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arbitrary initial energy and the conditions of extinction.

Keywords: Non-Newton filtration equation; singular potential; logarithmic nonlinearity; global
existence; decay; blow-up
Mathematics Subject Classification: 35A02, 35B44, 35L67

1. Introduction

In this paper, we are concerned with the following initial-boundary problem:
|x|−sut − ∆pu = |u|q−2u ln |u| , x ∈ Ω, t > 0;
u(x, t) = 0, x ∈ ∂Ω, t > 0;
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ RN(N ≥ NΩ) is a bounded domain with smooth boundary ∂Ω, ∆pu = div(|∇u|p−2
∇u) with

u0 ∈ W1,p
0 (Ω), x = (x1, x2, . . . , xN) ∈ RN with |x| =

√
x2

1 + x2
2 + · · · + x2

N , and the parameters satisfy

0 ≤ s ≤ 2, max
{

2N
N + 2

, 1
}
< p ≤ q < p

(
1 +

2
N

)
.
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As is well known, according to the law of conservation, many diffusion processes with reactions can
be described by the following equation (see [1]):

ut − ∇ · (D∇u) = f (x, t, u,∇u) , (1.2)

where u(x, t) stands for the mass concentration in chemical reaction processes or temperature in heat
conduction, at position x in the diffusion medium and time t. The function D is called the diffusion
coefficient or the thermal diffusivity, the term ∇ · (D∇u) represents the rate of change due to diffusion,
and f (x, t, u,∇u) is the rate of change due to reaction.

In the past few years, many researchers had focused on Equation (1.2). For more details, one can
refer to [2–6]. For the source f (x, t, u,∇u) = uq, there has already been much discussion. For example,
for D = |x|2, in 2004, Tan [7] considered the existence and asymptotic estimates of global solutions
as well as finite time blow-up of local solutions based on the classical Hardy inequality [8]. Han [9]
considered the blow-up properties of solutions to the following non-Newton filtration equation with
special a medium void:

|x|−2 ut − 4pu = uq. (1.3)

A new criterion for the solutions to blow up in finite time was established by using the Hardy inequality.
Moreover, the upper and lower bounds for the blow-up time were also estimated. The results solved an
open problem proposed by Liu [10] in 2016.

When the source f (u) is a logarithmic nonlinearity, Deng and Zhou [11] investigated the following
semilinear heat equation with singular potential and logarithmic nonlinearity

|x|−s ut − 4u = u ln |u|, (1.4)

under an appropriate initial-boundary value condition. They did make full use of the logarithmic Sobolev
inequality in [12,13] to handle the difficulty caused by the logarithmic nonlinear term u ln |u|. Taking the
combination of a family of potential wells, the existence of global solutions and infinite time blow-up
solutions were obtained.

Liu and Fang [14] considered a fourth-order singular parabolic equation involving logarithmic
nonlinearity and p-biharmonic operator

|x|−s ut + 4(|4u|p−2
4u) = |u|q−2 u log |u| , (1.5)

and they established the local solvability by the technique of cut-off combining with the methods of
Faedo-Galerkin approximation and multiplier. Meantime, by virtue of the family of potential wells, they
used the technique of modified differential inequality and the improved logarithmic Sobolev inequality
to obtain the global solvability and the infinite and finite time blow-up phenomena, and derived the
upper bound of blow-up time as well as the estimate of the blow-up rate. Furthermore, the results of
blow-up with arbitrary initial energy and extinction phenomena were presented.

Motivated by these works, in this paper, we consider the Problem (1.1) with the presence of nonlinear
diffusion 4pu := div(|∇u|p−2

∇u) and logarithmic nonlinearity |u|q−2 u ln |u|. To the best our knowledge,
this is the first work in the literature that takes into account a singular parabolic p-Laplacian equation
with logarithmic nonlinearity.

The rest of this paper is organized as follows. In Section 2, we introduce some symbols and
definitions. In Section 3, we prove the local existence and uniqueness theorem. In Section 4, we
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prove the global existence and asymptotic behavior theorems of solutions. In Section 5, the blow-up
phenomena of solutions are discussed. Finally, the extinction phenomenon of the solution is given in
Section 6.

2. Preliminaries

In this section, we introduce some notations and lemmas that will be used throughout the paper. In
what follows, we denote by ‖·‖r (r ≥ 1) the norm in Lr(Ω) and by (·, ·) the L2(Ω) inner product. When
p > 1, p , 2, we use W1,p

0 (Ω) to denote the Sobolev space such that both u and ∇u belong to Lp(Ω)
for any u ∈ W1,p

0 (Ω), denote by W−1,p′(Ω) its dual space, and by 〈·, ·〉 the duality pairing between them.
We will equip W1,p

0 (Ω) with the norm ‖u‖W1,p
0

= ‖∇u‖p, which is equivalent to the full one due to the
Poincarés inequality. We use λ1 > 0 to denote the first eigenvalue of −4 in Ω under the homogeneous
Dirichlet boundary condition. We also use notation X0 to denote W1,p

0 (Ω)\ {0}.
Due to the presence of the inverse coefficient |x|−s, it is worth emphasizing the difference between

the two cases when 0 ∈ Ω and 0 < Ω.
If 0 ∈ Ω, then |x|−s develops a singularity. This necessitates the use of the Hardy-Sobolev inequality,

which is valid for NΩ ≥ 3, in the proofs of our main results.
On the other hand, if 0 < Ω, then there is no singularity and (1.1) can be regarded as a slight extension.

In this case, our results are valid for all N ∈ {1, 2, 3, . . .}. To deal with these two cases simultaneously,
we employ the notation

NΩ =

{
3, i f 0 ∈ Ω,

1, i f 0 < Ω.

First, for Problem (1.1), we introduce the potential energy functional

J(u) =
1
p
‖∇u‖p

p −
1
q

∫
Ω

|u|q ln |u|dx +
1
q2 ‖u‖

q
q , (2.1)

and the Nehari functional
I(u) = ‖∇u‖p

p −

∫
Ω

|u|q ln |u|dx. (2.2)

By a direct computation,

J(u) =
1
q

I(u) +

(
1
p
−

1
q

)
‖∇u‖p

p +
1
q2 ‖u‖

q
q . (2.3)

By I(u) and J(u), we define the potential well:

W1 = {u ∈ X0 : J(u) < d} , W2 = {u ∈ X0 : J(u) = d} , W = W1 ∪W2,

W+
1 = {u ∈ W1, I(u) > 0} , W+

2 = {u ∈ W2, I(u) > 0} , W+ = W+
1 ∪W+

2 ,

W−
1 = {u ∈ W1, I(u) < 0} , W−

2 = {u ∈ W2, I(u) < 0} , W− = W−
1 ∪W−

2 ,

and the Nehari manifold
N = {u ∈ X0, I(u) = 0} .

The depth of the potential well is defined as

d = inf
u∈N

J(u).
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The solution u(x, t) to Problem (1.1) is considered in weak sense as follows. Sometimes u(x, t) will
be simply written as u(t) if no confusion arises.

Lemma 2.1. [15] Let µ be a positive number. Then we have the following inequalities:

sp ln s ≤ (eµ)−1sp+µ, f or all s ≥ 1,

|sp ln s| ≤ (ep)−1, f or all 0 < s < 1.

Lemma 2.2. [15, 16] Assume that q < N p
N−p , i.e., q < ∞ for N ≤ p and r ≤ q < N p

N−p for N > p and

r ≥ 1. Then for any u ∈ W1,p
0 (Ω), it holds that

‖u‖q ≤ CG ‖∇u‖θp ‖u‖
1−θ
r ,

where θ ∈ (0, 1) is determined by θ =
(

1
r −

1
q

) (
1
N −

1
p + 1

r

)−1
and the constant CG > 0 depends on N, p, q,

and r.

Remark 2.1. From p > 2N
N+2 , we deduce

p
(
1 +

2
N

)
<


N p

N − p
, i f N > p,

+∞, i f N ≤ p.

Then by the Sobolev inequality, we have W1,p
0 (Ω) ↪→ Lq+a(Ω) for p > 1 and ∀ a ≥ 0.

Lemma 2.3. Let u(t) ∈ X0 and p, q satisfy max
{

2N
N+2 , 1

}
< p ≤ q < p

(
1 + 2

N

)
. We have the following

statements:
(i) If 0 < ‖u‖p ≤ r, then I(u) ≥ 0;
(ii) If I(u) < 0, then ‖u‖p > r;
(iii) If I(u) = 0, then ‖u‖p = 0 or ‖u‖p ≥ r,
where

r =

(
1

Bq+α
∗

) 1
q+α−p

.

Proof. (i) A direct computation yields

ln |u(x)| <
|u(x)|α

α
, a.e.x ∈ Ω,∀α > 0. (2.4)

Then, by the definition of I(u), we have

I (u) = ‖∇u‖p
p −

∫
Ω

|u|q ln |u| dx

= ‖∇u‖p
p − ‖u‖

q+α
q+α

≥
(
1 − Bq+α

∗ ‖∇u‖q+α−p
p

)
‖∇u‖p

p ,

(2.5)

where B∗ is the imbedding constant for W1,p
0 (Ω) ↪→ Lq+α(Ω). If 0 < ‖∇u‖p ≤ r, this implies that

‖∇u‖q+α−p
p ≤ 1

Bq+α
∗

. Therefore, we gain I(u) ≥ 0 by (2.5).
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(ii) From (2.5) and I(u) < 0, we can see that(
1 − Bq+α

∗ ‖∇u‖q+α−p
p

)
‖∇u‖p

p < 0,

which means that

‖∇u‖p >

(
1

Bq+α
∗

) 1
q+α−p

= r.

(iii) If I (u) = 0, then from (2.5) we attain

‖∇u‖p ≥

(
1

Bq+α
∗

) 1
q+α−p

or ‖∇u‖p = 0.

The prove is complete.

Next, in Lemma 2.4, we describe some basic properties of the fiber mapping J(λu) that can be
verified directly.

Lemma 2.4. [17] Assume that u ∈ X0, then
(i) limλ→0+ J(λu) = 0, limλ→+∞ J(λu) = −∞.
(ii) There exists a unique λ∗ = λ∗(u) > 0 such that d

dλ J(λu)
∣∣∣
λ=λ∗

= 0.
(iii) J(λu) is increasing on 0 < λ < λ∗, decreasing on λ∗ < λ < +∞, and attains the maximum at λ = λ∗.
(iv) I(λu) > 0 for 0 < λ < λ∗, I (λu) < 0 for λ∗ < λ < +∞, and I(λ∗u) = 0.

Lemma 2.5. [15, 18] (Logarithmic Sobolev Inequality). Let q > 1, µ > 0, and u ∈ W1,q
0

(
RN

)
\ {0}.

Then we have

q
∫

RN
|u (x)|q ln

 |u (x)|
‖u‖Lq(RN)

dx +
N
q

ln
(

qµe
Nϑq

) ∫
RN
|u (x)|qdx ≤ µ

∫
RN
|∇u (x)|qdx,

where

ϑq =
q
N

(
q − 1

e

)q−1

π−
q
2

 Γ
(

N
2 + 1

)
Γ
(
N q−1

q + 1
)

q
N

.

Remark 2.2. If u ∈ W1,q
0 (Ω)\ {0}, then by defining u(x) = 0 for x ∈ RN\Ω, we derive

q
∫

Ω

|u (x)|q ln
(
|u (x)|
‖u‖Lq(Ω)

)
dx +

N
q

ln
(

qµe
Nϑq

) ∫
Ω

|u (x)|qdx ≤ µ
∫

Ω

|∇u (x)|qdx, (2.6)

for any real number µ > 0.

Lemma 2.6. [14, 19] (Hardy-Sobolev inequality). Let RN = Rk × RN−k, 2 ≤ k ≤ N and x = (y, z) ∈
RN = Rk × RN−k. For given n, β satisfying 1 < p < N, 0 ≤ β ≤ p, and β < k, let m(β,N, p) =

p(N−β)
(N−p) .

Then there exists a positive constant CH depending on β,N, p, and k such that for any u ∈ W1,p
0 (RN), it

holds that ∫
RN
|u(x)|m |y|−βdx ≤ CH

(∫
RN
|∇u|pdx

) N−β
N−p

.
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Remark 2.3. (i) When m = p = β, this inequality is the classical Hardy inequality.
(ii) If m = 2, β = s in Lemma 2.4, we have p = 2N

N−s+2 > 2, and then Lemma 2.6 becomes∫
Ω

|u(x)|2|x|−sdx ≤ CH

(∫
Ω

|∇u|
2N

N−s+2 dx
) N−s+2

N

.

Lemma 2.7. [15, 20] Let f : R+ → R+ be a nonincreasing function and σ be a positive constant
such that ∫ +∞

t
f 1+σ(s)ds ≤

1
ω

f σ(0) f (t), ∀ t ≥ 0.

Then we have
(i) f (t) ≤ f (0)e1−ωt, for all t ≥ 0, whenever σ = 0.

(i) f (t) ≤ f (0)
(

1+σ
1+ωσt

) 1
σ , for all t ≥ 0, whenever σ > 0.

The following is the concavity lemma.

Lemma 2.8. [21–23] Suppose that a positive, twice-differentiable function Ψ(t) satisfies the inequal-
ity

Ψ′′(t)Ψ(t) − (1 + θ)(Ψ′(t))2 ≥ 0,

where θ > 0 . If Ψ(0) > 0 and Ψ′(0) > 0, then Ψ(t)→ ∞ as

t → t∗ ≤ t∗ =
Ψ(0)
θΨ′(0)

.

Lemma 2.9. [24] Suppose that 0 < l < r ≤ 1 and ε1, ε2 ≥ 0 are positive constants. If nonnegative
and absolutely continuous function h(t) satisfies

h′ (t) + ε1hl (t) ≤ ε2hr (t) , t ≥ 0,

h (0) > 0, ε2hr−l (0) < ε1,

then we have
h (t) ≤

[
−ε0 (1 − l) t + h1−l (0)

] 1
1−l
, 0 < t < T0,

and
h (t) ≡ 0, t ≥ T0,

where ε0 = ε1 − ε2hr−l (0) and T0 =
h1−l(0)
ε0(1−l) .

Definition 2.1. (Weak Solution). A function u := u(x, t) ∈ L∞(0,T ; X0) with |x|−
s
2 ut ∈ L2(0,T ; L2(Ω))

is called a weak solution of Problem (1.1) on Ω × [0,T ) if u(x, 0) = u0(x) in X0 and〈
|x|−s ut, v

〉
+

〈
|∇u|p−2

∇u,∇v
〉

=
〈
|u|q−2u ln |u| , v

〉
, a.e. t ∈ (0,T ),

for any v ∈ W1,p
0 (Ω). Moreover,∫ t

0

∥∥∥|x|− s
2 uτ

∥∥∥2

2
dτ + J(u(x, t)) = J(u0), a.e. t ∈ (0,T ).
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Definition 2.2. (Maximal Existence Time). Let u(x, t) be a weak solution of Problem (1.1), we define
the maximal existence time Tmax as follows:

Tmax = sup {T > 0; u(x, t) exists on [0,T ]} .

(i) If Tmax = +∞, we say that the solution u(t) is global;
(ii) If Tmax < +∞, we say that the solution u(t) blows up in finite time and Tmax is the blow-up time.

Definition 2.3. (Finite Time Blow-Up). Let u(x, t) be a weak solution of Problem (1.1), then u(x, t)
is called the finite time blow-up if the maximal existence time Tmax < +∞ and

lim
t→T−max

∫ t

0

∥∥∥|x|− s
2 u(τ)

∥∥∥2

2
dτ = +∞.

Definition 2.4. (Infinite Time Blow-Up). Let u(x, t) be a weak solution of Problem (1.1), then u(x, t)
is called the infinite blow-up if

lim
t→+∞

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
= +∞.

3. Local existence

In this section, we state the local existence and uniqueness of weak solutions to Problem (1.1).

Theorem 3.1. Let u0 ∈ X0, and p, q satisfy max
{

2N
N+2 , 1

}
< p ≤ q < p

(
1 + 2

N

)
. Then there exist a

T > 0 and a unique weak solution u(x, t) ∈ L∞(0,T ; X0) of Problem (1.1) with |x|−
s
2 ut ∈ L2(0,T ; L2(Ω))

satisfying u(0) = u0. Moreover, u(x, t) satisfies the energy equality∫ t

0

∥∥∥|x|− s
2 ut

∥∥∥2

2
dt + J(u) = J(u0), 0 ≤ t ≤ T.

Proof. We divide the proof of Theorem 3.1 into 5 steps.
Step 1. Approximate problem

In order to deal with the singular potential, we introduce the cut-off function

ρn (x) = min
{
|x|−s, n

}
,∀ n ∈ N+.

We denote the solutions corresponding to ρn of Problem (1.1) as un,
ρn (x) unt − ∆pun = |un|

q−2 un ln |un|, x ∈ Ω, t > 0,
un (x, t) = 0, x ∈ ∂Ω, t > 0,
un (x, 0) = un0, x ∈ Ω.

(3.1)

We noticed that un0 ∈ C∞0 (Ω), and then un0 → u0 (x) in W1,p
0 (Ω). Let

{
ω j

}∞
j=1

be a system of basis in

W1,p
0 (Ω) which is normalized orthogonal in L2(Ω) and construct the approximate solution

uk
n(x, t) =

k∑
j=1

ak
n j(t)ω j(x) f or k = 1, 2, · · · , j = 1, 2, · · · , k.
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We solve the problem〈
ρn(x)uk

nt, ω j

〉
+

〈∣∣∣∇uk
n

∣∣∣p−2
∇uk

n,∇ω j

〉
+ =

〈∣∣∣uk
n

∣∣∣q−2
uk

n ln
∣∣∣uk

n

∣∣∣ , ω j

〉
, (3.2)

and

uk
n (x, 0) =

k∑
j=1

bk
n jω j (x) = uk

n0 → un0 (x) in W1,p
0 (Ω) (3.3)

as k → +∞, n→ +∞. Hence
{
ak

n j

}k

j=1
is determined by the following Cauchy problem:


k∑

j=1

(∫
Ω

ρn(x)ω j(x)ω jdx
) [

ak
n j(t)

]
t
= Gk

n j (t) ,

ak
n j(0) = bk

n j,

where

Gk
n j (t) =

∫
Ω

∣∣∣∣∣∣∣
k∑

j=1

ak
n j(t)ω j(x)

∣∣∣∣∣∣∣
q−2 k∑

j=1

ak
n j(t)ω j(x) ln

∣∣∣∣∣∣∣
k∑

j=1

ak
n j(t)ω j(x)

∣∣∣∣∣∣∣ω jdx

−

∫
Ω

∣∣∣∣∣∣∣
k∑

j=1

ak
n j(t)∇ω j(x)

∣∣∣∣∣∣∣
p−2 k∑

j=1

ak
n j(t)∇ω j(x)∇ω jdx.

Therefore, the standard theory of ordinary differential equations yields that there exists a T > 0 such
that ak

n j(t) ∈ C1([0,T ]). As a consequence, uk
n ∈ C1([0,T ],W1,p

0 (Ω)).
Step 2: Priori estimates

We discuss the following two cases:
Case 1: max

{
2N

N+2 , 1
}
< p ≤ q and 2 ≤ q < p

(
1 + 2

N

)
Multiply (3.2) by ak

n j(t), sum for j = 1, · · · , k, and recall uk
n(x, t) to find〈

ρn(x)uk
nt, u

k
n

〉
+

〈∣∣∣∇uk
n

∣∣∣p−2
∇uk

n,∇uk
n

〉
=

〈∣∣∣uk
n

∣∣∣q−2
uk

n ln
∣∣∣uk

n

∣∣∣ , uk
n

〉
. (3.4)

Integrating over (0, t) on both sides of (3.4), we get,

1
2

∥∥∥∥(ρn(x))
1
2 uk

n (t)
∥∥∥∥2

2
+

∫ t

0

∥∥∥∇uk
n (s)

∥∥∥p

p
ds =

∫ t

0

∫
Ω

∣∣∣uk
n(s)

∣∣∣q ln
∣∣∣uk

n(s)
∣∣∣ dxds +

1
2

∥∥∥∥(ρn(x))
1
2 uk

n (0)
∥∥∥∥2

2
.

Set

S k
n (t) =

1
2

∥∥∥∥(ρn(x))
1
2 uk

n (t)
∥∥∥∥2

2
+

∫ t

0

∥∥∥∇uk
n (s)

∥∥∥p

p
ds. (3.5)

Combining the above equalities, and we have

S k
n (t) ≤ S k

n (0) +

∫ t

0

∫
Ω

∣∣∣uk
n(s)

∣∣∣q ln
∣∣∣uk

n(s)
∣∣∣ dxds. (3.6)
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From Lemma 2.1, we get∫
Ω

∣∣∣uk
n (t)

∣∣∣q ln
∣∣∣uk

n (t)
∣∣∣ dx =

∫
Ω1={x∈Ω;|uk

n(x)|≥1}

∣∣∣uk
n (t)

∣∣∣q ln
∣∣∣uk

n (t)
∣∣∣ dx

+

∫
Ω2={x∈Ω;|uk

n(x)|<1}

∣∣∣uk
n (t)

∣∣∣q ln
∣∣∣uk

n (t)
∣∣∣ dx

≤ (eµ)−1
∫

Ω1={x∈Ω;|uk
n(x)|≥1}

∣∣∣uk
n (t)

∣∣∣q+µ
dx

≤ (eµ)−1
∥∥∥uk

n (t)
∥∥∥q+µ

q+µ
.

(3.7)

Then, by Lemma 2.2 and Young’s inequality, (3.7) becomes∫
Ω

∣∣∣uk
n (t)

∣∣∣q ln
∣∣∣uk

n (t)
∣∣∣ dx ≤ (eµ)−1

∥∥∥uk
n (t)

∥∥∥q+µ

q+µ

≤ (eµ)−1CG

∥∥∥∇uk
n (t)

∥∥∥θ(q+µ)

p

∥∥∥uk
n (t)

∥∥∥(1−θ)(q+µ)

2

≤ (eµ)−1CGε
∥∥∥∇uk

n (t)
∥∥∥p

p
+ (eµ)−1CGC (ε)

∥∥∥uk
n (t)

∥∥∥ p(1−θ)(q+µ)
p−θ(q+µ)

2
,

(3.8)

where ε ∈ (0, 1), and θ =
(

1
2 −

1
q+µ

) (
1
N −

1
p + 1

2

)−1
=

(q+µ−2)N p
(q+µ)(2p−2N+N p) . We note that since 0 < µ <

p(1 + 2
N ) − q, θ(q + µ) < p holds. Let

α =
p(1 − θ)(q + µ)
2
[
p − θ(q + µ)

] =
p(N + q + µ) − N(q + µ)

p(N + 2) − N(q + µ)
,

then α > 1 since max{1, 2N
N+2 } < p ≤ q, 2 ≤ q < p

(
1 + 2

N

)
. Besides, since Ω is a bounded domain in RN ,

it leads to ∫
Ω

∣∣∣uk
n (t)

∣∣∣2dx =

∫
Ω

(ρn(x))−1ρn(x)
∣∣∣uk

n (t)
∣∣∣2dx ≤ C (Ω)

∥∥∥∥(ρn(x))
1
2 uk

n (t)
∥∥∥∥2

2
, (3.9)

where C(Ω) is related to Ω.
Thus, from (3.5), (3.6), (3.8), and (3.9), we get

S k
n (t) ≤ S k

n (0) +

∫ t

0
(eµ)−1CGε

∥∥∥∇uk
n (t)

∥∥∥p

p
ds +

∫ t

0
(eµ)−1CGC (ε)

∥∥∥uk
n (t)

∥∥∥2α

2
ds

≤ S k
n (0) + (eµ)−1CGεS k

n (t) + (eµ)−1CGC (ε) C(Ω)
∫ t

0

(
S k

n (t)
)α

ds,

and

S k
n (t) ≤

S k
n (0)

1 − (eµ)−1CGε
+

(eµ)−1CGC (ε) C(Ω)
1 − (eµ)−1CGε

∫ t

0

(
S k

n (t)
)α

ds.

Therefore,

S k
n (t) ≤ C1 + C2

∫ t

0

(
S k

n (t)
)α

ds, (3.10)

where 1 − (eµ)−1CGε > 0, C1 =
S k

n(0)
1−(eµ)−1CGε

, and C2 =
(eµ)−1CGC(ε)C(Ω)

1−(eµ)−1CGε
. From the Gronwall-Bellman-Bihari

inequality, we obtain
S k

n (t) ≤ C3,
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and
1
2

∥∥∥∥(ρn(x))
1
2 uk

n (t)
∥∥∥∥2

2
+

∫ t

0

∥∥∥∇uk
n (s)

∥∥∥p

p
ds ≤ C3, ∀ n, k ∈ N+, (3.11)

where C3 is a constant which is dependent on T .
Multiplying (3.2) by

[
ak

n j(t)
]

t
, summing on j = 1, 2, · · · , k, and then integrating on (0, t), we know

that ∫ t

0

∥∥∥∥(ρn(x))
1
2 uk

nt (s)
∥∥∥∥2

2
ds + J

(
uk

n (t)
)

= J
(
uk

n0

)
, 0 ≤ t ≤ T. (3.12)

By the continuity of the functional J and (3.3), there exists a constant C > 0 satisfying

J(uk
n0) ≤ C, for any positive integer n and k. (3.13)

Applying (2.1), (3.5), (3.8), (3.11), (3.12), and (3.13), we obtain∫ t

0

∥∥∥∥(ρn(x))
1
2 uk

nt (s)
∥∥∥∥2

2
ds +

(
1
p
−

CGε

eµq

) ∥∥∥∇uk
n (t)

∥∥∥p

p
+

1
q2

∥∥∥uk
n (t)

∥∥∥q

q
−C4 ≤ J

(
uk

n0 (t)
)
≤ C, (3.14)

where C4 =
2CGC(ε)C(Ω)

eµ (C3)α, for all n, k ∈ N+.
Case 2: max{1, 2N

N+2 } < p ≤ q < 2
Combining ln |u (x)| < |u(x)|a

a a.e. x ∈ Ω,∀ a > 0 and (3.5), and taking a = 2 − q, we obtain

S k
n (t) ≤ S k

n (0) +
1

2 − q

∫ t

0

∥∥∥uk
n (s)

∥∥∥2

2
ds.

Together with (3.9), it can become

S k
n (t) ≤ S k

n (0) +
2

(2 − q) C (Ω)

∫ t

0
S k

n (s) ds.

Then by means of Gronwall’s inequality, we have

S k
n (t) ≤ C5,

and
1
2

∥∥∥∥(ρn(x))
1
2 uk

n (t)
∥∥∥∥2

2
+

∫ t

0

∥∥∥∇uk
n (s)

∥∥∥p

p
ds ≤ C5, (3.15)

where C5 = S k
n(0)e

2T
(2−q)C(Ω) .

From (2.1), (3.12), (3.13), and (3.15), we have∫ t

0

∥∥∥∥(ρn(x))
1
2 uk

nt (s)
∥∥∥∥2

2
ds +

1
p

∥∥∥∇uk
n (t)

∥∥∥p

p
+

1
q2

∥∥∥uk
n (t)

∥∥∥q

q

≤ C +
1
q

∫
Ω

∣∣∣uk
n(t)

∣∣∣q ln
∣∣∣uk

n(t)
∣∣∣ dx

≤ C +
2

q (2 − q) C (Ω)

∥∥∥∥(ρn(x))
1
2 uk

n (t)
∥∥∥∥2

2

≤ C +
2C5

q (2 − q) C (Ω)
,

(3.16)
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for all k, n ∈ N+.
Therefore, we can derive∥∥∥uk

n(t)
∥∥∥

L∞
(
0,T ;W1,p

0 (Ω)
) ≤ C, for any positive integer n and k, (3.17)∥∥∥uk

n(t)
∥∥∥

L∞(0,T ;Lq(Ω))
≤ C, for any positive integer n and k, (3.18)∥∥∥∥(ρn(x))

1
2 uk

nt (t)
∥∥∥∥

L2(0,T ;L2(Ω))
≤ C, for any positive integer n and k. (3.19)

Combining (3.9) and (3.16), we have∥∥∥uk
nt (t)

∥∥∥
L2(0,T ;L2(Ω)) ≤ C, for any positive integer n and k. (3.20)

Step 3: Pass to the limit
By (3.17), (3.19), and the Aubin-Lions-Simon Lemma (see [25], Corollary 4), we get

uk
n → u in C(0,T ; L2(Ω)), (3.21)

as k, n → +∞. Thus, uk
n(x, 0) → u(x, 0) in L2(Ω). Combining (3.3) with un0 → u0 (x) in W1,p

0 (Ω), we
observe that u(x, 0) = u0 in W1,p

0 (Ω).
From (3.21), we have uk

n → u a.e.(x, t) ∈ Ω × (0,T ). This implies∣∣∣uk
n

∣∣∣q−2
uk

n ln
∣∣∣uk

n

∣∣∣→ |u|q−2 u ln |u| a.e.(x, t) ∈ Ω × (0,T ).

It follows from (3.14) and the Hölder inequality that

∥∥∥∥∣∣∣∇uk
n(t)

∣∣∣p−2
∇uk

n(t)
∥∥∥∥

W−1,p, (Ω)
= sup

ϕ∈W1,p
0 (Ω)\{0}

∫
Ω

∣∣∣∇uk
n(t)

∣∣∣p−2
∇uk

n(t) · ϕdx

‖ϕ‖W1,p
0 (Ω)

≤

(∫
Ω

∣∣∣∣∣∣∣∇uk
n(t)

∣∣∣p−2
∇uk

n(t)
∣∣∣∣ p

p−1
dx

) p−1
p
(∫

Ω

|ϕ|pdx
) 1

p

‖ϕ‖W1,p
0 (Ω)

≤
∥∥∥∇uk

n(t)
∥∥∥p−1

p
< C.

That means ∥∥∥∥∣∣∣∇uk
n(t)

∣∣∣p−2
∇uk

n(t)
∥∥∥∥

L∞(0,T ;W−1,p, (Ω))
≤ C, for any positive integer n and k. (3.22)

On the other hand, there is∫
Ω

∣∣∣∣∣∣∣uk
n

∣∣∣q−2
uk

n ln
∣∣∣uk

n

∣∣∣∣∣∣∣ p
p−1

dx =

∫
Ω1={x∈Ω;|uk

n(x)|≥1}

∣∣∣∣∣∣∣uk
n

∣∣∣q−2
uk

n ln
∣∣∣uk

n

∣∣∣∣∣∣∣ p
p−1

dx

+

∫
Ω1={x∈Ω;|uk

n(x)|<1}

∣∣∣∣∣∣∣uk
n

∣∣∣q−2
uk

n ln
∣∣∣uk

n

∣∣∣∣∣∣∣ p
p−1

dx.
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From Lemma 2.1 and Lemma 2.2, we have∫
Ω

∣∣∣∣∣∣∣uk
n(t)

∣∣∣q−2
uk

n(t) ln
∣∣∣uk

n(t)
∣∣∣∣∣∣∣ p

p−1
dx

=

∫
Ω1

∣∣∣∣∣∣∣uk
n(t)

∣∣∣q−2
uk

n(t) ln
∣∣∣uk

n(t)
∣∣∣∣∣∣∣ p

p−1
dx +

∫
Ω2

∣∣∣∣∣∣∣uk
n(t)

∣∣∣q−2
uk

n(t) ln
∣∣∣uk

n(t)
∣∣∣∣∣∣∣ p

p−1
dx

≤

∫
Ω1

∣∣∣∣∣∣∣uk
n(t)

∣∣∣−µ ln
∣∣∣uk

n(t)
∣∣∣ · ∣∣∣uk

n(t)
∣∣∣q−1+µ

∣∣∣∣ p
p−1

dx +

∫
Ω2

∣∣∣∣∣∣∣uk
n(t)

∣∣∣q−1
ln

∣∣∣uk
n(t)

∣∣∣∣∣∣∣ p
p−1

dx

≤ (eµ)−
p

p−1
∥∥∥uk

n(t)
∥∥∥ p

p−1 (q−1+µ)
p

p−1 (q−1+µ)
+

[
e (q − 1)

]− p
p−1 |Ω|

≤ (eµ)−
p

p−1 B1

∥∥∥∇uk
n(t)

∥∥∥ p
p−1 (q−1+µ)

p
+

[
e (q − 1)

]− p
p−1 |Ω| < C,

where B1 is the best constant of the Sobolev embedding W1,p
0 (Ω) ↪→ L

p
p−1 (q−1+µ)(Ω). Here we choose

0 < µ ≤ p
(
1 +

p−1
N−p

)
− q, q < p

(
1 +

p−1
N−p

)
, and we know that∥∥∥∥∣∣∣uk

n(t)
∣∣∣q−2

uk
n(t) ln

∣∣∣uk
n(t)

∣∣∣∥∥∥∥
L∞

(
0,T ;L

p
p−1 (Ω)

) ≤ C, for any positive integer n and k. (3.23)

By (3.17)–(3.19), (3.22), (3.23), there exist functions u, χ and a subsequence of
{
uk

n

}∞
n,k=1

which we still

denote by
{
uk

n

}∞
n,k=1

such that

uk
n → u weakly star in L∞(0,T ; W1,p

0 (Ω)) (3.24)

(ρn(x))
1
2 uk

nt → |x|
− s

2 ut weakly in L2(0,T ; L2(Ω)) (3.25)∣∣∣∇uk
n

∣∣∣p−2
∇uk

n → χ weakly star in L∞(0,T ; W−1,p′(Ω)) (3.26)∣∣∣uk
n

∣∣∣q−2
uk

n ln
∣∣∣uk

n

∣∣∣→ |u|q−2u ln |u| weakly star in L∞(0,T ; L
p

p−1 (Ω)). (3.27)

Next, by the method of Browder and Minty in the theory of monotone operators, we obtain χ =

|∇u|p−2
∇u.

By (3.24)–(3.27), passing to the limit in (3.2) as n, k → +∞, it follows that u satisfies the initial
condition u(0) = u0, 〈

|x|−sut, ω
〉

+
〈
|∇u|p−2

∇u,∇ω
〉

=
〈
|u|q−2u ln |u| , ω

〉
, (3.28)

for all ω ∈ W1,p
0 (Ω), and for a.e. t ∈ [0,T ].

Step 4. Uniqueness
Suppose there are two solutions u1 and u2 to Problem (1.1), and we have〈

|x|−su1t, v
〉

+
〈
|∇u1|

p−2
∇u1,∇v

〉
=

〈
|u1|

q−2u1 ln |u1| , v
〉
, (3.29)

and 〈
|x|−su2t, v

〉
+

〈
|∇u2|

p−2
∇u2,∇v

〉
=

〈
|u2|

q−2u2 ln |u2| , v
〉
. (3.30)

Let w = u1 − u2 and w(0) = 0, then by subtracting (3.29) and (3.30), we can derive∫
Ω

|x|−swtvdx +

∫
Ω

(
|∇u1|

p−2
∇u1 − |∇u2|

p−2
∇u2

)
∇vdx =

∫
Ω

(
|u1|

q−2u1 ln |u1| − |u2|
q−2u2 ln |u2|

)
vdx.
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Let v = w, and we recall the following elementary vector inequalities that are used frequently: for all
a, b ∈ RN , we have 0 ≤ (p − 1) |a−b|2

(|a|+|b|)2−p ≤
(
|a|p−2a − |b|p−2b

)
· (a − b), if 1 < p < 2. So, we obtain

1
2

d
dt

∥∥∥|x|− s
2 w

∥∥∥2

2
≤

∫
Ω

|u1|
q−2u1 ln |u1| − |u2|

q−2u2 ln |u2|

w
w2dx

≤

∫
Ω

f (u1) − f (u2)
w

w2dx.

Integrating it on [0, t], we obtain

∥∥∥|x|− s
2 w

∥∥∥2

2
≤ 2

∫ t

0

∫
Ω

f (u1) − f (u2)
w

w2dxdt, (3.31)

where F(s) = |s|q−2 s ln |s|. Combining with (3.9), we get

‖w‖22 ≤ 2MT

∫ t

0
‖w‖22 dt.

By the locally Lipschitz continuity of F : RN → R, the uniqueness follows from Gronwall’s inequality.
Step 5: Energy equality

We multiply (1.1) with ut and integrate over Ω × (0, t) to obtain the equality∫ t

0

∥∥∥|x|− s
2 ut (s)

∥∥∥2

2
ds + J (u (t)) = J (u0) , 0 ≤ t ≤ T. (3.32)

The proof of Theorem 3.1 is complete.

4. Global existence and decay rate

4.1. Global existence

In this section, we are concerned with the existence of a global weak solution to Problem (1.1).

Theorem 4.1. Assume that u0 ∈ W+, max
{

2N
N+2 , 1

}
< p ≤ q < p(1 + 2

N ), and then Problem (1.1)
admits a global solution u ∈ L∞(0,∞; X0) with |x|−

s
2 ut ∈ L2(0,∞; L2(Ω)) and u(t) ∈ W+ for 0 ≤ t ≤ ∞.

Proof. Now, we prove Theorem 4.1. In order to prove the existence of global weak solutions, we
consider the following two steps:
Step 1. The initial data u0 ∈ W+

1
From (3.32), we know that∫ t

0

∥∥∥|x|− s
2 ut (s)

∥∥∥2

2
ds + J (u (t)) = J (u0) < d, 0 ≤ t ≤ Tmax, (4.1)

where Tmax is the maximal existence time of solution u(t). We shall prove that Tmax = +∞. Next, we
will show that

u(t) ∈ W+
1 f or all 0 ≤ t ≤ Tmax. (4.2)
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Indeed, assume that (4.2) does not hold and let t∗ be the smallest time for which u(t∗) < W+
1 . Then, by

the continuity of u(t), one has u(t∗) ∈ ∂W+
1 . Hence, it follows that

J (u (t∗)) = d, (4.3)

or
I (u (t∗)) = 0. (4.4)

Nevertheless, it is clear that (4.3) could not occur by (4.1) while if (4.4) holds then, by the definition of
d, we have

J (u (t∗)) ≥ inf
u∈N

J(u) = d,

which also contradicts with (4.1). Hence, (4.2) is valid.
Next, it is discussed in two cases.

Case 1: p < q
As a consequence, it follows from this fact and the definition of functional J(u(t)) that∫ t

0

∥∥∥|x|− s
2 ut (s)

∥∥∥2

2
ds +

1
q

I (u (t)) +

(
1
p
−

1
q

)
‖∇u (t)‖p

p +
1
q2 ‖u (t)‖qq < d, (4.5)

and ∫ t

0

∥∥∥|x|− s
2 ut (s)

∥∥∥2

2
ds +

(
1
p
−

1
q

)
‖∇u (t)‖p

p +
1
q2 ‖u (t)‖qq < d. (4.6)

This estimate allows us to take Tmax = +∞. So, we can conclude that there is a unique global weak
solution u(t) ∈ W+

1 of Problem (1.1) which satisfies that∫ t

0

∥∥∥|x|− s
2 ut (s)

∥∥∥2

2
ds + J (u (t)) = J (u0) , 0 ≤ t ≤ +∞.

Case 2: p = q
Similar to Case 1, we can derive∫ t

0

∥∥∥|x|− s
2 ut (s)

∥∥∥2

2
ds +

1
p2 ‖u (t)‖p

p < d.

By Lemma 2.5, we have∫
Ω

|u (t)|q ln |u (t)| dx ≤
[
ln ‖u (t)‖Lq(Ω) −

n
q2 ln

(
qµe
Nϑq

)] ∫
Ω

|u (t)|qdx +
µ

q

∫
Ω

|∇u (t)|qdx.

From (2.2), (4.2), and the above inequality, we know that

‖∇u (t)‖p
p = I (u (t)) +

∫
Ω

|u (t)|p ln |u (t)| dx

= 2I (u (t)) + 2
∫

Ω

|u (t)|p ln |u (t)| dx − ‖∇u (t)‖p
p

≤ 2I (u (t)) + 2
[
ln ‖u (t)‖Lp(Ω) −

n
p2 ln

(
pµe
Nϑp

)] ∫
Ω

|u (t)|pdx +

(
2µ
p
− 1

)
‖∇u (t)‖p

p

≤ 2pJ (u (t)) + 2
[

1
p2 + ln ‖u (t)‖Lp(Ω) −

n
p2 ln

(
pµe
Nϑp

)]
‖u (t)‖p

p

≤ Cd.

(4.7)
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Combining the two cases above, we know that the estimate allows us to take Tmax = +∞. It means that
there is a unique global weak solution u(t) ∈ W+

1 of Problem (1.1).
Step 2. The initial data u0 ∈ W+

2
First, we choose a sequence {θm}

∞
m=1 ⊂ (0, 1) such that lim

m→∞
θm = 1. Then we consider the following

problem 
|x|−s ut − ∆pu = |u|q−2u ln |u| , (x, t) ∈ Ω × R+,

u = 0, (x, t) ∈ ∂Ω × R+,

u(x, 0) = u0m(x), x ∈ Ω,

(4.8)

where u0m = θmu0. First of all, we claim that u0m ∈ W+
1 , and then J(u0m) < d and I(u0m) > 0. In fact,

from u0 ∈ W+
1 , lim

m→∞
θm = 1 and I(u0) > 0, and we can see

I(u0m) = θp
m ‖∇u0‖

p
p − θ

q
m ln |θm| ‖u0‖

q
q − θ

q
m

∫
Ω

|u0|
q ln |u0|dx

≥ θp
m

(
‖∇u0‖

p
p − θ

q−p
m

∫
Ω

|u0|
q ln |u0|dx

)
≥ θp

mI(u0) > 0.

On the other hand, by direct calculations, we obtain

d
d(θm)

J(θmu0) =
1
θm

(
θp

m ‖∇u0‖
p
p − θ

q
m ln |θm| ‖u0‖

q
q − θ

q
m

∫
Ω

|u0|
q ln |u0|dx

)
=

1
θm

I(u0m) > 0,

which implies that J(θmu0) is strictly increasing with respect to θm and

J(u0m) = J(θmu0) < J(u0) = d.

Since u0m → u0 as m→ +∞, our result can be derived by the same processes as the proof of Step 1.
Theorem 4.1 is complete.

4.2. Decay estimates

Theorem 4.2. Let u(t) be the solution of Problem (1.1) and p, q satisfy

2 < p < q < p
(
1 +

2
N

)
.

If u0 ∈ W+
1 , then there exist positive constants c2 such that

‖∇u (t)‖2p ≤ ‖∇u0‖
2
p

(
p − 1

1 + c2(p − 2)t

) 1
p−2

, t ≥ 0.

Especially, if p = 2, then there exist positive constants c4 such that

‖∇u (t)‖2 ≤ ‖∇u0‖2 e
1
2 (1−c4t), t ≥ 0.
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Proof. We are now in a position to prove the algebraic decay results. Thanks to u0 ∈ W+
1 , we get

u(t) ∈ W+
1 . From (2.3), we have(

1
p
−

1
q

)
‖∇u‖p

p +
1
q2 ‖u‖

q
q ≤ J(u(t)) ≤ J(u0) < d. (4.9)

By (4.9), through a direct calculation, we arrive at

λ0

{(
1
p
−

1
q

)
‖∇u‖p

p +
1
q2 ‖u‖

q
q

}
≥ J (λ∗u (t)) ≥ d,

where λ0 = max{(λ∗)p, (λ∗)q}. Combining with (4.9), we get

λ0 ≥ max


(

d
J (u0)

) 1
p

,

(
d

J (u0)

) 1
q
 > 1, (4.10)

which means that λ∗ > 1, λ∗ ≥
(

d
J(u0)

) 1
p .

From (2.2), we have

0 = I(λ∗u) = (λ∗)p ‖∇u‖p
p − (λ∗)q

∫
Ω

|u|q ln |u| dx − (λ∗)q ln(λ∗) ‖u‖qq

= (λ∗)qI(u) − ((λ∗)q − (λ∗)p) ‖∇u(t)‖p
p − (λ∗)q ln(λ∗) ‖u‖qq .

(4.11)

Namely,
I (u (t)) = ‖u‖qq ln λ∗ +

[
1 − (λ∗)p−q

]
‖∇u‖p

p ≥ c1 ‖∇u(t)‖p
p , (4.12)

where c1 = 1 −
(

d
J(u0)

)1− q
p , p < q.

According to Lemma 2.6, and (2.2), we obtain∫ T

t
I (u) ds =

∫ T

t

(
‖∇u‖p

p −

∫
Ω

|u|q ln |u| dx
)

ds

= −
1
2

∫ T

t

d
dt

∥∥∥|x|− s
2 u

∥∥∥2

2
ds

=
1
2

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
−

1
2

∥∥∥|x|− s
2 u(T )

∥∥∥2

2

≤
1
2

∥∥∥|x|− s
2 u(t)

∥∥∥2

2

≤
1
2

CH ‖∇u (t)‖2p .

(4.13)

By (4.12) and (4.13), we get∫ T

t
‖∇u (t)‖p

p ds ≤
CH B2

2c1
‖∇u (t)‖2p =

1
c2
‖∇u (t)‖2p . (4.14)

Let T → +∞ in (4.14), and by the virtue of Lemma 2.7, it follows that

‖∇u (t)‖2p ≤ ‖∇u0‖
2
p

(
p − 1

1 + c2(p − 2)t

) 1
p−2

, t ≥ 0.

Theorem 4.2 is complete.
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5. Blow-up phenomena of weak solutions

In this section, we present the blow-up phenomena of the solutions to (1.1) including infinite and finite

time blow-up, and give some bounders of the blow-up. For simplicity, we shall write L(t) =
1
2

∥∥∥|x|− s
2 u(t)

∥∥∥2

2

in the sequel.

5.1. Infinite blow-up

This subsection is devoted to infinite blow-up for Problem (1.1).

Theorem 5.1. (Infinite Blow-Up). Let u0 ∈ W− and p, q satisfy 1 < p ≤ q < 2. Then u(t) blows up
in infinite time.

Proof. We divide the proof into 2 steps.
Step 1: u0 ∈ W−

1
We claim that u(t) ∈ W−

1 for all t ∈ [0,Tmax) provided that u0 ∈ W−
1 . Let u(t) be the weak solution of

Problem (1.1) with u0 ∈ W−
1 , which means that u0 , 0 and J(u0) < d, I(u0) < 0.

If J(u0) < 0. By the energy equality, we arrive at

1
q

I(u) +

(
1
p
−

1
q

)
‖∇u‖p

p +
1
q2 ‖u‖

q
q = J(u(t)) ≤ J(u0) < 0 < d. (5.1)

It means that u(t) , 0, J(u(t)) < d, and I(u(t)) < 0, which implies that u(t) ∈ W−
1 .

If 0 < J(u0) < d. From the energy equality, we obtain

0 <
∫ t

0

∥∥∥|x|− s
2 ut (s)

∥∥∥2

2
ds + J (u (t)) = J (u0) < d, (5.2)

which means that u(x, t) , 0. Next, we will show that I(u(t)) < 0 for all t ∈ [0,Tmax). Otherwise, by the
continuity of I(u), there would exist a t∗ ∈ (0,Tmax) such that I(u(t)) < 0, t ∈ [0, t∗) and I(u(t∗)) = 0. It
means that u(t∗) ∈ N. Then, from the definition of d, it holds that J(u(t∗)) ≥ d which contradicts (5.2).
Then u(t) ∈ W−

1 for all t ∈ [0,Tmax).
From Lemma 2.4(iv), as I(u(t)) < 0, there is a λ∗ < 1 such that I(λ∗u) = 0. Then

d ≤ J (λ∗u) =
1
q

I (λ∗u) + (λ∗)p
(

1
p
−

1
q

)
‖∇u‖p

p +
(λ∗)q

q2 ‖u‖
q
q

<

(
1
p
−

1
q

)
‖∇u‖p

p +
1
q2 ‖u‖

q
q .

(5.3)

Then, by taking the derivative of L(t), we obtain

d
dt

L (t) =

∫
Ω

u ·
ut

|x|s
dx = −I (u)

= −qJ (u) +

(
q
p
− 1

)
‖∇u‖p

p +
1
q
‖u‖qq

≥ q(d − J (u(t))) = q(d − J (u0)) = C0 > 0, t ∈ [0,Tmax].

(5.4)
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Combining (5.4) and L(t) − L(0) =
∫ t

0
L′(t)dt, we can derive∥∥∥|x|− s

2 u (t)
∥∥∥2

2
≥

∥∥∥|x|− s
2 u0

∥∥∥2

2
+ C0t > 0, t ∈ [0,Tmax]. (5.5)

Now, we prove that u(t) cannot blow up in finite time. Arguing by contradiction, we assume that u(t)
blows up in finite time, which implies that

lim
t→T−max

∥∥∥|x|− s
2 u (t)

∥∥∥2

2
= +∞. (5.6)

Meantime, by (5.4), we have

L (t) ln L (t) − L′ (t) =
1
2

∥∥∥|x|− s
2 u (t)

∥∥∥2

2
ln

(
1
2

∥∥∥|x|− s
2 u (t)

∥∥∥2

2

)
+ I (u (t)) . (5.7)

Next, combining ln |u (x)| < |u(x)|δ

δ
a.e. x ∈ Ω,∀ δ > 0 and (2.2), and taking δ = 2 − q, we obtain

I (u (t)) ≥ ‖∇u (t)‖p
p −

1
2 − q

‖u (t)‖22 . (5.8)

On the other hand, from (5.4) and (5.6), we can see that there exists a t1 ∈ (0,Tmax) such that

1
2

∥∥∥|x|− s
2 u (t)

∥∥∥2

2
>

1
2

∥∥∥|x|− s
2 u (t1)

∥∥∥2

2
= exp

{
2Ls

2 − q

}
, (5.9)

where |x| < L. Then by combining (5.7), (5.8), and (5.9) we can derive

L (t) ln L (t) − L′ (t)

≥
1
2

∥∥∥|x|− s
2 u (t)

∥∥∥2

2
ln

(
1
2

∥∥∥|x|− s
2 u (t)

∥∥∥2

2

)
+ ‖∇u (t)‖p

p −
1

2 − q
‖u (t)‖22

≥

(
1
2

L−s ln
(
1
2

∥∥∥|x|− s
2 u (t)

∥∥∥2

2

)
−

1
2 − q

)
‖u (t)‖22 > 0,

(5.10)

which means that
L (t) ln L (t) − L′ (t) > 0.

Through a direct calculation, we have

d
dt

ln (L (t)) =
L′ (t)
L (t)

< ln (L (t)) , t ∈ [t1,Tmax]. (5.11)

Then by virtue of Gronwall’s inequality, we get

ln (L (t)) < exp {t − t1} ln (L (t1)) , t ∈ [t1,Tmax] ,

which implies that ∥∥∥|x|− s
2 u (t)

∥∥∥2

2
<

∥∥∥|x|− s
2 u (t1)

∥∥∥2 exp{t−t1}

2
, t ∈ [t1,Tmax] .

That contradicts with (5.6). Therefore, Tmax = +∞ and u(t) blows up in infinite time.
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Step 2: u0 ∈ W−
2

First of all, u0 ∈ W−
2 means that I(u(t)) < 0, J(u(t)) = d, ∀t ∈ [0,Tmax]. We claim that u(t) ∈ W−

2
for all t ∈ [0,Tmax) provided that u0 ∈ W−

2 . Otherwise, by continuity, there would exist a t1 ∈ [0,Tmax)
such that I(u(t)) < 0 for t ∈ [0, t1) and I(u(t1)) = 0. Recalling the definition of d, it is clear that
J(u(t1)) ≥ d. On the other hand, from

∫
Ω

∣∣∣∣u · ut
|x|s

∣∣∣∣dx = −I (u (t)) > 0, t ∈ [t1,Tmax] , we know that ut , 0

and
∫ t1

0

∥∥∥|x|− s
2 uτ (τ)

∥∥∥2

2
dτ > 0, t1 ∈ [0,Tmax]. Meanwhile, it follows from the energy equality that

J (u (t1)) = J (u0) −
∫ t0

0

∥∥∥|x|− s
2 uτ (τ)

∥∥∥2

2
dτ < J (u0) = d,

which contradicts with J(u(t1)) ≥ d. Therefore, there exists a t2 ∈ [0,Tmax] such that I(u(t2)) < 0 and
J(u(t2)) < d. If we take t2 as the initial time, then similar to Step 1, we can obtain that the weak solution
u(t) of Problem (1.1) blows up in infinite time.

5.2. Finite time blow-up

Theorem 5.2. (Finite Blow-Up). Let u0 ∈ W− and p, q satisfy 2 < p ≤ q < p
(

2
N + 1

)
. Then u(t)

blows up in finite time. Moreover,

T ∗ ≤

∥∥∥|x|− s
2 u(0)

∥∥∥2

2

(p − 2) pJ (u0)
.

Proof. We shall apply the first-order differential inequality technique to show the finite time blow-up
result for Problem (1.1) with negative initial energy. For this, set K(t) = −J(u(t)). Then L(0) > 0,K(0) >
0. From Problem (1.1), it follows that

d
dt

K (t) = −
d
dt

J (u (t)) =
∥∥∥|x|− s

2 ut(t)
∥∥∥2

2
≥ 0,

which means that K (t) ≥ K (0) = −J (u0) > 0 for all t ∈ [0,T ∗). Recalling (2.2) and (2.3), we obtain,
for any t ∈ [0,T ∗), that

d
dt

L (t) =

∫
Ω

u ·
ut

|x|s
dx = −I (u)

= −qJ (u) +

(
q
p
− 1

)
‖∇u‖p

p +
1
q
‖u‖qq

≥ −qJ (u) = qK (t) > 0.

(5.12)

Making use of the Holder inequality and Cauchy-Schwarz inequality, we arrive at

L (t) K′ (t) =
1
2

(∥∥∥|x|− s
2 u(t)

∥∥∥2

2

) (∥∥∥|x|− s
2 ut(t)

∥∥∥2

2

)
≥

1
2
(
L′ (t)

)2
≥

q
2

L′ (t) K (t) ,
(5.13)

which then implies [
K (t) L−

q
2 (t)

]′
= L−

q
2−1 (t)

(
L (t) K′ (t) −

q
2

L′ (t) K (t)
)
≥ 0. (5.14)
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Therefore,

0 < k = K (0) L−
q
2 (0) ≤ K (t) L−

q
2 (t) ≤

1
q

L′ (t) L−
q
2 (t) =

2
(2 − q) p

[
L

2−q
2 (t)

]′
. (5.15)

Integrating (5.15) over [0, t] for any t ∈ (0,T ∗) and noticing that q > 2, one has

kt ≤
2

(2 − q) q

[
L

2−q
2 (t) − L

2−q
2 (0)

]
,

or equivalently

0 ≤ L
2−q

2 (t) ≤ L
2−q

2 (0) −
(q − 2) q

2
kt, t ∈ (0,T ∗]. (5.16)

It is obvious that (5.16) cannot hold for all t > 0. Therefore, T ∗ < +∞. Moreover, it can be inferred
from (5.16) that

T ∗ ≤
2L (0)

(q − 2) qK (0)
=

∥∥∥|x|− s
2 u(0)

∥∥∥2

2

(q − 2) qJ (u0)
.

The proof is complete.

For the case of J(u0) ≥ 0, we obtain blow-up results when the initial energy is ‘subcritical’ and
when the initial Nehari functional is negative which means that u0 ∈ W−. More precisely, we have the
following theorem.

Theorem 5.3. Assume that 2 < p ≤ q < p
(

2
N + 1

)
, u0 ∈ W−. Then the weak solution u(t) to Problem

(1.1) blows up in finite time. Furthermore, if u0 ∈ W−
1 , then Tmax can be estimated from above as follows:

Tmax ≤
βb2

(q − 2) βb −
∥∥∥|x|− s

2 u(0)
∥∥∥2

2

,

where β, b are constants that will be determined in the proof.

Proof. We will divide the proof into two cases.
Case 1: u0 ∈ W−

1
We claim that u(t) ∈ W−

1 for all t ∈ [0,Tmax) provided that u0 ∈ W−
1 . Otherwise, by continuity, there

would exist a t0 ∈ [0,Tmax) such that I(u(t)) > 0 for t ∈ [0, t0) and I(u(t0)) = 0. Recalling the definition
of d, it is clear that J(u(t0)) ≥ d, which contradicts with J(u(t)) ≤ J(u0) < d.

From Lemma 2.4(iv), as I(u(t)) < 0, there is a λ∗ < 1 such that I(λ∗u) = 0. Then

d ≤ J (λ∗u) =
1
q

I (λ∗u) + (λ∗)p
(

1
p
−

1
q

)
‖∇u‖p

p +
(λ∗)q

q2 ‖u‖
q
q

<

(
1
p
−

1
q

)
‖∇u‖p

p +
1
q2 ‖u‖

q
q .

(5.17)

We show that Tmax < +∞. For any T ∈ [0,Tmax), define the positive function

F (t) =

∫ t

0
L (t) dt + (T − t) L (0) +

β

2
(t + b)2, (5.18)

Communications in Analysis and Mechanics Volume 16, Issue 3, 528–553.



548

where β > 0, b > 0. By direct computations,

F′ (t) = L (t) − L (0) + β (t + b) =

∫ t

0

d
dt

L (t) dt + β (t + b)

=

∫ t

0

∫
Ω

u ·
ut

|x|s
dxdt + β (t + b) ,

(5.19)

F′′ (t) = L′ (t) + β = −I (u) + β

= −qJ (u) +

(
q
p
− 1

)
‖∇u‖p

p +
1
q
‖u‖qq + β

=

(
q
p
− 1

)
‖∇u‖p

p +
1
q
‖u‖qq + β − q

[
J (u0) −

∫ t

0

∥∥∥|x|− s
2 ut(t)

∥∥∥2

2
dt

]
.

(5.20)

Applying the Cauchy-Schwarz inequality, Young inequality, and Holder’s inequality to yields

f (t) =

[∫ t

0

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
dt + β(t + b)2

]
·

[∫ t

0

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
+ β

]
−

[∫ t

0

∫
Ω

u ·
ut

|x|s
dxdt + β (t + b)

]2

≥ 0.
(5.21)

Therefore, by recalling (5.19) and (5.20), and noticing the nonnegativity of f (t), we arrive at

F (t) F′′ (t) − (1 + θ) [F′ (t)]2

= F (t) F′′ (t) + (1 + θ)
[

f (t) − [2F (t) − 2 (T − t) L (0)]
[∫ t

0

∥∥∥|x|− s
2 ut(t)

∥∥∥2

2
dt + β

]]
≥ F (t) F′′ (t) − 2 (1 + θ) F (t)

[∫ t

0

∥∥∥|x|− s
2 ut(t)

∥∥∥2

2
dt + β

]
≥ F (t)

{
F′′ (t) − 2 (1 + θ)

∫ t

0

∥∥∥|x|− s
2 ut(t)

∥∥∥2

2
dt − 2 (1 + θ) β

}
.

(5.22)

Choosing θ =
q − 2

2
and recalling (5.17) lets us obtain

F (t) F′′ (t) −
q
2
[
F′ (t)

]2
≥ F (t)

[
q (d − J (u0)) − (q − 1) β

]
. (5.23)

In view of (5.18) and (5.23), we get, for any t ∈ (0,Tmax) and β ∈
(
0, q(d−J(u0))

q−1

]
, that

F (t) F′′ (t) −
(
1 +

q − 2
2

) [
F′ (t)

]2
≥ 0.

Therefore, Lemma 2.8 guarantees that F(0) > 0 and F′(0) = βb > 0, and then ∃ T1 : 0 < T1 <
2F(0)

(q−2)F′(0) ,
such that F(t)→ ∞, t → T1

Tmax ≤
βb2

(q − 2) βb −
∥∥∥|x|− s

2 u(0)
∥∥∥2

2

,

where b > max

0,
∥∥∥∥|x|− s

2 u(0)
∥∥∥∥2

2
(q−2)β

.
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Case 2: u0 ∈ W−
2

By similar arguments as those in the proof of case 1, when u0 ∈ W−
2 , by continuity, we see that there

exists a t2 > 0 such that I(u(t2)) < 0 and
∥∥∥|x|− s

2 ut

∥∥∥2

2
> 0 for all t ∈ [0, t2). From the energy equality, we

get

J (u (t2)) = J(u0) −
∫ t2

0

∥∥∥|x|− s
2 uτ(τ)

∥∥∥2

2
dτ < J(u0) = d.

The remainder of the proof is the same as in Case 1.

In the following, we shall derive a lower bound for the blow-up time T∗.

Theorem 5.4. Assume 2 < p ≤ q < p
(

2
N + 1

)
. Let u(t) be a weak solution to Problem (1.1) that

blows up at T∗. Then

T∗ ≥
L1−α(0)

CL(α − 1)
,

where CL > 0, α > 1 are two constants that will be determined in the proof.

Proof. Combining (2.2) and (3.8), we have

d
dt

L (t) =

∫
Ω

u ·
ut

|x|s
dx = −I (u) = − ‖∇u‖p

p +

∫
Ω

|u|q ln |u| dx

≤
(
(eµ)−1CGε − 1

)
‖∇u‖p

p + (eµ)−1CGC(ε) ‖u‖2α2 ,
(5.24)

where α > 1. As (eµ)−1CGε − 1 < 0, recalling the definition of L(t), we get

d
dt

L (t) ≤ (eµ)−1CGC(ε)C(Ω)
∥∥∥|x|− s

2 u(t)
∥∥∥2α

2
≤ CLLα (t) , (5.25)

where CL = (eµ)−1CGC(ε)C(Ω). Integrating (5.25) over [0, t), we get

1
1 − α

[
L1−α(t) − L1−α(0)

]
≤ CLt.

Since α > 1, letting t → T∗ in the above inequality and recalling that limt→T∗ L(t) = +∞, we obtain

T∗ ≥
L1−α(0)

CL(α − 1)
.

The proof is complete.

6. Extinction phenomenon

In this section, we present the result of extinction for Problem (1.1).

Theorem 6.1. (Extinction). Assuming 2N
N+2 < p < q < 2 and

0 <
∥∥∥|x|− s

2 u0

∥∥∥2

2
< 2

(
2

Cp

) p
q+δ−p

[
1
δ
|Ω|1−

q+δ
2 (2C (Ω))

q+δ
2

] −2
q+δ−p

,
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then the weak solution of Problem (1.1) becomes extinct in finite time. Furthermore, we have the
following estimates

∥∥∥|x|− s
2 u (t)

∥∥∥2

2
≤ 2

(1
2

∥∥∥|x|− s
2 u0

∥∥∥2

2

)1− p
2

− ε0

(
1 −

p
2

)
t


2

2−p

, 0 < t < T∗,

and ∥∥∥|x|− s
2 u (t)

∥∥∥2

2
≡ 0, t ≥ T∗.

The extinction time is

T∗ =
2

2 − p
·

(
1
2

∥∥∥|x|− s
2 u0

∥∥∥2

2

)1− p
2

ε0
,

where ε0, δ, Cp are given in the following.

Proof. Multiplying (1.1) by u(t) and integrating over Ω, we have

L′ (t) + ‖∇u (t)‖p
p =

∫
Ω

|u|q ln |u| dx. (6.1)

Meanwhile, by 2N
N+2 < p < 2, we have 0 ≤ s ≤ 2 < (N + 2) − 2N

p , which implies that 1 < 2N
N−s+2 < p in

Lemma 2.6, and we can see that there exists a constant Cp > 0 such that∫
Ω

|u (x)|2

|x|s
dx ≤ CH ‖∇u‖2 2N

N−s+2
≤ Cp ‖∇u‖2p . (6.2)

Combining (2.4), (3.9), (6.1), (6.2), and Hölder’s inequality, we deduce that there exists a 0 < δ ≤ 2 − q
such that

L′ (t) +

(
2

Cp

) p
2

L
p
2 (t) ≤

1
δ
‖u‖q+δ

q+δ

≤
1
δ
|Ω|1−

q+δ
2 ‖u‖q+δ

2

≤
1
δ
|Ω|1−

q+δ
2 (2C (Ω))

q+δ
2 L

q+δ
2 (t) .

(6.3)

Then by Lemma 2.9, we know that

ε1 =

(
2

Cp

) p
2

, ε2 =
1
δ
|Ω|1−

q+δ
2 (2C (Ω))

q+δ
2 , 0 < l =

p
2
< r =

q + δ

2
≤ 1.

We assume that

0 <
∥∥∥|x|− s

2 u0

∥∥∥2

2
< 2

(
ε1

ε2

) 2
q+δ−p

= 2
(

2
Cp

) p
q+δ−p

[
1
δ
|Ω|1−

q+δ
2 (2C (Ω))

q+δ
2

] −2
q+δ−p

,

and then we can see that

L (t) ≤
[
−ε0

(
1 −

p
2

)
t + L1− p

2 (0)
] 2

2−p
, 0 < t < T∗,
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and
L (t) ≡ 0, t ≥ T∗,

where

ε0 = ε1 − ε2Lr−l (0) =

(
2

Cp

) p
2

−

[
1
δ
|Ω|1−

q+δ
2 (2C (Ω))

q+δ
2

] ∥∥∥|x|− s
2 u0

∥∥∥q+δ−p

2
,

and

T∗ =
2

2 − p
·

(
1
2

∥∥∥|x|− s
2 u0

∥∥∥2

2

)1− p
2

ε0
.

The proof is complete.
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