This paper is devoted to studying the transcendental directions of entire solutions of $ f^{(n)}+A_{n-1}f^{(n-1)}+...+A_0f = 0 $, where $ n(\geq 2) $ is an integer and $ A_i(z)(i = 0, 1, ..., n-1) $ are entire functions of finite lower order. With some additional conditions, the set of common transcendental directions of non-trivial solutions, their derivatives and their primitives must have a definite range of measure. Moreover, we obtain the lower bound of the measure of the set defined by the common transcendental directions of Jackson difference operator of non-trivial solutions.
Citation: Zheng Wang, Zhi Gang Huang. On transcendental directions of entire solutions of linear differential equations[J]. AIMS Mathematics, 2022, 7(1): 276-287. doi: 10.3934/math.2022018
This paper is devoted to studying the transcendental directions of entire solutions of $ f^{(n)}+A_{n-1}f^{(n-1)}+...+A_0f = 0 $, where $ n(\geq 2) $ is an integer and $ A_i(z)(i = 0, 1, ..., n-1) $ are entire functions of finite lower order. With some additional conditions, the set of common transcendental directions of non-trivial solutions, their derivatives and their primitives must have a definite range of measure. Moreover, we obtain the lower bound of the measure of the set defined by the common transcendental directions of Jackson difference operator of non-trivial solutions.
[1] | A. Baernstein, Proof of Edrei's spread conjecture, P. Lond. Math. Soc., 26 (1973), 418–434. doi: 10.1112/plms/s3-26.3.418. doi: 10.1112/plms/s3-26.3.418 |
[2] | I. N. Baker, Sets of non-normality in iteration theory, J. Lond. Math. Soc., 40 (1965), 499–502. doi: 10.1112/jlms/s1-40.1.499. doi: 10.1112/jlms/s1-40.1.499 |
[3] | W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29 (1993), 151–188. doi: 10.1090/S0273-0979-1993-00432-4. doi: 10.1090/S0273-0979-1993-00432-4 |
[4] | T. B. Cao, H. X. Dai, J. Wang, Nevanlinna theory for Jackson difference operators and entire solutions of q-difference equations, Anal. Math., 47 (2021), 529–557. doi: 10.1007/s10476-021-0092-8. doi: 10.1007/s10476-021-0092-8 |
[5] | J. C. Chen, Y. Z. Li, C. F. Wu, Radial distribution of Julia sets of entire solutions to complex difference equations, Mediterr. J. Math., 17 (2020), 1–12. doi: 10.1007/s00009-020-01627-y. doi: 10.1007/s00009-020-01627-y |
[6] | A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Providence: American Mathematical Society, 2008. |
[7] | W. K. Hayman, Meromorphic functions, Oxford: Clarendon Press, 1964. |
[8] | Z. G. Huang, J. Wang, On limit directions of Julia sets of entire solutions of linear differential euqation, J. Math. Anal. Appl., 409 (2014), 478–484. doi: 10.1016/j.jmaa.2013.07.026. doi: 10.1016/j.jmaa.2013.07.026 |
[9] | J. R. Long, J. Y. Qiao, X. Yao, Singular direction and q-difference operator of meromorphic functions, B. Malays. Math. Sci. So., 43 (2020), 3693–3709. doi: 10.1007/S40840-020-00891-1. doi: 10.1007/S40840-020-00891-1 |
[10] | J. Y. Qiao, On limiting directions of Julia sets, Ann. Acad. Sci. Fenn.-M., 26 (2001), 391–399. |
[11] | J. Y. Qiao, Stable domains in the iteration of entire functions (Chinese), Acta Math. Sinica, 37 (1994), 702–708. doi: cnki:ISSN:05831431.0.1994-05-017. |
[12] | L. Qiu, S. J. Wu, Radial distributions of Julia sets of meromorphic functions, J. Aust. Math. Soc., 81 (2006), 363–368. doi: 10.1017/S1446788700014361. doi: 10.1017/S1446788700014361 |
[13] | L. Qiu, Z. X. Xuan, Y. Zhao, Radial distribution of Julia sets of some entire functions with infinite lower order, Chinese Ann. Math. Ser. A, 40 (2019), 325–334. |
[14] | J. Wang, Z. X. Chen, Limiting directions of Julia sets of entire solutions to complex differential equations, Acta Math. Sci., 37 (2017), 97–107. doi: 10.1016/S0252-9602(16)30118-7. doi: 10.1016/S0252-9602(16)30118-7 |
[15] | J. Wang, X. Yao, On Julia limiting directions of merommorphic functions, Isr. J. Math., 238 (2020), 405–430. doi: 10.1007/s11856-020-2037-5. doi: 10.1007/s11856-020-2037-5 |
[16] | J. H. Zheng, S. Wang, Z. G. Huang, Some properties of Fatou and Julia sets of transcendental meromorphic functions, B. Aust. Math. Soc., 66 (2002), 1–8. doi: 10.1017/S000497270002061X. doi: 10.1017/S000497270002061X |
[17] | J. H. Zheng, Value distribution of meromorphic functions, Berlin: Springer, 2011. doi: 10.1007/978-3-642-12909-4. doi: 10.1007/978-3-642-12909-4 |