We consider a fractional differential inequality involving $ \psi $-Caputo fractional derivatives of different orders, with a polynomial nonlinearity and a singular potential term. Using the test function method and some integral inequalities, we establish nonexistence criteria of global solutions in both cases: $ \lim\limits_{t\to \infty}\psi(t)=\infty $ and $ \lim\limits_{t\to \infty}\psi(t)<\infty $.
Citation: Ibtisam Aldawish, Mohamed Jleli, Bessem Samet. Blow-up of solutions to fractional differential inequalities involving $ \psi $-Caputo fractional derivatives of different orders[J]. AIMS Mathematics, 2022, 7(5): 9189-9205. doi: 10.3934/math.2022509
We consider a fractional differential inequality involving $ \psi $-Caputo fractional derivatives of different orders, with a polynomial nonlinearity and a singular potential term. Using the test function method and some integral inequalities, we establish nonexistence criteria of global solutions in both cases: $ \lim\limits_{t\to \infty}\psi(t)=\infty $ and $ \lim\limits_{t\to \infty}\psi(t)<\infty $.
[1] | O. P. Agrawal, Generalized multiparameters fractional variational calculus, Int. J. Differ. Equ., 2012, (2012), 1–32. https://doi.org/10.1155/2012/521750 doi: 10.1155/2012/521750 |
[2] | R. P. Agarwal, M. Benchohra, S. A. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. https://doi.org/10.1007/s10440-008-9356-6 doi: 10.1007/s10440-008-9356-6 |
[3] | R. P. Agarwal, M. Benchohra, D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 55 (2009), 221–230. https://doi.org/10.1007/s00025-009-0434-5 doi: 10.1007/s00025-009-0434-5 |
[4] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[5] | R. L. Bagley, P. L. Torvik, On the fractional calculus models of viscoelastic behaviour, J. Rheol., 30 (1986), 133–155. |
[6] | H. M. Fahad, A. Fernandez, M. U. Rehman, M. Siddiqi, Tempered and Hadamard-type fractional calculus with respect to functions, Mediterr. J. Math., 18 (2021), 1–28. https://doi.org/10.1007/s00009-021-01783-9 doi: 10.1007/s00009-021-01783-9 |
[7] | K. M. Furati, M. Kirane, Necessary conditions for the existence of global solutions to systems of fractional differential equations, Fract. Calc. Appl. Anal., 11 (2008), 281–298. |
[8] | C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001 |
[9] | M. D. Kassim, K. M. Furati, N. E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), 1–17. |
[10] | M. D. Kassim, K. M. Furati, N. E. Tatar, Nonexistence of global solutions for a fractional differential problem, J. Comput. Appl. Math., 314 (2017), 61–68. https://doi.org/10.1016/j.cam.2016.10.006 doi: 10.1016/j.cam.2016.10.006 |
[11] | M. D. Kassim, N. E. Tatar, Nonexistence of global solutions for fractional differential problems with power type source term, Mediterr. J. Math., 18 (2021), 1–13. https://doi.org/10.1007/s00009-021-01903-5 doi: 10.1007/s00009-021-01903-5 |
[12] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier Science Limited, 2006. |
[13] | M. Kirane, S. A. Malik, The profile of blowing-up solutions to a nonlinear system of fractional differential equations, Nonlinear Anal., 73 (2010), 3723–3736. https://doi.org/10.1016/j.na.2010.06.088 doi: 10.1016/j.na.2010.06.088 |
[14] | M. Kirane, N. E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Zeit. Anal. Anw., 25 (2006), 131–142. https://doi.org/10.4171/ZAA/1281 doi: 10.4171/ZAA/1281 |
[15] | C. Li, A. Chen, J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230 (2011), 3352–3368. https://doi.org/10.1016/j.jcp.2011.01.030 doi: 10.1016/j.jcp.2011.01.030 |
[16] | R. L. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, Journal of Vibration and Control., 14 (2008), 1431–1442. https://doi.org/10.3182/20060719-3-PT-4902.00056 doi: 10.3182/20060719-3-PT-4902.00056 |
[17] | E. N. Mahmudov, S. S. Yusubov, Nonlocal boundary value problems for hyperbolic equations with a Caputo fractional derivative, J. Comput. Appl. Math., 398 (2021), 113709. https://doi.org/10.1016/j.cam.2021.113709 doi: 10.1016/j.cam.2021.113709 |
[18] | F. Mainardi, Fractional relaxation-oscilation and fractional diffusion-wave phenomena, Chaos, Soliton. Fract., 7 (1996), 1461–1477. |
[19] | E. Mitidieri, S. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1–383. |
[20] | K. Mustapha, B. Abdallah, K. M. Furati, A discontinuous Petrov-Galerkin method for time-fractional diffusion equations, SIAM J. Numer. Anal., 52 (2014), 2512–2529. https://doi.org/10.1137/140952107 doi: 10.1137/140952107 |
[21] | V. E. Tarasov, V. V. Tarasova, Macroeconomic models with long dynamic memory: fractional calculus approach, Appl. Math. Comput., 338 (2018), 466–486. https://doi.org/10.1016/j.amc.2018.06.018 doi: 10.1016/j.amc.2018.06.018 |
[22] | S. Q. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. https://doi.org/10.1006/jmaa.2000.7123 doi: 10.1006/jmaa.2000.7123 |
[23] | T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709 |