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1. Introduction

In this article, we study the following anisotropic singular B(-)—Laplace equation

= 2L 0 (10120 u)

u

FOUPY + g(x)ut™ in Q,
0in Q, (1.1)
0 on 09,

\%

u

where Q is a bounded domain in RV (N > 3) with smooth boundary 6Q; f € L'(Q) is a posmve
function; g € L*(£)) is a nonnegative function; 8 € C(Q) such that 1 < B(x) < oo for any x € ;
q € C(Q) such that 0 < g(x) < 1 for any x € Q; pi € C(Q) such that 2 < p;(x) < N for any x € Q,
ief{l,.. N}

The differential operator

N
>0y (10,u 20 ,u),
i=1
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that appears in problem (1.1) is an anisotropic variable exponent 1_7)(~)—Lap1ace operator, which repre-
sents an extension of the p(-)-Laplace operator

N

> 04, (10" 20,u),

i=1

obtained in the case for each i € {1, ..., N}, p:(:) = p(-).

In the variable exponent case, p(:), the integrability condition changes with each point in the
domain. This makes variable exponent Sobolev spaces very useful in modeling materials with
spatially varying properties and in studying partial differential equations with non-standard growth
conditions [1-8].

Anisotropy, on the other hand, adds another layer of complexity, providing a robust mathematical
framework for modeling and solving problems that involve complex materials and phenomena
exhibiting non-uniform and direction-dependent properties. This is represented mathematically
by having different exponents for different partial derivatives. We refer to the papers [9-21] and
references for further reading.

The progress in researching anisotropic singular problems with ?)(-)—growth, however, has been
relatively slow. There are only a limited number of studies available on this topic in academic
literature. We could only refer to the papers [22-24] that were published recently. In [22], the author
studied an anisotropic singular problems with constant case p(-) = p but with a variable singularity,
where existence and regularity of positive solutions was obtained via the approximation methods.
In [23], the author obtained the existence and regularity results of positive solutions by using the
regularity theory and approximation methods. In [24], the authors showed the existence of positive
solutions using the regularity theory and maximum principle. However, none of these papers studied
combined effects of variable singular and sublinear nonlinearities.

We would also like to mention that the singular problems of the type

-Au = f(x)u®inQ,
u > 0inQ, (1.2)
0 on 0Q,

u

have been intensively studied because of their wide applications to physical models in the study of
non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogenous catalysts,
glacial advance, etc. (see, e.g., [25-30]).

These studies, however, have mainly focused on the case 0 < 8 < 1, i.e., the weak singularity (see,
e.g. [31-36]), and in this case, the corresponding energy functional is continuous.
When f > 1 (the strong singularity), on the other hand, the situation changes dramatically, and
numerous challenges emerge in the analysis of differential equations of the type (1.2), where the
primary challenge encountered is due to the lack of integrability of u™ for u € Hy(Q) [37-41].

To overcome these challenges, as an alternative approach, the so-called “compatibility relation”
between f(x) and 8 has been introduced in the recent studies [37,40,42]. This method, used along
with a constrained minimization and the Ekeland’s variational principle [43], suggests a practical
approach to obtain solutions to the problems of the type (1.2). In the present paper, we generalize
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these results to nonstandard p(-)-growth.

The paper is organized as follows. In Section 2, we provide some fundamental information for the
theory of variable Sobolev spaces since it is our work space. In Section 3, first we obtain the auxiliary
results. Then, we present our main result and obtain a positive solution to problem (1.1). In Section 4,
we provide an example to illustrate our results in a concrete way.

2. Preliminaries

We start with some basic concepts of variable Lebesgue-Sobolev spaces. For more details, and the
proof of the following propositions, we refer the reader to [1,2,44,45].

C.(Q)={pipeC(Q). infp(x)>1, forallxe Q}.
ForpeC +(§) denote

p~ = infp(x) < p(x) < p* = supp(x) < oo.
x€Q x€Q

Forany p € C, (5), we define the variable exponent Lebesgue space by
LPOQ) = {u lu:Q — Ris measurable,f lu(x)[PPdx < oo} ,
Q

then, L”(Q) endowed with the norm
|ul ) = inf {/l >0: f
Q

Proposition 2.1. For any u € L’O(Q) and v € L" V(Q), we have

u(x)

p(x)
dx < 1} ,

becomes a Banach space.

f luvidx < C(p~, (p7))Nulpe) VI
Q

where L7 ™(Q) is the conjugate space of LP(Q) such that [%x) + ﬁ =1.

The convex functional A : LP©(Q) — R defined by
Au) = f lu(x)"dx,
Q

is called modular on L (Q).

Proposition 2.2. If u,u, € L’Y(Q) (n = 1,2, ...), we have
@) lul,y < I(=1;>1) © A(w) < 1(:+1;> 1),
@) |ulpy >1 = |u|§(,) < A(u) < |u|£(,);
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(i) lulpy <1 = [l < Aw) < Jul’,,;
(iv) 1im |iylpc) = 0 & lim A(u,) = 0; lim [,y = 00 & lim A(u,) = 0.
n—oo n—o0 n—o0 n—oo

Proposition 2.3. If u,u, € L"(Q) (n = 1,2, ...), then the following statements are equivalent:

(i) 1im [, — ul,.) = 0;
(i) lim A(u, — u) = 0;

(it]) u, — uin measure in Q and lim A(u,) = A(u).
The variable exponent Sobolev space W!'”(Q) is defined by
WPOQ) = {u € LPY(Q) : |[Vu| € LPY(Q)},

with the norm

el pey = lulpey + [Vulpe),

||Lt||1,p(.) = inf {/l >0: f(
Q

p(x)
)dx, < 1}
for all u € WPO(Q).

As shown in [i6], the smooth functions are in general not dense in WhrO(Q), but if the variable
exponent p € C,(Q) is logarithmic Holder continuous, that is

or equivalently
p(x)

Vu(x)
A

u(x)

A

, forall x,y € Qsuchthat |x—y| <

M 1
_ -, 2.1
Tog(x =3 > 1

Ip(x) — p(y)| < -

then the smooth functions are dense in W'”(Q) and so the Sobolev space with zero boundary values,
denoted by W(;’p (')(Q), as the closure of C°(€2) does make sense. Therefore, the space W(;’p (')(Q) can be

defined as C(‘;"(Q)”'”l’p(') = Wé”’ (')(Q), and hence, u € WS”’ (')(Q) iff there exists a sequence (u,) of C;°(€2)
such that [ju, — ull; ) — 0.

As a consequence of Poincaré inequality, |[ull; ,.) and |[Vul,., are equivalent norms on Wé’p (')(Q)
when p € C,(Q) is logarithmic Holder continuous. Therefore, for any u € Wé P (')(Q), we can define an
equivalent norm ||u|| such that

Il = [V .

Proposition 2.4. If 1 < p~ < p™ < oo, then the spaces L"Y(Q) and W'PO(Q) are separable and
reflexive Banach spaces.

Proposition 2.5. Let g € C(Q). If 1 < g(x) < p*(x) for all x € Q, then the embedding WPV (Q) —>
L19(Q) is compact and continuous, where

< [ TR
+oo,  if p(x) = N.
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Finally, we introduce the anisotropic variable exponent Sobolev spaces.
Let us denote by ]_5 : Q — RY the vectorial function 13(-) = (p1(*), ..., pn(+)) with p; € C.(Q), i €
{1,..., N}. We will use the following notations.

> —
Define P, P_ € R as
ﬁ

ﬁ — —
Py =(pispn). Po=(pispy),
and P{,P",P~ e R" as
Pl = max{pj,..., py}, PL =max{py,..,py}, P~ =min{p],..., py},
Below, we use the definitions of the anisotropic variable exponent Sobolev spaces as given in [12]

and assume that the domain Q c RY satisfies all the necessary assumptions given in there.

The anisotropic variable exponent Sobolev space is defined by
WPOQ) = {u € LFH(Q) : dyu € LPOQ), ie{l,...N}},
which is associated with the norm
N
il 50 = Il + Z 0.t

WrO(Q) is a reflexive Banach space under this norm.

The subspace Wé P (')(Q) - Wl’;(')(Q) consists of the functions that are vanishing on the boundary, that
18,

W) = (e WO < 1= 0 on Q).

We can define the following equivalent norm on Wé’;(')(Q)

N
s, = > 19l
i=1

since the smooth functions are dense in Wé’p (')(Q), as the variable exponent p; € C+(§), iell,.. N}
is logarithmic Holder continuous.

The space WS’B(')(Q) is also a reflexive Banach space (for the theory of the anisotropic Sobolev
spaces see, e.g., the monographs [2,47,48] and the papers [12, 15]).

Throughout this article, we assume that

Sl
—>1, (2.2)
i1 Pi
and define P* € R" and P_, € R" by
N
Pl = , P_o =max{P", P}
ity — 1
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Proposition 2.6. [ [15], Theorem 1| Suppose that Q) CLRN (N = 3) is a bounded domain with smooth
boundary and relation (2.2) is fulfilled. For any q € C (Q) verifying

1 <q(x)<P_forall x e Q,

the embedding
WO (@) = L1 (),

is continuous and compact.
3. The main results

We define the singular energy functional J : Wg’;(')(Q) — R corresponding to equation (1.1) by
ax p,(x) g(x)+1 1-B(x)
T) = f Z |0, f g™ (SO
P,(X) o 9(x)+1 o B -1

Definition 3.1. A function u is called a weak solution to problem (1.1) if u € W(;’;(')(Q) such that u > 0
in Q and

N
f [Z 10,7020, - D — [T + FOUPD | dx = 0, 3.1)
Q=1

for all p € W, "(Q).

Definition 3.2. Due to the singularity of J on Wé’p (Q), we apply a constrained minimization for
problem (1.1). As such, we introduce the following constrains:

N }
N, = {u € WS,P(J(Q) . f Z |(9Xiu|pf(x) _ g(x)|u|q(x)+1 _ f(x)lull—ﬁ(x) dx > 0} ,
Q[ |

and

N i
N, = {u c Wé,p(-)(g) . f Z |ax[_u|17i(X) _ g(x)|u|q(x)+1 _ f(x)lullfﬁ(x) dx = O}.

2

Remark 1. N, can be considered as a Nehari manifold, even though in general it may not be a manifold.
Therefore, if we set

co ;= inf T (u),

ueN,

then one might expect that ¢ is attained at some u € N, (i.e., N> # @) and that u is a critical point of
9.

Throughout the paper, we assume that the following conditions hold:

(Ay) B § — (1, o0) is a continuous function such that 1 < 8~ < B(x) < 8 < 0.
(A2) g : Q — (0, 1) is a continuous function such that 0 < g~ < g(x) < g <landg" +1 < §".
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(A3) 2< PZ < P{ <P foralmostall x € Q.
(Ay) f € LY(Q) is a positive function, that is, f(x) > 0 a.e. in Q.
(As) g € L*(Q) is a nonnegative function.

Lemma 3.3. Forany u € W(;’E(’)(Q) satisfying fQ FO|u'PDdx < oo, the functional J is well-defined

and coercive on WS”’ Q).

Proof. Denote by 1,71, the indices sets 7, = {i € {1,2,..,N} : |[0ul, < 1} and 1,
{1,2,..., N} : |0y,ul ) > 1}. Using Proposition 2.2, it follows

Igloo | 1 1-B()
T )] < —§ f 10l Pdx f ul™* dx + Flul' PV dx
Q B~ =1Ja

1 |g|oo + -
. g +1 g +1
< —_[Z |ax,u|,,()+Z|ax, ,,()) oo il )

P_ l€[| lEfz
1=B(0) 7y
L Z'a %+ > 0l | = A mingul? 7l
2 X pi() x4 P() g +1 g()+1> Mlg(x)+1
i€l
1B g«

P} |g|oo . qt+1 g +1
P_ [Z 10s,ul p) ¥ N) gt +1 mln{lulq(xm, |u|q(x)+1}

1
ff(X)Iull_ﬁ(")dx
-1 Q

+

e

which shows that 7 is well-defined on Wl’;(')(Q)
Applying similar steps and using the generalized mean inequality for 3, |0xlu|p 1 gives

N
1 (o)
j(u) > Fwaxiulm(x)dx_ %f|u|q(x)+ldx+ ff(x)lull 'B(x)dx
=1 Q Q —
: Zlé’ ult +Z|(9 o 18l |7+ dx
P+ RO a0 | T g 1 g

l€I| i€l
FOOlul'PVdx
ﬁ* -1 f
n [, |g| s,
A vt = L 1A
Py | NP- +1° p0O)

That is, [ is coercive (i.e., J(u) — oo as [ul|; | — c0), and bounded below on Wé’;(')(Q),

{i €

(3.2)

(3.3)
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Next, we provide a-priori estimate.

Lemma 3.4. Assume that (u,) C N is a nonnegative minimizing sequence for the minimization prob-
lem lim,,_,c, J (u,) = infp, J. Then, there are positive real numbers 6,, 6, such that

< 5 0 <
51 <l < 6

Proof. We assume by contradiction that there exists a subsequence (u,) (not relabelled) such that u, —

0in Wé’p (')(Q). Thus, we can assume that ||u,,||;(,) < 1 for n large enough, and therefore, |0, up|;pi0 < 1.
Then, using Proposition 2.2, we have

f Z 01l Vlx < Z Ol < Z 10 taly (34)

We recall the following elementary inequality: for all , s > 0 and m > 0 it holds
4+ s" < K(r+ s)" (3.5)

where K := max{1,2!™}. If we let r = |4, un| = |8xZu,1|Zz(,) and m = P_ in (3.5), it reads

Lm()’

|6x1 unl + |ax2un| K(laxl unlLl’l(> + |6x2un|Ll’2(>) (36)

Lr1o) L0 —

where K = max{1,2!""-} = 1. Applying this argument to the following terms in the sum Z, 1 104, unl
consecutively leads to

pi(*)

N
fz 0, < Zla Hnlpyy < Z Bt
i=1
< (Zl |ax,.un|,,,.(.>) <l (3.7)

Now, using (3.7) and the reversed Holder’s inequality, we have

B 1-8
(ff(X)”ﬁdX) (f IunIdX) Sff(X)lunll‘ﬁdxsff(X)lunll_ﬁ(x)dx (3.8)
Q Q Q Q

By the assumption, (u,) € N;. Thus, using (3.8) and Proposition 2.2 leads to

B -8~
(ff(x)l/ﬁ_dx) (f Iunldx) Sff(x)lunll_ﬁ_dx

P- |g|<>o +4+1
< unlls — u, 7 50 3.9
[ IIP(_) q_+1|| [ (3.9)

Considering the assumption (A;), this can only happen if fQ |u,|dx — oo, which is not possible. There-
fore, there exists a positive real number ¢; such that ||u,,||; o > 4.
Now, let’s assume, on the contrary, that ||un||; o> 1 for any n. We know, by the coerciveness of 7, that
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the infimum of g is attained, that is, co < m := inf 1p @ J (). Moreover, due to the assumption
ueW,

lim, 00 I (u,) = infy, I, (I (u,)) is bounded. Then, applylng the same steps as in (3.3), it follows
Cllall., + T ()

N |l "”*() gloo

1
> 0 1= i g+l f BISZEY
> 5 | Sl 4 | @l

for some constant C > 0. If we drop the nonnegative terms, we obtain

|1

pe) |8loo
Cllly + T ) 2 | S =N | = =l
+

Dividing the both sides of the above inequality by ||u,,||i+(J;1 and passing to the limit as n — oo leads to
e

a contradiction since we have g~ + 1 < P_. Therefore, there exists a positive real number 9, such that

gl < 2.

Lemma 3.5. N, is closed in Wé’;(')(Q).

Proof. Assume that (1,) C N, such that u, — &t (strongly) in Wgﬂ')(g). Thus, u,(x) — #(x) a.e. in Q,
and 0,.u, — 0.0 in LPO(Q) fori = 1,2, ..., N. Then, using Fatou’s lemma, it reads

f [Z 10,ttal” ™ — (O |1 — f ()| B(x)] dx >0

lim inf f Zla | Vel x | — f g(0)[a1*9* dx > lim inf [ f f(x)lunll_ﬁ(x)dx]
n—oo Q n—0oo Q

and hence,
N
f {Z |axia|”f<x)—g(x>|a|q<x)“—f(x)|a|1-ﬁ<x)]dx > 0
Q=

which means @ € N,. N is closed in WS”’(')(Q).

Lemma 3.6. For any u € Wé’p Q) satisfying fg FOOu'PDdx < oo, there exists a unique continuous

scaling function u € Wé’;(')(ﬂ) — (0,00) : u +—> t(u) such that t(u)u € N,, and t(u)u is the minimizer
of the functional [J along the ray {tu : t > 0}, that is, inf,~o J (tu) = J (t(u)u).

Proof. Fix u € ng(')(g) such that [ f(x)|u]'“dx < co. For any ¢ > 0, the scaled functional, J (fu),
determines a curve that can be characterized by

D) := J(tu), t € [0, 00). (3.10)
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Then, for a t € [0, 00), tu € N, if and only if

d
(1) = 520

=0. (3.11)
t=t(u)
First, we show that ®(7) attains its minimum on [0, co) at some point ¢ = #(u).
Considering the fact 0 < fg FOOlu|'PPdx < oo, we will examine two cases for ¢.
ForO<t<1:

S &) 11 W+
D) = J(tu) > — flaxl.ulp" Vdx — fg(x)lul“ dx
P ; o g +1Jo
5 ~
+ f FOMI P 2= Wi(1)
Bt —1Jq

Then, ¥, : (0, 1) — R is continuous. Taking the derivative of ¥, gives

N
Wi(1) = i1 Z f |(9xiu|pi(x)dx — fg(x)|u|q(x)+ldx
i=1 vQ Q

+ (;:_ﬁ;) = fg Flul'#PPdx (3.12)

It is easy to see from (3.12) that ¥{(r) < O when 7 > 0 is small enough. Therefore, ¥y(7) is decreasing
when ¢ > 0 is small enough. In the same way,

£P- N . a1 -
_ pi(x _ q(x)+
(1) = T (1) < ; fgwx,.ul dx - fgg(x)lul dx
i 1-B() 7 o
+ F(O|ul dx =¥,
B —-1Ja

Then, ¥, : (0, 1) — R is continuous. Taking the derivative of ¥; gives

N
Vi) = s Z f |(9xl,u|””“‘)dx _ fg(x)|u|q(x)+ldx
i=1 VQ Q

+ ( ;:_ﬁi) = fg Flul'PPdx (3.13)

But (3.13) also suggests that ¥ (r) < 0 when ¢ > 0 is small enough. Thus, ¥;(?) is decreasing when
t > 0 is small enough. Therefore, since Wy(r) < ®(r) < ¥,(¢) for 0 < ¢ < 1, ®(¢) is decreasing when
¢t > 0 is small enough.

For ¢ > 1: Following the same arguments shows that ¥((r) > 0 and ¥{() > 0 when ¢ > 1 is large
enough, and therefore, both W (#) and ¥, (¢) are increasing. Thus, ®(7) is increasing when 7 > 1 is large
enough. In conclusion, since ®(0) = 0, ®(7) attains its minimum on [0, co) at some point, say ¢ = #(u).
That is, %(D(t)lt:t(u) = 0. Then, t(u)u € N> and inf~o J (tu) = J (t(u)u).

Next, we show that scaling function #(«) is continuous on WS”’ Q).
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Let u, — u in Wy"(Q)\{0}, and 1, = #(u,). Then, by the definition, #,u, € N,. Defined in this way,
the sequence ¢, is bounded. Assume on the contrary that ¢, — oo (up to a subsequence). Then, using
the fact t,u,, € N, it follows

N
f D10tttV f gl dx = f FOOltn] P9 dx
Q50 Q o
i N
l{:leaxiunlpi(X)dx_tZ+1fg(x)|un|q(X)+ldx < ti—ﬁff(x)lunp—ﬁ(x)dx
Qo Q o

which suggests a contradiction when #, — oo. Hence, sequence t, is bounded. Therefore, there exists
a subsequence ¢, (not relabelled) such that 7, — fy, t, > 0. On the other hand, from Lemma 3.4,
|, unllﬁ() > 01 > 0. Thus, o > 0 and fyu € N,. By the uniqueness of the map #(u), o = #(u), which
concludes the continuity of #(u). In conclusion, for any € WO”’ (')(Q) satisfying fQ FOOlu'PYdx < oo,
the function #(u) scales u € Wé”’ (')(Q) continuously to a point such that H(u)u € N.

Lemma 3.7. Assume that (u,) C N, is the nonnegative minimizing sequence for the minimization
problem lim,_,o, J (u,) = infp, J. Then, there exists a subsequence (u,) (not relabelled) such that

u, — u* (strongly) in Wé’;(')(Q).
Proof. Since (u,) is bounded in Wé’;(')(Q) and WS’;(')(Q) is reflexive, there exists a subsequence (u,,),
not relabelled, and u* € W(;’p (')(Q) such that

o u, — u (weakly) in W)70(Q),

o u, - u*in L'OQ), 1< s(x) < P_o, forall xeQ,
e u,(x) — u*(x)a.e. in Q.

Since the norm || - ||;(.) is a continuous convex functional, it is weakly lower semicontinuous. Using this
fact along with the Fatou’s lemma, and Lemma 3.4, it reads

inf J = lim I (u,)
Nl n—o00

o |0, un|pl(X) f g(x)|u*|‘7(x)+l
> 1 f ! = d
= U 2 0 g+l

o f()c)lunl1 Ao
+11nm_>glf[ Qﬁ(x)——ldx]
|0,u I””) f )4+ f S|P
S d ——d
fz; P o g+l )y w1
=J ) 2 @) 2 inf J 2 inf J (3.14)

The above result implies, up to subsequences, that

Bim [l = 'l - (3.15)
Thus, (3.15) along with u, — u* in W,”"(Q) show that u, — u* in W, " (Q).
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The following is the main result of the present paper.

Theorem 3.8. Assume that the conditions (A\)—(As) hold. Then, problem (1.1) has at least one positive
W(;’p O(Q)-solution if and only if there exists u € W(;’p Q) satisfying fQ FOOu'PYdx < oo,

Proof. (=) : Assume that the function u € WS’;(')(Q) is a weak solution to problem (1.1). Then, letting
u = ¢ in Definition (3.1) gives

N
ff(x)|u|l_ﬁ(X)dx:fzmxiulp"(x)dx—fg(x)|u|q(x)+1dx
° Q5 Q

Py qm
< —
S RN

< lul?* < oo,
140

where Py, := max{P_, P{} and gy := max{q~, ¢g*}, changing according to the base.

(<) : Assume that there exists u € Wé”’ “(Q) such that fQ f(olu'*P®dx < co. Then, by Lemma 3.6,
there exists a unique number #(u#) > O such that t(u)u € N,.

The information we have had about J so far and the closeness of N; allow us to apply Ekeland’s
variational principle to the problem infy, J. That is, it suggests the existence of a corresponding
minimizing sequence (u,) C N; satisfying the following:

(E)) J(w,) —infy, T < 1,
(E2) T () = TO) < Hluy = vl . Vv € Ny

Due to the fact J(Ju,)) = J(u,), it is not wrong to assume that u, > 0 a.e. in Q. Additionally,
considering that (#,) C N; and following the same approach as it is done in the (=) part, we can
obtain that fQ F(O)|u,|'P9dx < oo. If all this information and the assumptions (A,), (A,) are taken into
consideration, it follows that u,,(x) > 0 a.e. in Q.

The rest of the proof is split into two cases.
Case I: (u,) ¢ Ni \ N, for n large.

For a function ¢ € Wé’p Q) with ¢ > 0, and ¢ > 0, we have
0 < (t(x) + t(x)) PP < 1, (x)' ™ ae. in Q.

Therefore, using (A),(A,) gives

f FOty + 19) PPdx < f FOu PO dx
Q Q

N
sfZI(?xiunl”"(x)dx—fg(x)ufl(x)“dx<oo (3.16)

Then, when ¢ > 0 is small enough in (3.16), we obtain
N
f )y + 1) PVddx < f Z 10y, (1 + 10)P"Vdlx — f g(0)(u, + 19)?™* dx (3.17)
Q QS Q
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which means that v := u, + ¢ € N;. Now, using (E>), it reads

1
gl > T (w) = TO)

f Z 10,1, |,,,<x) f i 10, (1t + 1) p
X
pi(x) a pi(x)

i=1
g(x)u‘““‘ 8(x)(ty + 1ep) 1!
fg q<x>+1d“fg o+l &
f@u Y @)+ )P
o Bx)—1 o B(x) -1

Dividing the above inequality by ¢ and passing to the infimum limit as t — 0 gives

llell-.. Ia (uy + Q)P — 10,1, [P
liminf —2 + lim inf f Z ]dx

10 n =0 tpi(x)

=1

' |y + 10)1*1 =g
— liminf f g(x) dx]
Q

0 t(g(x) + 1)
=1
. [(u,, T urll—ﬁ(x)]
i [ 10—y

=13

Calculation of I3, I, gives

d f 5510, (uy + 1)
I = — L dx
1 dt( QZI pi(x)

_d (uy + )7
b= (fg S+ dx)

For I5: Since for ¢ > 0 it holds

N

= f Z |axiun|pi(X)_20x,-un . 0x,‘pd~x
1=0 Q5

and

= f gui®pdx.
t=0 Q
PO (x) = (u,(x) + tp(x))' PP > 0, ae. in Q
we can apply Fatou’s lemma, that is,

(un + 1)1 P — 10,7

I, = liminfff(x)[
t—0 Q

d
11— B(x)) g
(1, + 1) — 1,
> Lhrtrl)%nf f(x) (1= B) dx

(3.18)

(3.19)
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> f FOuPYpdx (3.20)
o)
Now, substituting I, I, I gives

el

N
+ f D 0l 20,0, - B0 x - f gD pdx > f FONUPD pdx
Q75 Q Q

From Lemma 3.7, we know that u, — u* in Wé”’ (')(Q). Thus, also considering Fatou’s lemma, we
obtain

N

f D101 P20 Oy pdx - f g0y pdx ~ f FOY P Igdx > 0, (3.21)
Qo5 Q Q

for any ¢ € WS’;(')(Q) with ¢ > 0. Letting ¢ = u” in (3.21) shows clearly that u* € N;.
Lastly, from Lemma 3.7, we can conclude that

lim  (u,) = I (u") = inf 7,

which means
u' € Np, (with t(u*) =1) (3.22)

Case II: There exists a subsequence of (u,) (not relabelled) contained in N, .
For a function ¢ € Wé’p @(Q) with ¢ > 0,7 > 0, and u, € N>, we have

f FO)u, + 1) PVdx < f FOu PO dx
Q 0

N
= f Z |0, ul"Vdx — f (Ul dx < oo, (3.23)
and hence, there exists a unique continuous scaling function, denoted by 6,(¢) := t(u, + t¢) > 0,

corresponding to (u, + t¢) so that 6,(¢)(u, + t¢) € N, forn = 1,2,.... Obviously, 6,(0) = 1. Since
0,(t)(u, + tp) € N,, we have

N
. f D 10,0,y + 1) Vdlx — f 8(X)(0(1)(uy + 1))"* dx
Q5= Q

- f FOG () (1 + 1)) P Pdx

Q

N

> f ZIé?xﬁn(t)(un+tcp)|”"(x)dx—HZM+l(t) f 2()(u, + 1)+ dx

) Q

-0 () [ O + 1) PV (324)
Q
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and

o= | .

N
i=1

10, 1"V x — f g(0)ui D dx — f FOub*Ddx. (3.25)
Q Q
where ,, := min{8~, 8*}. Then, using (3.24) and (3.25) together gives
0> [—(q+ + DI6,(0) + T1(6,(0) = 6,(0)1 f g0y + 1)™ dx
Q

~(1 = B)[6,(0) + 72(6,(1) = 6,(0)] fg SOy + 1) (x)dx] (6,(1) - 6,(0))

N N

+ 10.,6,()(w,, + )P x — f 10, (tty + 1) dlx
N N

+ 10, (1, + t)|P"Vedx — f 10, 1P dlx

- [f g(x)(u, + 1)+ dx — fg(x)uz(x)ﬂdx]
" Q

- [ f FO)u, + 1) PVdx — f f(x)u;—ﬁmdx] (3.26)
Q Q
for some constants 71,7, € (0, 1). To proceed, we assume that 6,(0) = %Qn(t)l,zo € [—o0, c0]. In case
this limit does not exist, we can consider a subsequence #;, > 0 of ¢ such that f, — 0 as k — oo.

Next, we show that /(0) # co.
Dividing the both sides of (3.26) by ¢ and passing to the limit as t — 0 leads to

N
P f Z |(9xiun|Pi(x)dx + (B — l)ff(x)u;—ﬁ(x)dx
Q5o Q

—(q"+ 1D f g(X)uZ(x)“dX] 6,(0)
Q

0>

N
+ P_ f Z |8xl.un|p"(x)_20xiun cO0npdx — (g7 + 1) f g(x)uz(x)godx
Q5 Q

+Bn—1) f fu, P pdx (3.27)
Q

or

0>

N
(P--q" -1 f Z 10, ual"dx + B + q7) f f(x)u,l,_ﬁ(x)dx} g,(0)
Q53 Q

N
+ P~ f Z |8xiun|”"(x)_26xiun cOpdx — (gF + 1) f g(x)uz(x)godx
Qo Q
+(Bu—1) f FOuPYpdx (3.28)
Q
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which, along with Lemma 3.4, concludes that —co < 6/ (0) < oo, and hence, 6,(0) < ¢, uniformly in all

large n.
Next, we show that ¢/,(0) # —co.
First, we apply Ekeland’s variational principle to the minimizing sequence (1,) C N>(C Nj). Thus,

letting v := 6,(t)(u, + tp) in (E,) gives
1
(10,0 = Tl + 16,0ll6ll5, | = T wa) = T@u0) 0t + 1))
|ax1un|p,(x) g(x)qu(X)H f(x)ul —B(x)
f Z pi) fg a0+ 1 S -1
B f Z 10 0n(D) ot + Q" f O CAQICIRD) e
Q

pi(x) q(x) + 1
f FOO[0,(0)(uy, + tp)]' P
B dx
Q

Bx) -1

f Z Ol f ZN: 0,6, + 1)
X
pix) o pi(x)

i=1

(x)u‘“”“ SO[6,(1) (1, + )] 9O+
fg g0 + 1 d“fg (0 + 1 dx

51 f Z 0,,6,(1)(uts + 1) Vel x (3.29)

If we use Lemma 3.4 to manipulate the norm ||u + t¢||-, ., the integral in the last line of (3.29) can be

written as follows

ﬁL f Z |0y, 6, () (U, + t90)|p‘(x)dx < ,8n V) fZ 10, (14, + t(p)lp,(x)dx

p()’

Oy (t)
< 2w, + 1ol
B -1 PO
2P0 (H)CPH (5|l
< a— PO, (3.30)

Then,

1
~ (16,0 = el + 6,0l |
(19, + 1P — @] 20 OCT Gl

fz e e F ol ’

> [(q_ )[9,1(0) + 71(6,(1) — 6,(0))] f g (u, + tgo)q(")”dx] (6,(1) — 6,(0))
Q

dx

|(9x,9 Oty + )P = |0, (1, + w)lp,-(x)]
f Z pi(x)
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—+

g+l _ o q(x)+1
q_4_1‘1;g<x)[a%-+r¢) u | dx
Dividing by ¢ and passing to the limit as t — 0 gives
2”1‘1H,fM(t)CPM(@)IIsDIIff)
Il + - -
n B -1

N
1
-1+ f |6Xiun|pi(x)dx - ff(x)ullq_ﬂ(X)dx
( 1)a; g +1Ja

e
- %@wm ﬂ%@

- f Zl@xiunlp"(x)_zﬁxiun-6xl.<pdx+ f gulMdx
Qi Q

which concludes that ¢/,(0) # —co. Thus, 6,(0) > ¢ uniformly in large n.

>

In conclusion, there exists a constant, Cy > 0 such that |¢/,(0)| < Co when n > Ny, Ny € N.

Next, we show that u* € N>.
Using (E;) again, we have

1
~ 16,0 = Ul + 16,Dllglly | 2 T ) = T @0, + 160))
Ol j‘mﬂ“‘ fu, ™
d ——dx
\lepm> o qm+1 o B -1
_IET%@mw+wme+fa@mmw+wmwyx
Q

pi(x) g(x)+1

FOO[6,(0)(uy, + tp)]' P
Bx) -1

Q
_\[ﬁﬁww+wwm f}f%uwn
245 pi(x) — pix)

FO(u, + 1) D drt f@u, P Ou. P
Q Bx) -1 Bx)—1

N . )
mmmw+wwm f 0., (u, + 1)

_ 1 1 d

‘L; pi®) Z o

FOO, + 1) D O + 1) o
Q Bx) -1 o Blx) -1
fﬂﬂ%ﬂwﬂwwmd fﬁmw+wM“
X = dx
Q qg(x) +1 o g(x) + 1

famwmw+fﬂwm+wwmm
o q(x)+1 a g+l

dx

(3.31)

(3.32)

(3.33)
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Dividing by ¢ and passing to the limit as t — 0 gives
! 0.(0
~ 8.l + llels |

N
> - f D 105107020, - B pdx + f FOOuOpdx +
Q= Q

N
[—f Iﬁxiunl”"(")dx+fg(x)uz(")+1dx+ff(x)u,ll_ﬁ(")dx} 0.(0)
Q501 Q Q

N
=- f D 100l - D, pdx + f gl pdx + f FOuPOpdx (3.34)
Q- Q Q

i=1

S

(Ui pdx
Q

If we consider that |¢/,(0)] < Cy uniformly in n, we obtain that fQ f(x)u,;ﬂ Wdx < oo. Therefore, for
n — oo it reads

N
f D10 P20 - 5, pdx f ()W) ™ pdx — f FOOW)PDpdx > 0 (3.35)
QI Q Q

forall ¢ € Wé’;“(ﬂ), ¢ > 0. Letting ¢ = u* in (3.35) shows clearly that u* € N,.
This means, as with the Case I, that we have

u' e N, (3.36)

By taking into consideration the results (3.21), (3.22), (3.35), and (3.36), we infer that u* € N, and
(3.35) holds, in the weak sense, for both cases. Additionally, since u* > 0 and u* # 0, by the strong
maximum principle for weak solutions, we must have u*(x) > 0 almost everywhere in Q.

Next, we show that u* € Wé’;(')(Q) is a weak solution to problem (1.1).

For a random function ¢ € W(;’;(')(Q), and e > 0, let ¢ = (u* + e¢)" = max{0, u* + e¢}. We split Q into
two sets as follows:
Q. ={xeQ:u'(x)+ep(x) =0}, (3.37)

and
Q. ={xeQ:u'(x)+ep(x) <0}. (3.38)

If we replace ¢ with (u* + £¢) in (3.35), it follows

N
0 [ D10 0,0 Dy~ [ gy + FC ) * g
04T Q

N
= f D10 P20 - 0, (' + eg)dx
Q

> j=1

= | Lg®)@)™ @) + f@) PN + eg)dx

Q.
N
:f—f [Z Iax,.u*lp"(x)_zax,.u*-6xl.(u*+s¢)
QYO o
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~ [ + fR)u) POV + &) dx

N N
— fZ |aXiu*|pi(x)dx + Sf Z |aXiu*|pi(x)—ZaXiu* . axi(pdx
Q1 Q51
- f f@)' PVdx — & f FEW")PVpdx
Q Q
- f g dx ~ ¢ f g0 pdx
Q Q

N
- f [Z |axju*|l7i(x)—2(’)x1u* : 6)61(”* + 8¢)
Q.

i=1
~[g(0@ )™ + fO)@) PN + 8¢)] dx (3.39)

Since u* € N,, we have

N
h=e U D0 P O20 0 - 0 (@)W + fx)u)PV)g | dx
Q7=

N
— & Z |6x-u*|pi(x)_2(9x.u* . (9x¢dx + 8f g(x)(u*)q(x)¢dx
i i i Q<

Qo

+e | fu)PVpdx (3.40)

Qc
Dividing by € and passing to the limit as € — 0, and considering that |Q.| — 0 as € — 0 gives

N
fz |ax’_u*|Pi(x)—28)Ciu* . 6xl.¢dx - fg(x)(u*)Q(x)¢dx
Q=1 Q
> ff(X)(u*)_ﬁ(x)qﬁdx, Vo € Wé;()(Q) (341)
Q

However, since the function ¢ € Wé P (')(Q) is chosen randomly, it follows that

N
fz |GXiu*|pi(X)—20Xiu* . 8x,¢dx — fg(x)(u*)Q(x)¢dx
Qi Q
B f FE) T pdx (3.42)
Q

which concludes that u* € Wé’;(')(Q) is a weak solution to problem (1.1).

4. Example

Suppose that
g(x) — ek cos(lx\),
and

fo = S veBi(0)cRY, k> 0.
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Then equation (1.1) becomes

¥ 8, (|@Xiu|pi(x)—zaXi u) (IL%I)"M—/M + ks ya® in B, (0),
u > 0in B(0), (4.1)

u = 0on 0B;(0).

Theorem 4.1. Assume that the conditions (Ay) — (Az) hold. If 1 < 8" <1+ ]%1 and a > 1/2, then,
problem (4.1) has at least one positive Wé’p (')(BI(O))-solution.

Proof. Function f(x) = % < “%Dk is clearly non-negative and bounded above within the unit ball
B,(0) since |x| < 1. Hence, f(x) € L'(B;(0)).
Now, let’s choose u = (1 — |x])*. Since u is also non-negative and bounded within B(0, 1), it is in

7 € L*+(B(0, 1)). Indeed,

N
PO RGNS
i=1 Y Bi1(0)

sN[ (1 = )™ dx + ((1 =[x dx

B1(0) B1(0)

< 00.

Next, we show that d,.u € L”(B;(0)) for i € {1, ..., N}. Fix i € {1,..., N}. Then

3, (1 = 1x)” = a(1 - [x))*!
|x]

Considering that x € B;(0), we obtain
f |axi(1 — |x|)a|pi(x)dx < a,PM (1 _ |x|)(a—1)Pde
B0 Bi(0)

Therefore,

N

N
Z f 0., (1 — |x)*|""“dx < Na™ Z f (1 = [x])* VP-dx < o0
B,(0) =1 VB

i=1 ©.1)

it @ > 2= Thus, 8,5 € L"O(B(0)) for i € {1, .., N}, and as a result, & € W,"(B,(0)).

B(0,1) B(x)

1 — Le(1 = Le[ye=Be 1 )
f ( |x|) ( |x|) d.x < — (1 _ |x|)k+(l(1—,3 )dx < 00,
B1(0) B(x) B~ Jsi0)

Finally, we show that dx < oo. Then,

Thus, by Theorem 3.8, problem (4.1) has at least one positive Wé’p “(B,(0))-solution.
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