In this paper we consider a class of anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with nonlinear right-hand sides that are superlinear at $ \pm\infty $. We prove the existence of two nontrivial weak solutions to this kind of problem by applying an abstract critical point theorem under very general assumptions on the data without supposing the Ambrosetti-Rabinowitz condition.
Citation: Eleonora Amoroso, Angela Sciammetta, Patrick Winkert. Anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with superlinear nonlinearities[J]. Communications in Analysis and Mechanics, 2024, 16(1): 1-23. doi: 10.3934/cam.2024001
In this paper we consider a class of anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with nonlinear right-hand sides that are superlinear at $ \pm\infty $. We prove the existence of two nontrivial weak solutions to this kind of problem by applying an abstract critical point theorem under very general assumptions on the data without supposing the Ambrosetti-Rabinowitz condition.
[1] | M. Belloni, B. Kawohl, The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to\infty$, ESAIM Control Optim. Calc. Var., 10 (2004), 28–52. https://doi.org/10.1051/cocv:2003035 doi: 10.1051/cocv:2003035 |
[2] | L. Brasco, G. Franzina, An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities, NoDEA Nonlinear Differential Equations Appl, 20 (2013), 1795–1830. https://doi.org/10.1007/s00030-013-0231-4 doi: 10.1007/s00030-013-0231-4 |
[3] | A. Kufner, J. Rákosník, Boundary value problems for nonlinear partial differential equations in anisotropic Sobolev spaces, Časopis Pěst. Mat., 106 (1981), 170–185. http://dx.doi.org/10.21136/CPM.1981.118087 doi: 10.21136/CPM.1981.118087 |
[4] | S. M. Nikol'skiĭ, An imbedding theorem for functions with partial derivatives considered in different metrics, Izv. Akad. Nauk SSSR Ser. Mat., 22 (1958), 321–336. |
[5] | J. Rákosník, Some remarks to anisotropic Sobolev spaces I, Beiträge Anal., 13 (1979), 55–68. |
[6] | J. Rákosník, Some remarks to anisotropic Sobolev spaces II, Beiträge Anal., 15 (1980), 127–140. |
[7] | G. Wulff, Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen, Zeitschrift für Kristallographie – Crystalline Materials, 34 (1901), 449–530. |
[8] | S. N. Antontsev, J. I. Díaz, S. Shmarev, Energy methods for free boundary problems, Birkhäuser Boston, Inc., Boston, MA, 2002. https://doi.org/10.1007/978-1-4612-0091-8 |
[9] | M. Bendahmane, M. Chrif, S. El Manouni, An approximation result in generalized anisotropic Sobolev spaces and applications, Z. Anal. Anwend., 30 (2011), 341–353. https://doi.org/10.4171/ZAA/1438 doi: 10.4171/ZAA/1438 |
[10] | M. Bendahmane, M. Langlais, M. Saad, On some anisotropic reaction-diffusion systems with $L^1$-data modeling the propagation of an epidemic disease, Nonlinear Anal., 54 (2003), 617–636. https://doi.org/10.1016/S0362-546X(03)00090-7 doi: 10.1016/S0362-546X(03)00090-7 |
[11] | J. Vétois, The blow-up of critical anisotropic equations with critical directions, NoDEA Nonlinear Differential Equations Appl, 18 (2011), 173–197. https://doi.org/10.1007/s00030-010-0090-1 doi: 10.1007/s00030-010-0090-1 |
[12] | A. Razani, G. M. Figueiredo, A positive solution for an anisotropic $(p, q)$-Laplacian, Discrete Contin. Dyn. Syst. Ser. S., 16 (2023), 1629–1643. https://doi.org/10.3934/dcdss.2022147 doi: 10.3934/dcdss.2022147 |
[13] | A. Razani, Nonstandard competing anisotropic $(p, q)$-Laplacians with convolution, Bound. Value Probl., 2022, (2022), 1–10. https://doi.org/10.1186/s13661-022-01669-z doi: 10.1186/s13661-022-01669-z |
[14] | L. Tavares, Solutions for a class of problems driven by an anisotropic $(p, q)$-Laplacian type operator, Commun. Anal. Mech., 15 (2023), 533–550. https://doi.org/10.3934/cam.2023026 doi: 10.3934/cam.2023026 |
[15] | G. Bonanno, G. D'Aguì, A. Sciammetta, Multiple solutions for a class of anisotropic $\vec{p}$-Laplacian problems, Bound. Value Probl., accepted 2023. |
[16] | S. Ciani, G. M. Figueiredo, A. Suárez, Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method, Arch. Math., 116 (2021), 85–95. https://doi.org/10.1007/s00013-020-01518-4 doi: 10.1007/s00013-020-01518-4 |
[17] | G. Ciraolo, A. Figalli, A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770–803. https://doi.org/10.1007/s00039-020-00535-3 doi: 10.1007/s00039-020-00535-3 |
[18] | G. Ciraolo, A. Sciammetta, Gradient estimates for the perfect conductivity problem in anisotropic media, J. Math. Pures Appl., 127 (2019), 268–298. https://doi.org/10.1016/j.matpur.2018.09.006 doi: 10.1016/j.matpur.2018.09.006 |
[19] | E. DiBenedetto, U. Gianazza, V. Vespri, Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic $p$-Laplacian type equations, J. Elliptic Parabol. Equ., 2 (2016), 157–169. https://doi.org/10.1007/BF03377399 doi: 10.1007/BF03377399 |
[20] | G. C. G. dos Santos, G. M. Figueiredo, L. S. Tavares, Existence results for some anisotropic singular problems via sub-supersolutions, Milan J. Math., 87 (2019), 249–272. https://doi.org/10.1007/s00032-019-00300-8 doi: 10.1007/s00032-019-00300-8 |
[21] | I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 21 (2004), 715–734. https://doi.org/10.1016/j.anihpc.2003.12.001 doi: 10.1016/j.anihpc.2003.12.001 |
[22] | K. Perera, R. P. Agarwal, D. O'Regan, Nontrivial solutions of $p$-superlinear anisotropic $p$-Laplacian systems via Morse theory, Topol. Methods Nonlinear Anal., 35 (2010), 367–378. |
[23] | M. A. Ragusa, A. Razani, F. Safari, Existence of radial solutions for a $p(x)$-Laplacian Dirichlet problem, Adv. Difference Equ., 2021 (2021), 1–14. https://doi.org/10.1186/s13662-021-03369-x doi: 10.1186/s13662-021-03369-x |
[24] | Y. Bai, N. S. Papageorgiou, S. Zeng, A singular eigenvalue problem for the Dirichlet $(p, q)$-Laplacian, Math. Z., 300 (2021), 325–345. https://doi.org/10.1007/s00209-021-02803-w doi: 10.1007/s00209-021-02803-w |
[25] | M. Bohner, G. Caristi, A. Ghobadi, S. Heidarkhani, Three solutions for discrete anisotropic Kirchhoff-type problems, Demonstr. Math., 56 (2023), 20220209. https://doi.org/10.1515/dema-2022-0209 doi: 10.1515/dema-2022-0209 |
[26] | S. El Manouni, G. Marino, P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the $p$-Laplacian, Adv. Nonlinear Anal., 11 (2022), 304–320. https://doi.org/10.1515/anona-2020-0193 doi: 10.1515/anona-2020-0193 |
[27] | A. R. Leggat, S. E. Miri, An existence result for a singular-regular anisotropic system, Rend. Circ. Mat. Palermo, 72 (2023), 977–996. https://doi.org/10.1007/s12215-022-00718-x doi: 10.1007/s12215-022-00718-x |
[28] | H. He, M. Ousbika, Z. El Allali, J. Zuo, Non-trivial solutions for a partial discrete Dirichlet nonlinear problem with $p$-Laplacian, Commun. Anal. Mech., 15 (2023), 598–610. http://dx.doi.org/10.3934/cam.2023030 doi: 10.3934/cam.2023030 |
[29] | C. Ju, G. Molica Bisci, B. Zhang, On sequences of homoclinic solutions for fractional discrete $p $-Laplacian equations, Commun. Anal. Mech., 15 (2023), 586–597. https://doi.org/10.3934/cam.2023029 doi: 10.3934/cam.2023029 |
[30] | Z. Liu, D. Motreanu, S. Zeng, Positive solutions for nonlinear singular elliptic equations of $p$-Laplacian type with dependence on the gradient, Calc. Var. Partial Differential Equations, 58 (2019), 28. https://doi.org/10.1007/s00526-018-1472-1 doi: 10.1007/s00526-018-1472-1 |
[31] | N. S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math, 42 (2022), 257–278. https://doi.org/10.7494/OpMath.2022.42.2.257 doi: 10.7494/OpMath.2022.42.2.257 |
[32] | B. Son, I. Sim, Analysis of positive solutions to one-dimensional generalized double phase problems, Adv. Nonlinear Anal., 11 (2022), 1365–1382. https://doi.org/10.1515/anona-2022-0240 doi: 10.1515/anona-2022-0240 |
[33] | C. Vetro, F. Vetro, Three solutions to mixed boundary value problem driven by $p(z)$-Laplace operator, Math. Nachr., 294 (2021), 1175–1185. https://doi.org/10.1002/mana.201900123 doi: 10.1002/mana.201900123 |
[34] | S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 59 (2020), 1–18. https://doi.org/10.1007/s00526-020-01841-2 doi: 10.1007/s00526-020-01841-2 |
[35] | S. Zeng, N. S. Papageorgiou, Positive solutions for $(p, q)$-equations with convection and a sign-changing reaction, Adv. Nonlinear Anal., 11 (2022), 40–57. https://doi.org/10.1515/anona-2020-0176 doi: 10.1515/anona-2020-0176 |
[36] | S. Zeng, V. D. Rădulescu, P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal., 54 (2022), 1898–1926. https://doi.org/10.1137/21M1441195 doi: 10.1137/21M1441195 |
[37] | G. Bonanno, G. D'Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449–464. https://doi.org/10.4171/zaa/1573 doi: 10.4171/zaa/1573 |
[38] | G. Bonanno, G. D'Aguì, A. Sciammetta, Existence of two positive solutions for anisotropic nonlinear elliptic equations, Adv. Differential Equations, 26 (2021), 229–258. https://doi.org/10.57262/ade026-0506-229 doi: 10.57262/ade026-0506-229 |
[39] | G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013 |
[40] | J. Simon, Régularité de la solution d'une équation non linéaire dans ${\mathbb{R}}^{N}$, Journées d'Analyse Non Linéaire (Proc. Conf. Besançon, 1977), Springer, Berlin, 665 (1978), 205–227. https://doi.org/10.1007/BFb0061807 |
[41] | P. Lindqvist, Notes on the stationary $p$-Laplace equation, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-14501-9 |
[42] | N. S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2018. https://doi.org/10.1515/9783110532982-201 |