In this article, a second-order time discrete algorithm with a shifted parameter $ \theta $ combined with a fast time two-mesh (TT-M) mixed finite element (MFE) scheme was considered to look for the numerical solution of the nonlinear fractional hyperbolic wave model. The second-order backward difference formula including a shifted parameter $ \theta $ (BDF2-$ \theta $) with the weighted and shifted Grünwald difference (WSGD) approximation for fractional derivative was used to discretize time direction at time $ t_{n-\theta} $, the $ H^1 $-Galerkin MFE method was applied to approximate the spatial direction, and the fast TT-M method was used to save computing time of the developed MFE system. A priori error estimates for the fully discrete TT-M MFE system were analyzed and proved in detail, where the second-order space-time convergence rate in both $ L^2 $-norm and $ H^1 $-norm were derived. Detailed numerical algorithms with smooth and weakly regular solutions were provided. Finally, some numerical examples were provided to illustrate the feasibility and effectiveness for our scheme.
Citation: Yining Yang, Cao Wen, Yang Liu, Hong Li, Jinfeng Wang. Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model[J]. Communications in Analysis and Mechanics, 2024, 16(1): 24-52. doi: 10.3934/cam.2024002
In this article, a second-order time discrete algorithm with a shifted parameter $ \theta $ combined with a fast time two-mesh (TT-M) mixed finite element (MFE) scheme was considered to look for the numerical solution of the nonlinear fractional hyperbolic wave model. The second-order backward difference formula including a shifted parameter $ \theta $ (BDF2-$ \theta $) with the weighted and shifted Grünwald difference (WSGD) approximation for fractional derivative was used to discretize time direction at time $ t_{n-\theta} $, the $ H^1 $-Galerkin MFE method was applied to approximate the spatial direction, and the fast TT-M method was used to save computing time of the developed MFE system. A priori error estimates for the fully discrete TT-M MFE system were analyzed and proved in detail, where the second-order space-time convergence rate in both $ L^2 $-norm and $ H^1 $-norm were derived. Detailed numerical algorithms with smooth and weakly regular solutions were provided. Finally, some numerical examples were provided to illustrate the feasibility and effectiveness for our scheme.
[1] | S. W. Liu, H. Q. Wang, T. S. Li, Adaptive composite dynamic surface neural control for nonlinear fractional-order systems subject to delayed input, ISA Trans., 134 (2023), 122–133. https://doi.org/10.1016/j.isatra.2022.07.027 doi: 10.1016/j.isatra.2022.07.027 |
[2] | Y. Li, H. Wang, X. Zhao, N. Xu, Event-triggered adaptive tracking control for uncertain fractional-order nonstrict-feedback nonlinear systems via command filtering, Int. J. Robust Nonlinear Control, 32 (2022), 7987–8011. https://doi.org/10.1002/rnc.6255 doi: 10.1002/rnc.6255 |
[3] | M. M. A. Khater, De Broglie waves and nuclear element interaction; Abundant waves structures of the nonlinear fractional Phi-four equation, Chaos Solitons Fract., 163 (2022), 112549, https://doi.org/10.1016/j.chaos.2022.112549 doi: 10.1016/j.chaos.2022.112549 |
[4] | M. M. A. Khater, R. A. M. Attia, Simulating the behavior of the population dynamics using the non-local fractional Chaffee-Infante equation, Fractals, 2023. https://doi.org/10.1142/S0218348X23402004 |
[5] | Y. Cao, B. L. Yin, Y. Liu, H. Li, Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time fractional wave problem, Comput. Appl. Math., 37 (2018), 5126–5145. https://doi.org/10.1007/s40314-018-0626-2 doi: 10.1007/s40314-018-0626-2 |
[6] | L. Feng, F. Liu, I. Turner, Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun. Nonlinear Sci. Numer. Simulat., 70 (2019), 354–371. https://doi.org/10.1016/j.cnsns.2018.10.016 doi: 10.1016/j.cnsns.2018.10.016 |
[7] | Y. Luchko, Fractional wave equation and damped waves, J. Math. Phys., 54 (2013), 031505. https://doi.org/10.1063/1.4794076 doi: 10.1063/1.4794076 |
[8] | B. L. Yin, Y. Liu, H. Li, F. H. Zeng, A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations, Appl. Numer. Math., 165 (2021), 56–82. https://doi.org/10.1016/j.apnum.2021.02.007 doi: 10.1016/j.apnum.2021.02.007 |
[9] | Z. G. Zhao, C. P. Li, Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl. Math. Comput., 219 (2012), 2975–2988. https://doi.org/10.1016/j.amc.2012.09.022 doi: 10.1016/j.amc.2012.09.022 |
[10] | J. H. Jia, X. C. Zheng, H. Wang, Numerical discretization and fast approximation of a variably distributed-order fractional wave equation, ESAIM: Math. Model. Numer. Anal., 55 (2021), 2211–2232. https://doi.org/10.1051/m2an/2021045 doi: 10.1051/m2an/2021045 |
[11] | H. R. Ren, Y. Liu, B. L. Yin, H. Li, Finite element algorithm with a second-order shifted composite numerical integral formula for a nonlinear time fractional wave equation, Numer. Meth. Part. Differ. Equ., 40 (2024), e23066. https://doi.org/10.1002/num.23066 doi: 10.1002/num.23066 |
[12] | M. Li, C. M. Huang, Y. L. Zhao, Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation, Numer. Algor., 84 (2020), 1081–1119. https://doi.org/10.1007/s11075-019-00793-9 doi: 10.1007/s11075-019-00793-9 |
[13] | M. Li, M. F. Fei, N. Wang, C. M. Huang, A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains, Math. Comput. Simulat., 177 (2020), 404–419. https://doi.org/10.1016/j.matcom.2020.05.005 doi: 10.1016/j.matcom.2020.05.005 |
[14] | M. Li, Y. L. Zhao, A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator, Appl. Math. Comput., 338 (2018), 758–773. https://doi.org/10.1016/j.amc.2018.06.010 doi: 10.1016/j.amc.2018.06.010 |
[15] | M. H. Heydari, M. R. Hooshmandasl, F. M. Ghaini, C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A., 379 (2015) 71–76. https://doi.org/10.1016/j.physleta.2014.11.012 doi: 10.1016/j.physleta.2014.11.012 |
[16] | F. H. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), 411–430. https://doi.org/10.1007/s10915-014-9966-2 doi: 10.1007/s10915-014-9966-2 |
[17] | A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293 (2015), 104–114. https://doi.org/10.1016/j.jcp.2014.12.043 doi: 10.1016/j.jcp.2014.12.043 |
[18] | M. H. Chen, W. H. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 68 (2017), 87–93. https://doi.org/10.1016/j.aml.2016.12.010 doi: 10.1016/j.aml.2016.12.010 |
[19] | H. F. Ding, A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation, Appl. Numer. Math., 135 (2019), 30–46. https://doi.org/10.1016/j.apnum.2018.08.005 doi: 10.1016/j.apnum.2018.08.005 |
[20] | Z. D. Luo, H. Wang, A highly efficient reduced-order extrapolated finite difference algorithm for time-space tempered fractional diffusion-wave equation, Appl. Math. Lett., 102 (2020), 106090. https://doi.org/10.1016/j.aml.2019.106090 doi: 10.1016/j.aml.2019.106090 |
[21] | W. McLean, K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105 (2007), 481–510. https://doi.org/10.1007/s00211-006-0045-y doi: 10.1007/s00211-006-0045-y |
[22] | J. Ren, Z. Sun, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions, J. Sci. Comput., 56 (2013), 381–408. https://doi.org/10.1007/s10915-012-9681-9 doi: 10.1007/s10915-012-9681-9 |
[23] | H. Sun, Z. Z. Sun, G. H. Gao, Some temporal second order difference schemes for fractional wave equations, Numer. Meth. Part. Differ. Equ., 32 (2016), 970–1001. https://doi.org/10.1002/num.22038 doi: 10.1002/num.22038 |
[24] | M. Dehghan, M. Abbaszadeh, A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algor., 73 (2016), 445–476. https://doi.org/10.1007/s11075-016-0103-1 doi: 10.1007/s11075-016-0103-1 |
[25] | G. Fairweather, X. H. Yang, D. Xu, H. X. Zhang, An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), 1217–1239. https://doi.org/10.1007/s10915-015-0003-x doi: 10.1007/s10915-015-0003-x |
[26] | Y. Yang, Y. Chen, Y. Huang, H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73 (2017), 1218–1232. https://doi.org/10.1016/j.camwa.2016.08.017 doi: 10.1016/j.camwa.2016.08.017 |
[27] | M. M. A. Khater, D. C. Lu, Analytical versus numerical solutions of the nonlinear fractional time-space telegraph equation, Modern Phys. Lett. B., 35 (2021), 2150324. https://doi.org/10.1142/S0217984921503243 doi: 10.1142/S0217984921503243 |
[28] | M. M. A. Khater, K. S. Nisar, M. S. Mohamed, Numerical investigation for the fractional nonlinear space-time telegraph equation via the trigonometric Quintic B-spline scheme, Math. Meth. Appl. Sci., 44 (2021), 4598–4606. https://doi.org/10.1002/mma.7052 doi: 10.1002/mma.7052 |
[29] | W. Y. Tian, H. Zhou, W. H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84 (2015), 1703–1727. |
[30] | Z. B. Wang, S. W. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277 (2014), 1–15. https://doi.org/10.1016/j.jcp.2014.08.012 doi: 10.1016/j.jcp.2014.08.012 |
[31] | Y. Liu, Y. W. Du, H. Li, J. F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9 |
[32] | C. Li, S. Zhao, Efficient numerical schemes for fractional water wave models, Comput. Math. Appl., 71 (2016), 238–254. https://doi.org/10.1016/j.camwa.2015.11.018 doi: 10.1016/j.camwa.2015.11.018 |
[33] | C. C. Ji, Z. Z. Sun, A high-order compact finite difference scheme for the fractional sub-diffusion equation, J. Sci. Comput., 64 (2015), 959–985. https://doi.org/10.1007/s10915-014-9956-4 doi: 10.1007/s10915-014-9956-4 |
[34] | Y. Liu, M. Zhang, H. Li, J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015 |
[35] | Y. Liu, Y.W. Du, H. Li, F. Liu, Y.Wang, Some second-order $\theta$ schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algor., 80 (2019), 533–555. https://doi.org/10.1007/s11075-018-0496-0 doi: 10.1007/s11075-018-0496-0 |
[36] | A. K. Pani, An $H^1$-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (1998), 712–727. https://doi.org/10.1137/S0036142995280808 doi: 10.1137/S0036142995280808 |
[37] | Y. Liu, H. Li, $H^1$-Galerkin Mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput., 212 (2009), 446–457. https://doi.org/10.1016/j.amc.2009.02.039 doi: 10.1016/j.amc.2009.02.039 |
[38] | L. Guo, H. Z. Chen, $H^1$-Galerkin Mixed finite element method for the regularized long wave equation, Computing, 77 (2006), 205–221. https://doi.org/10.1007/s00607-005-0158-7 doi: 10.1007/s00607-005-0158-7 |
[39] | D. Y. Shi, J. J. Wang, F. Yan, Unconditional superconvergence analysis of an $H^1$-Galerkin mixed finite element method for nonlinear Sobolev equations, Numer. Meth. Part. Differ. Equ., 34 (2018) 145–166. https://doi.org/10.1002/num.22189 doi: 10.1002/num.22189 |
[40] | Z. G. Shi, Y. M. Zhao, F. Liu, Y. F. Tang, F. L. Wang, Y. H. Shi, High accuracy analysis of an $H^1$-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations, Comput. Math. Appl., 74 (2017), 1903–1914. https://doi.org/10.1016/j.camwa.2017.06.057 doi: 10.1016/j.camwa.2017.06.057 |
[41] | C. Wen, Y. Liu, B. L. Yin, H. Li, J. F. Wang, Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model, Numer. Algor., 88 (2021), 523–553. https://doi.org/10.1007/s11075-020-01048-8 doi: 10.1007/s11075-020-01048-8 |
[42] | Y. Liu, Z.D. Yu, H. Li, F. Liu, J. F. Wang, Time two-mesh algorithm combined with finite element method for time fractional water wave model, Int. J. Heat Mass Transf., 120 (2018), 1132–1145. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.118 doi: 10.1016/j.ijheatmasstransfer.2017.12.118 |
[43] | W. L. Qiu, D. Xu, J. Guo, J. Zou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algor., 85 (2020), 39–58. https://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y |
[44] | Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math. Comput. Simulat., 203 (2023), 387–407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001 |
[45] | Z. C. Fang, J. Zhao, H. Li, Y. Liu, A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model, Numer. Algor., 93 (2023), 863–898. https://doi.org/10.1007/s11075-022-01444-2 doi: 10.1007/s11075-022-01444-2 |
[46] | B. Yin, Y. Liu, H. Li, S. He, Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solution, J. Comput. Phys., 379 (2019), 351–372. https://doi.org/10.1016/j.jcp.2018.12.004 doi: 10.1016/j.jcp.2018.12.004 |
[47] | Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033 |
[48] | O. Ladijzenskaia, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, 1969. |
[49] | E. Cuesta, C. Lubich, C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), 673–696. https://doi.org/10.1090/s0025-5718-06-01788-1 doi: 10.1090/s0025-5718-06-01788-1 |
[50] | F. H. Zeng, Z. Q. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Methods Appl. Mech. Engrg., 327 (2017), 478–502. https://doi.org/10.1016/j.cma.2017.08.029 doi: 10.1016/j.cma.2017.08.029 |
[51] | B. Yin, Y. Liu, H. Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Appl. Math. Comput., 368 (2020), 124799. https://doi.org/10.1016/j.amc.2019.124799 doi: 10.1016/j.amc.2019.124799 |