0 (B1(0)).

Finally, we show that
∫

B(0,1)
(1−|x|)k(1−|x|)α(1−β(x))

β(x) dx < ∞. Then,∫
B1(0)

(1 − |x|)k(1 − |x|)α(1−β(x))

β(x)
dx ≤

1
β−

∫
B1(0)

(1 − |x|)k+α(1−β+)dx < ∞.

Thus, by Theorem 3.8, problem (4.1) has at least one positive W1,
→
p(·)

0 (B1(0))-solution.
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25. D. D. Repovš, K. Saoudi, The nehari manifold approach for singular equa-
tions involving the p(x)-laplace operator, Complex Var Elliptic, 68 (2006), 135–149.
https://doi.org/10.1080/17476933.2021.1980878
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