In a recent paper [
Citation: Junjie Quan. Explicit formulas of alternating multiple zeta star values $ \zeta^\star({\bar 1}, \{1\}_{m-1}, {\bar 1}) $ and $ \zeta^\star(2, \{1\}_{m-1}, {\bar 1}) $[J]. AIMS Mathematics, 2022, 7(1): 288-293. doi: 10.3934/math.2022019
In a recent paper [
[1] | J. M. Borwein, D. M. Bradley, D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: A compendium of results for arbitrary k, Electron. J. Combin., 4 (1997), 1–21. |
[2] | M. E. Hoffman, Multiple harmonic series, Pac. J. Math., 152 (1992), 275–290. doi: 10.2140/pjm.1992.152.275. |
[3] | C. Xu, Multiple zeta values and Euler sums, J. Number Theory, 177 (2017), 443–478. doi: 10.1016/j.jnt.2017.01.018. |
[4] | C. Xu, Identities for the multiple zeta (star) values, Results Math., 73 (2018), 1–22. doi: 10.1007/S00025-018-0761-5. doi: 10.1007/S00025-018-0761-5 |
[5] | C. Xu, Evaluations of Euler type sums of weight $\leq$ 5, B. Malays. Math. Sci. So., 43 (2020), 847–877. doi: 10.1007/S40840-018-00715-3. doi: 10.1007/S40840-018-00715-3 |
[6] | D. Zagier, Values of zeta functions and their applications, In: First european congress of mathematics paris, Volume II, Basel: Birkhauser, 1994. doi: 10.1007/978-3-0348-9112-7_23. |
[7] | J. Q. Zhao, Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and its Applications, Vol. 12, New Jersey: World Scientific, 2016. doi: 10.1142/9634. |