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1. Introduction

The theory of fractional calculus has received a great attention from several researchers working in
various disciplines. Namely, it was shown that many real-world phenomena can be better modeled by
using fractional operators, such as viscoelastic phenomena [5], biological phenomena [8], diffusion-
wave phenomena [18], Macroeconomic models [21], and bioelectrode behaviour [16]. Consequently,
the study of fractional differential equations in both theoretical and numerical aspects has attracted the
attention of several mathematicians, and many contributions have been published on this subject (see
e.g. [2, 3, 17, 22] for theoretical aspects, and [15, 20, 23] for numerical aspects).

In this paper, we consider the nonlinear fractional differential inequality

DY u(t) + D u@) > VOu@™, t>a,

(1.1)
(65u) (@) = b, k=0,1,
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where | < @ <2,0 <8< 1,y : [a,00) > R isa C2-function, ¢/(f) > O for all ¢ > a, DY,
7 € {a, B}, 1s the Yy-Caputo fractional derivative of order 7, V > 0 is a measurable function, m > 1, and

6’;, = (ﬁd%)k. Namely, we are interested in obtaining sufficient conditions for which (1.1) admits no
global solution. We mention below some works from the literature, related to nonexistence results for
fractional differential equations and inequalities.

The study of nonexistence of global solutions to fractional differential equations (or time-fractional
evolution equations) was initiated by Kirane and his collaborators (see e.g. [14, 7, 13]). In particular,
Furati and Kirane [7] (see also Kirane and Malik [13]) considered systems of fractional differential

equations of the form

au' (1) + bD2u(t) = fFOW@ + F(@1), >0,
(1.2)
v/ (1) + bDIv(t) = g0l + G(r), 1> 0,

where 0 < a,f8 < 2, CD(T), 7 € {a,p}, is the Caputo fractional derivative of order 7, p,qg > 1, a,b,c,d
are constants, and f, g are positive functions, while F and G are given functions with nonnegative
averages. Namely, they established necessary conditions for the existence of global solutions to (1.2)
inbothcases: 0 <a,B<land 1 < a,B < 2.

In [10], Tatar et al. considered the special case of (1.1) when ¢/(¢) = t,a = 0, and V(¢) = #. Namely,
they investigated the fractional differential inequality

DYu(t) + Dju®) = Plu@)l", t>0,
(1.3)
u®0) = by, k=01

It was shown that the range of values of m ensuring nonexistence, depends only on the lower order
derivative. More precisely, it was shown that, if

bo,by 20, m(l1-pB)-1<y<m-—1,

then (1.3) does not admit nontrivial global solution in AC?([0, 00)).

Motivated by the above mentioned contributions, the nonexistence of global solutions to (1.1) is
investigated in this paper. In the special case y/(f) = t, our results extend and improve those obtained in
[10].

Notice that in the special case /() = Int and a > 0, (1.1) reduces to

HEDeu(r) + 1DRu(r) = V(Olu@)", > a,

(65u)(@ = b, k=01,

where D7, 1 € {a, B8}, is the Hadamard-Caputo fractional derivative of order 7 (see [1]). For nonexis-
tence results for fractional differential inequalities involving Hadamard-type fractional derivatives, see
Tatar and his collaborators [1, 9].

The rest of the paper is organized as follows: In Section 2, we recall some preliminaries on fractional
calculus and provide some lemmas. In particular, we derive an integration by parts rule for fractional
integrals of a function with respect to another function. In Section 3, we state our main results, discuss
some special cases, and provide some examples. Section 4 is devoted to the proofs of our main results.
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2. Some preliminaries on fractional calculus

Let a,T € R be such that a < T. The left-sided and right-sided Riemann-Liouville fractional
integrals of of order o > 0 of a function f € L!([a, T]), are defined respectively by (see [12])

10 = s f (t = 57 f(s)ds

and X ,
U7 )@) = Ta)f, (s =07 f(s)ds,

for almost everywhere ¢ € [a, T], where I is the Gamma function.
We have the following integration by parts rule.

Lemma 2.1 (see [12]). Leto >0, p,q > 1, and%+é <l+4+o0(p=1,q=1,inthe case %+é =1+o0).
If felLP(la,T)) and g € Li([a, T)), then

T T
[ azpwswa= [ roaoma
For a positive natural number 7, let
AC"([a,00)) = {f € C"\([a,00)) : £V € AC(la, 0))},

where AC([a, 00)) is the space of real-valued and absolutely continuous functions in [a, 00). Letn—1 <
k < n. The Caputo fractional derivative of order « of a function f € AC"([a, )), is defined by (see

[12])

Dif) = (1f") 0 = f (t = sy f"(s) ds, 2.1)

for almost everywhere ¢ > a.
The left-sided and right-sided Hadamard fractional integrals of order o > 0 of a function f €
L'([a, T)), are defined respectively by (see [12])

(n—x)

- 1 A Aa 1

L H@) = T f (ln ;) f(s);ds
and | . 1 |
v - S\ L

VR0 = 7o f (05) " ot as

for almost everywhere ¢ € [a, T].
For a positive natural number 7, let

d n—-1
ACy,(la, o)) = {fe C"(la, o)) : (td_t) f € AC([a, 00))}~

Letn—1 < k < n. The Hadamard-Caputo fractional derivative of order « of a function f € ACY ([a, o)),
is defined by (see [1])

n n k-1
HCDme:(J::‘K (t%) f) =9 ( ) f(s) ds,

AIMS Mathematics Volume 7, Issue 5, 9189-9205.
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for almost everywhere ¢ > a.
Let n be a positive natural number. Let ¢ : [a, 0) — R be a C"-function such that

W'(@t)>0, tela,T].

The left-sided and right-sided fractional integrals of of order o > 0 of a function f € L!([a, T]) with
respect to the function ¥, are defined respectively by (see [12])

1 !
(Ig’wf)(t)=r—f(t//(t)—w(S))‘T_ll/"(S)f(S)dS (2.2)

(0) Ja

and | ,
I (@) = Tf W(s) = w(@))" 'Y () f(s)ds, (2.3)

o) t

for almost everywhere ¢ € [a, T]. It can be easily seen that, if f € C([a, T]), then

lim (I7 f)(0) = lim (177 f)(0) = 0.

Remark that
179 =1,
17V =
J7 if yY(t) =1Int, a > 0.
Similarly,
I7 it y(n) =1,
Y=
J7 it () =1Int, a > 0.

The following integration by parts rule holds.

Lemma 2.2. Let o > 0, p,q > l,and%+é§ l+o(p=149=1, inthecase%+$: 1+o0) If

foy™ e LP([y(a),y(T)]) and g o y~" € LU([y(a), y(T)]), then

T T
f U7 )OOV (1) di = f FOUT )W () di,

where ¢~ : [y(a), y(T)] — [a, T] is the inverse function of  : [a, T — [y(a), y(T)].
Proof. Using the change of variable x = ¢(s) in (2.2), we obtain
1 o
I HO == | @O =-0""(foy Hx)dx,
I'@) Juw

that is,
UV )0 = (I f 0 07" W@)). 2.4)

Using the same change of variable in (2.3), we obtain
U7 9)(0) = (I8 0 w™") (W(®). (2.5)
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By (2.4), there holds

T T
f (U7 Hgowy' () di = f (I f 0 w™") (W)g(eyy (1) dt.

Using the change of variable x = y/(f), we obtain
T (1)
f U7V )@ (1) dt = fw (I f 0w ) (g 0y () dx.
a Y(a)

Since f o' € LP([y(a), y(T)]) and g o ¥~ ! € LI([ys(a), y(T)]), by Lemma 2.1, we deduce that
W(T)

T
[ az pwsowodr= [ (0w (g w ) w s
a W

(@)
Using the above change of variable, there holds

T T
[ @z pwgowva= [ o (50 v ) wow v a
Thus, by (2.5), the desired result follows. m]

Let us introduce the functional space (see [6])

1 d n—1
ACy(la, o)) = {f € C"'(la,)) : 62_1f = ( —) feAC(a, oo))}.

W' (t) dt

Let n — 1 < k < n. The y-Caputo fractional derivative of order « of a function f € ACj([a, )), is
defined by (see [4])

1

D0 = (L7403F) 0 = Fo—g

! i) f(s)ds,

' n—k—17
fa(lﬁ(t)—lﬁ(S)) (//(S)(l//’(s)ds

for almost everywhere ¢ > a.
Remark that

Dy if (=1,
Py =
’ { AL if y(t) = Int, a > 0.
For sufficiently large 4, let
o) = (W(T) = (@) W(T) - (), a<t<T. (2.6)
By elementary calculations, we can prove the following lemma.

Lemma 2.3. Let o > 0. Then

oW _ T+ _ -1 B o+
(7)) = T+ 1)(1//(T) Y(@) (W (T) — ()", (2.7)
1 o _ @+ D 3 A 3 o+a-1
o, ")) = T+ A)(lﬁ(T) (@) W(T) — y(2)) ; (2.8)
2 oW _ @+ B ) B o+1-2
6, )(1) = T+ 1)(l//(T) (@) W(T) — y(2)) . (2.9)
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The following estimate follows from Young’s inequality.

Lemma 2.4. Let A, B > 0 and p > 1. For all € > 0, there holds
AB < gA? + C,B7T,

where
p—1

C, = (ep)7T.

3. Main results

Let y : [a, o) — R be a C?-function such that
') >0, t>a.
By a global solution to (1.1), we mean a function u € AC@([a, 00)) satisfying
Dy u(t) + D u() = VO™,
for almost everywhere ¢ > a, and the initial conditions
(65u) (@) = b, k=0,1.

We shall discuss two cases: lim ¢(¢) = oo and lim y/(¢r) = €, Y(a) < €, < co.
1—00 —o00
3.1. The case lim y(t) = oo
1—00
Theorem 3.1. Let lim y(1) = co. Assume that Vi1 € L}, ([a, 00), ' (£) d1).
1—00
1) Ifby >0, a<pB+1, and

T
1i§nmfl//(T)"—2—% f Vi (Ow' (1) dt = 0,

a

then (1.1) admits no global solution.
(i) If by >0, a > B+ 1, and

T
li;ninflp(T)‘l‘mi—l f Vit (O () dt = 0,

a

then (1.1) admits no global solution.

(1) If by + by > 0, @ = B+ 1, and (3.2) holds, then (1.1) admits no global solution.

@iv) If by = by = 0 and
T
lim inf W(T) f Vit (O (£) dt = 0,

a

then (1.1) admits no nontrivial global solution.

3.1

(3.2)

(3.3)
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Consider the special case, where the potential function V satisfies

V)2 Cy(y () - y(a), 1>a, (3.4)

for some positive constant Cy and v < m — 1. In this case, an elementary calculation shows that

T
. C y
f VE W (0 dt < L5 (U(T) = (@) 7. (3.5)
a m—1
Therefore, since tlim U(t) = oo, if
(a-p-1m<y+a-1, (3.6)

then (3.1) holds.

Suppose that @« < g+ 1. Then, if y > 1 — «, then (3.6) is satisfied. Moreover, if y < 1 — @, then
(3.6) is equivalent to m > i:g;; Hence, by the statement (i) of Theorem 3.1, we deduce that, if b; > 0,
a<pf+1,and

1 —a-—
l-a<y<m-1 or y<1—a,m>max{1,#},
l-a+p

then (1.1) admits no global solution.

On the other hand, by (3.5), we deduce that, if -8 < vy, then (3.2) is satisfied. Therefore, by the
statement (ii) of Theorem 3.1, we deduce that, if @« > 8+ 1, by > 0, and -8 < y < m — 1, then
(1.1) admits no global solution. By the statement (iii) of Theorem 3.1, we deduce that, if @ = 8 + 1,
by + by >0, and - <y <m — 1, then (1.1) admits no global solution.

Next, by (3.6), if m(1-8)—1 <y < m—1, then (3.3) holds. Hence, by the statement (iv) of Theorem
3.1, we deduce that, if by = by = 0and m(1 =) — 1 <y < m—1, then (1.1) admits no nontrivial global
solution

Summarizing the above results, we obtain the following corollary.

Corollary 3.1. Let lim y(t) = co and V be the potential function satisfying (3.4).
—0o0

1) Ifby >0, a<B+1, and
l-a-vy
l-a<y<m-1 or y<l—-a m>maxql, ——>,

then (1.1) admits no global solution.
() Ifbg >0, a>B+1,0rby+by >0, a =6+ 1, and

—-B<y<m-1,

then (1.1) admits no global solution.
(i) If by = by = 0 and
ml-p)-1l<y<m-1,

then (1.1) admits no nontrivial global solution.

Remark 3.1. Let lim ¥(t) = oo and V be the potential function satisfying (3.4).
t—00

AIMS Mathematics Volume 7, Issue 5, 9189-9205.
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(a) From the statement (1) of Corollary 3.1, if by > 0 and
a<fB+1,y=0 or —-p<l-a<y<0 or —-p<y<l-gq,

then, for all m > 1, (1.1) admits no global solution.
(b) From the statement (ii) of Corollary 3.1, ifa >+ 1, by >0, ora =B+ 1, by + b; > 0, and

-B<y <0,

then, for all m > 1, (1.1) admits no global solution.
(c) From the statement (iii) of Corollary 3.1, if by = by = 0 and

v+1
1-p5

-<y<0, 1l<m<

then (1.1) admits no nontrivial global solution.

Remark 3.2. When a = 0, y(t) = t, and the function V satisfies (3.4), (1.1) reduces to (1.3). Then
Corollary 3.1 holds for (1.3). As we mentioned in Section 1, in [10], it was shown that, if

bo,bIZO, m(l—,B)—1<)/<m—1,

then (1.3) does not admit nontrivial global solution in AC?([0, c)). Observe that Corollary 3.1 im-
proves the obtained result in [10] (see for instance Example 3.1).

We present below some examples to illustrate our results in the case lim y/(#) = co.
t—o00

Example 3.1. Consider the fractional differential inequality

Diut) + Diult) = (R, >0,
(3.7)

(u(0),u’(0)) = (-1,2)
where m > 1. Problem (3.7) is a special case of problem (1.1) with

5

1 3
= B=3. V=, y=-3. h=-1 b=2

yiy=t, a=0, a= > 2

Problem (3.7) is also a special case of problem (1.3). Notice that, since by < 0, the obtained result
in [10] cannot be applied in this case (see Remark 3.2). On the other hand, since by = 2 > 0 and
—B=-3 < -3 =y <-3=1-q by Remark 3.1 (a), we deduce that for all m > 1, (3.7) admits no
global solution.

Example 3.2. Consider the fractional differential inequality

3 1 =1
1Dz u(t) + 1Du(@) = (In L) * @)™, > a,
(3.8)

(u(a), an’(a)) = (=1,2),

AIMS Mathematics Volume 7, Issue 5, 9189-9205.
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where a > 0 and m > 1. Problem (3.8) is a special case of problem (1.1) with

a1
W) =Inr, a= % B = % v =(m)", b=l =2
Notice that the potential function V satisfies (3.4) with
Cy=1, vy= —1.
4

Sinceby+b1=1>0,a=6+1,and B = —% < —4—11 =7y <0, then, by Remark 3.1(b), we deduce that
for all m > 1, (3.8) admits no global solution.

Example 3.3. Consider the fractional differential inequality
3 1 =1
HDiu(t) + #Diu(t) = (In L) o, t> a,
(3.9
(u(a), u’'(a)) = (0,0),

where a > 0 and m > 1. Then, problem (3.9) is a special case of problem (1.1) with

3 1 13
WB)=Int, a=2, B=- V(t):(ln—)S, bo = by = 0.
2 2 a
Observe that the potential function V satisfies (3.4) with
1
CV = 1, Y= —g.

Since B = —1 < —3 =y <0, by Remark 3.1(c), we deduce that, if

1< <4
m 50
3

then (3.9) admits no nontrivial global solution.

3.2. The case limy(t) = £, < o0
1—00
Assume that
lim y(¢) = ¢,
t—00
where y(a) < £, < co. Let

am
m—1
Theorem 3.2. Let Vict € L'([a, c0), /() dt). If by > 0 and

L‘p = f‘ﬁ - lﬁ(a), /lm,(t = Cm = Zﬁ(m — 1)”’1%

by > Cull(pa+3 = (A + DFTLL

m

-B m—1 - %
Lw N Lw
I'(1 =B+ Ana) I'(l —a+ Ana)

then (1.1) admits no global solution.

X

f ) Vit (O (£) dt, (3.10)

AIMS Mathematics Volume 7, Issue 5, 9189-9205.
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We illustrate the above result by the following example.

Example 3.4. Consider the fractional differential inequality (1.1) with
a=0, () =2arctant, V =1.

In this case, we have Ly, = 1 and

f ) Ve (O () dt = 1.

a

Let by > 0 and

—m

bi > Cul (Aq +3 = T (Ao + D [T(1 = B+ A 0)™T +T(1 = + A 0)7 |
Then (3.10) is satisfied. Thus, by Theorem 3.2, we deduce that (1.1) admits no global solution.

4. Proofs of the main results

In the proofs of our main results, we make use of the test function method introduced by Mitidieri
and Pohozaev [19].

Proof of Theorem 3.1. Suppose that u € AC?p([a, ©0)) is a global solution to (1.1). For sufficiently large
T, we introduce the test function

() = W(T) — (@) " (W(T) —y@)*", a<t<T,

am

where 4,,, = 5.

obtain

Multiplying the inequality in (1.1) by ¢(f)¥’(¢), and integrating over (a,T), we

T T T
f V(Olu)" ety (1) dt < f DV u(t)p(tyy (1) dt + f DAY u(t)p(tyy (1) dt. (4.1)

On the other hand, by Lemma 2.2, we have

T T
f Dy utyp(tyy/ (1) dt f (2 u) (o () dt

. T
Sy )t) (177 @) (0 (1) dt

a

T
f @) (0 (17 ¢) (1) .
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Integrating by parts and using the initial conditions, we obtain
T
f Dy un)p(yy (1) dt
= [@h (0) 0] _ f @) (1" ) (1) dt
T
by (I; " ¢) (@) —f ' (05}, (17 ¢) (1) d

1; ‘””so) () - [u(t)&l ( ) o]+ f u(t)éz( I ") () (1) dt

T
f (), (17 )(t)l//'(l‘)dl‘.

Notice that by (2.7) and (2.8), we have

(0@ = R~ w@,
() @) =~ ) vy
and
8, (I ™) (T) = 0
Thus, there holds

T
f D ut)p(t)y (t) dt
T(Apg + 1)

’ I'Ape+1) - ’ o
TGt o) =)™ - o P M)bo(z//(T) ¥(a)) 4.2)

T
f w05y, (17 @) /(1) di.

Similarly, by Lemma 2.2, we have

T T
f D unp(y (1 dr f (1P s3u) oy (1) dt

T
f @m0 (I, o) (' (0 dt

f u(t)( LP0) (1) dt.

a

AIMS Mathematics Volume 7, Issue 5, 9189-9205.
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Integrating by parts and using the initial conditions, we obtain

T
f DB u(typ(y (1) dt

T
= [uo (1;7"¢) (t)]; - f u(e) (1,77 go)' (t) dt

a

T
= —by (I; " ¢) (a) - f u(t)s), (I o) (W' (0) dt.

On the other hand, by (2.7), we have
l—‘(/lm,a + 1)

_ 1-
faop WD @)

(177¢) (@ =

Thus, we deduce that

T
f DErudrpy’ (1) dt

4.3)
T + 1) s (7 5 ,
= T@-p+ Am’a)bo(wT)—w(a))l A f w(oy, (177" ¢) (' (1) dt.
Next, combining (4.1), (4.2), and (4.3), we obtain
' w T( Ao + 1) o
fa VOO0 (@) di + £ b UAT) = (@)
(Ao + 1) e, e+ 1) _ -
T E a3 A WD) — @)+ fE b)) — (@) (4.4)
T T
< f w163 (57"¢) 0] ' (@ dr + f @15} (7¢) 0| w (1) dt.
Now, using Lemma 2.4 with p =mand 0 < € < %, we obtain
T
f ()16 (17 0) 0] 9/ (1) e
“ - - . 1 4.5)
<& f VOl (1) dt + Cs f 5 (%) 0] v (e (0w (1) di
and ,
f Ju(o)| |5; (P 0) 0|w (@ dt
“ - - N (4.6)
<e f VO g0 (0 di + C. f 6, (1) 0 VT e w0 dr.
Thus, it follows from (4.4), (4.5), and (4.6) that
1-2 TVt D"t (1) dt T(na + 1) bi(y(T 2a
(1=20) [ VOROP oW @ds-+ 52T = )
T + 1) T + 1) (4.7)

bo(W(T) — y(a))' ™ + bo(W(T) — y(a))'

+
I'2—-a+ Ane) -8+ Ana)
< Co(h + 1),
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where
’ 2—-a el =L =L ’

I = f 5 (L) 0™ v e o (1) dr
and ,

L= f o, (1774 6) | Ve (w0 dr.
Taking € = % in the above inequality, there holds

(Ao + 1) 2
- by(y(T) - ¢
e e LRI
(Ao + 1) (Ao +1) _
bo((T) = (@) *5)

1-a
* F(2 —-a+ ﬁm,a)bO(w(T) - l//(a)) ¥ F(2 _ﬁ + /Ln,a)

< C%(Il + D).

Let us estimate the terms /; and ;. By the definitions of the function ¢ and the constant 4, ,, and using
(2.9), we get

m

—a =R , I'(Ape +1 =T ~ ,
5 (57740) o] e om0 = | e s i - v wo,
which yields
[ Tua+ D ] (T
I = [1‘(1 . /lm,a)] W(T) — Y(a) fa Vit () dt. (4.9)

Similarly, using (2.8), we get

o (1) Uﬂﬁ o1 (O (1)

[ T@pe+ 1 ] o B
= [F(l o /lm,a)] W(T) = (@) " (Y(T) = y(a)) Y (1),
which yields
bs |t D ) gy # f v (4.10)
22T =B+ Ao y ' '
Combining (4.9) with (4.10), there holds
L+ 1
B RGPS VI P R (O VRS VI s
Afaceras| @-w@ | g W - @) @1D

T
X f V%w’(t) dt.
Since @ > B and Y(T) — oo as T — oo, we deduce that there exists some constant C > 0 such that for

sufficiently large 7',
T
L+, <CW(T)—-y(a) G f Vm%'lw’(t) dt. (4.12)

a
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Combining (4.8) with (4.12), we get

F(T) - = F(/lm’a + 1) b T — 2 + r(/lm,af + 1) b T — l-a
SR Ve P I L A A S vo sy s L AR A
(o + 1)

bo((T) — (@)™ (4.13)

+
F(z _ﬁ + Am,a)

T
< e - wan [ v a

a

Now, consider the case
by >0, a<pB+1.

In this case, there exists some constant C > 0 such that for sufficiently large T,
F(T) 2 CWAT) — y(a))* by
Thus, by (4.13), there holds
ClC pm T -1
by < é W(T) — Y(a))* > T f Vg (1) dt.

a

Passing to the infimum limit as 7 — oo in the above inequality, and using (3.1), we obtain a contradic-
tion with b; > 0. This proves part (i) of Theorem 3.1.
Next, suppose that
by>0, a>p+1.

In this case, there exists some constant C > 0 such that for sufficiently large 7',
F(T) 2 CW(T) ~ y(@)' by
Thus, by (4.13), there holds
C.C B

T
by < é(w(T)—el'(a))_ '"‘f Vg (1) dt.

Passing to the infimum limit as 7 — oo in the above inequality, and using (3.2), we obtain a contradic-
tion with by > 0. This proves part (ii) of Theorem 3.1.
Now, suppose that
bo+b >0, a=p+1.

In this case,

[(Ape +1)
F(z _ﬁ + /1m,<x)

F(Apo +1)

F(T) - (2 —a+ /lm,(t)

W(T) ~ y(@)' by

W(T) = (@) P (bo + by) + T

Hence, there exists some constant C > 0 such that for sufficiently large 7,
F(T) > COy(T) — y(a))' P (bo + by).
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Thus, by (4.13), there holds

bo-l-b] <

C.C e (T
S - [ vEoa

Passing to the infimum limit as 7 — oo in the above inequality, and using (3.2), we obtain a contradic-
tion with by + by > 0. This proves part (iii) of Theorem 3.1.
Finally, consider the case

Taking 0 < € < % in (4.7), and using (4.12), we get

Cgc —pm T =1
D) ~ W) f o

T
f VOlu@®)|" ey’ (1) dt < -

Passing to the infimum limit as 7 — oo in the above inequality, and using (3.3), we obtain # = 0. This
proves part (iv) of Theorem 3.1. m|

Proof of Theorem 3.2. Suppose that u € AC@([a, 00)) is a global solution to (1.1). Since by > 0, by
(4.8) and (4.11), we deduce that

Ao +1) -
C%F(3 —a+ /lm,a)bl(w(T) - ¢(a))
T(Ape+1) | o Ty + 1) 7 ) -
= ([m -aum)] W) = yla)™T + | s ﬂmﬂ)] W(T) - (@)

T
X f Vi (1) dt.
Passing to the limit as 7 — oo in the above inequality, we obtain
I +1)
CiIG—a+ o)

< o+ D ™ L 4 [(o + 1) %L_% fm Vg (1) dt
“TA - a+ A0) v I(l-B+ ) v . v ’

biL;

that is (notice that C | = C,)

b < Cul(Ap +3 = AT (g + DFTLY?

T A L N
T =B+ o) +(r<1—a+ﬂm,a>) f e d,

which contradicts with (3.10). The proof of Theorem 3.2 is completed. O

X
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9204

5. Conclusions

Using the test function method, we investigated the nonexistence of global solutions to the fractional
differential inequality (1.1). We discussed two cases: tlgg Y(t) = oo and tlgg Y(t) = by, Yla) < £, < oo.
In the first case, according to the signs of the initial values b;, i = 0, 1, and the fractional orders a and
B, sufficient conditions for the nonexistence of global solutions are obtained (see Theorem 3.1). In the
second case, we proved that, if by > 0 and b, 1s sufficiently large, then (1.1) admits no global solution

(see Theorem 3.2).
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