This manuscript is devoted to investigate a class of multi terms delay fractional order impulsive differential equations. Our investigation includes existence theory along with Ulam type stability. By using classical fixed point theorems, we establish sufficient conditions for existence and uniqueness of solution to the proposed problem. We develop some appropriate conditions for different kinds of Ulam-Hyers stability results by using tools of nonlinear functional analysis. We demonstrate our results by an example.
Citation: Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad. Study of multi term delay fractional order impulsive differential equation using fixed point approach[J]. AIMS Mathematics, 2022, 7(7): 11551-11580. doi: 10.3934/math.2022644
This manuscript is devoted to investigate a class of multi terms delay fractional order impulsive differential equations. Our investigation includes existence theory along with Ulam type stability. By using classical fixed point theorems, we establish sufficient conditions for existence and uniqueness of solution to the proposed problem. We develop some appropriate conditions for different kinds of Ulam-Hyers stability results by using tools of nonlinear functional analysis. We demonstrate our results by an example.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, 2006. |
[2] | N. Sene, Fractional model and exact solutions of convection flow of an incompressible viscous fluid under the Newtonian heating and mass diffusion, J. Math., 2022 (2022), 8785197. https://doi.org/10.1155/2022/8785197 doi: 10.1155/2022/8785197 |
[3] | A. G. Butkovskii, S. S. Postnov, E. A. Postnova, Fractional integro-differerential calculus and its control theoretical applications. I. Mathematical fundamentals and the problem of interpretation, Autom. Remote Control, 74 (2013), 543–574. https://doi.org/10.1134/S0005117913040012 doi: 10.1134/S0005117913040012 |
[4] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[5] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[6] | P. Chen, X. Zhang, Y. Li, A blowup alternative result for fractional nonautonomous evolution equation of volterra type, Commun. Pure Appl. Anal., 17 (2018), 1975–1992. http://dx.doi.org/10.3934/cpaa.2018094 doi: 10.3934/cpaa.2018094 |
[7] | K. S. Miller, Derivatives of noninteger order, Math. Magazine, 68 (1995), 183–192. https://doi.org/10.1080/0025570X.1995.11996309 doi: 10.1080/0025570X.1995.11996309 |
[8] | P. J. Torvik, R. L. Bagley, On the appearance of fractional derivatives in the behaviour of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615 |
[9] | F. Wang, Y. Yang, M. Hu, Asymptotic stability of delayed fractional order neural networks with impulsive effects, Neurocomputing, 154 (2015), 239–244. https://doi.org/10.1016/j.neucom.2014.11.068 doi: 10.1016/j.neucom.2014.11.068 |
[10] | A. Ali, F. Rabiei, K. Shah, On Ulams type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions, J. Nonlinear Sci. Appl., 10 (2017), 4760–4775. http://dx.doi.org/10.22436/jnsa.010.09.19 doi: 10.22436/jnsa.010.09.19 |
[11] | B. Ahmad, M. Alghanmi, A. Alsaedi, R. P. Agarwal, On an impulsive hybrid system of conformable fractional differential equations with boundary conditions, Int. J. Syst. Sci., 51 (2020), 958–970. https://doi.org/10.1080/00207721.2020.1746437 doi: 10.1080/00207721.2020.1746437 |
[12] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solution of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[13] | Z. H. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475–6479. https://doi.org/10.1016/j.physleta.2008.09.013 doi: 10.1016/j.physleta.2008.09.013 |
[14] | E. Tohidi, A. H. Bhrawy, K. A. Erfani, Collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model., 37 (2012), 4283–4294. https://doi.org/10.1016/j.apm.2012.09.032 doi: 10.1016/j.apm.2012.09.032 |
[15] | R. Bellman, Stability theory of differential equations, Courier Corporation, 2008. |
[16] | S. M. Ulam, Problems in modern mathematics, New York: Wiley, 1940. |
[17] | D. H. Hyers, On the stability of the linear functional equations, Proc. Natl. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[18] | T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. https://www.jstor.org/stable/2042795 |
[19] | S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-9637-4 |
[20] | Z. Wang, D. Yang, T. Ma, N. Sun, Stability analysis for nonlinear fractional-order systems based on comparison principle, Nonlinear Dyn., 75 (2014), 387–402. https://doi.org/10.1007/s11071-013-1073-7 doi: 10.1007/s11071-013-1073-7 |
[21] | T. Abdeljawad, F. Madjidi, F. Jarad, N. Sene, On dynamic systems in the frame of singular function dependent kernel fractional derivatives, Mathematics, 7 (2019), 946. https://doi.org/10.3390/math7100946 doi: 10.3390/math7100946 |
[22] | P. Chen, X. Zhang, Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ. Oper. Appl., 10 (2019), 955–973. https://doi.org/10.1007/s11868-018-0257-9 doi: 10.1007/s11868-018-0257-9 |
[23] | P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Frac. Calc. Appl. Anal., 23 (2020), 268–291. doi.org/10.1016/j.jde.2009.03.004 doi: 10.1016/j.jde.2009.03.004 |
[24] | A. Khan, T. Abdeljawad, J. F. Gomez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos Soliton. Fract., 134 (2020), 109685. https://doi.org/10.1016/j.chaos.2020.109685 doi: 10.1016/j.chaos.2020.109685 |
[25] | A. Khan, J. F. Gomez-Aguilar, T. Abdeljawad, H. Khan, Stability and numerical simulation of a fractional order plant nectar pollinator model, Alex. Eng. J., 59 (2020), 49–59. https://doi.org/10.1016/j.aej.2019.12.007 doi: 10.1016/j.aej.2019.12.007 |
[26] | S. Hussain, S. Mehboob, On some generalized fractional integral Bullen type inequalities with applications, J. Frac. Calc. Nonlinear Syst., 2 (2021), 12–20. |
[27] | H. Khan, J. F. Gomez-Aguilar, A. Alkhazzan, A. A.Khan, Fractional order HIV-TB coinfection model with nonsingular Mittag-Leier law, Math. Methods Appl. Sci., 43 (2020), 3786–3806. https://doi.org/10.1002/mma.6155 doi: 10.1002/mma.6155 |
[28] | H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2019), 10947. https://doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477 |
[29] | A. Ali, K. Shah, Y. Li, Topological degree theory and Ulam's stability analysis of a boundary value problem of fractional differential equations, In: G. Anastassiou, J. Rassias, Frontiers in functional equations and analytic inequalities, Springer, 2019, 73–92. https://doi.org/10.1007/978-3-030-28950-8_4 |
[30] | B. Ahmad, M. Alblewi, S. K. Ntouyas, A. Alsaedi, Existence results for a coupled system of nonlinear multi-term fractional differential equations with anti-periodic type coupled nonlocal boundary conditions, Math. Methods Appl. Sci., 44 (2021), 8739–8758. https://doi.org/10.1002/mma.7301 doi: 10.1002/mma.7301 |
[31] | G. Ali, K. Shah, G. Rahman, Existence of solution to a class of fractional delay differential equation under multi-points boundary conditions, Arab J. Basic Appl. Sci., 27 (2020), 471–479. https://doi.org/10.1080/25765299.2020.1850621 doi: 10.1080/25765299.2020.1850621 |
[32] | A. Ali, R. A. Khan, Existence of solutions of fractional differential equations via topological degree theory, J. Comput. Theor. Nanosci., 13 (2016), 143–147. https://doi.org/10.1166/jctn.2016.4781 doi: 10.1166/jctn.2016.4781 |
[33] | A. Ali, B. Samet, K. Shah, R. A. Khan, Existence and stability of solution to a toppled systems of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), 16. https://doi.org/10.1186/s13661-017-0749-1 doi: 10.1186/s13661-017-0749-1 |
[34] | C. Derbazi, Z. Baitiche, M. S. Abdo, K. Shah, B. Abdalla, T. Abdeljawad, Extremal solutions of generalized Caputo-type fractional-order boundary value problems using monotone iterative method, Fractal Fract., 6 (2022), 146. https://doi.org/10.3390/fractalfract6030146 doi: 10.3390/fractalfract6030146 |
[35] | H. Royden, P. Fitzpatrick, Real analysis, Classic Version, Pearson Modern Classics for Advanced Mathematics Series, 4 Eds., Pearson, 2017. Available from: https://www.pearson.com/us/higher-education/series/Pearson-Modern-Classics-for-Advanced-Mathematics-Series/5121759.html. |
[36] | D. Baleanu, S. Etemad, H. Mohammadi, S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100 (2021), 105844. https://doi.org/10.1016/j.cnsns.2021.105844 doi: 10.1016/j.cnsns.2021.105844 |