Research article Special Issues

Explicit formulas of alternating multiple zeta star values $ \zeta^\star({\bar 1}, \{1\}_{m-1}, {\bar 1}) $ and $ \zeta^\star(2, \{1\}_{m-1}, {\bar 1}) $

  • Received: 13 July 2021 Accepted: 06 October 2021 Published: 12 October 2021
  • MSC : 11A07, 11M32

  • In a recent paper [4], Xu studied some alternating multiple zeta values. In particular, he gave two recurrence formulas of alternating multiple zeta values $ \zeta^\star({\bar 1}, \{1\}_{m-1}, {\bar 1}) $ and $ \zeta^\star(2, \{1\}_{m-1}, {\bar 1}) $. In this paper, we will give the closed forms representations of $ \zeta^\star({\bar 1}, \{1\}_{m-1}, {\bar 1}) $ and $ \zeta^\star(2, \{1\}_{m-1}, {\bar 1}) $ in terms of single zeta values and polylogarithms.

    Citation: Junjie Quan. Explicit formulas of alternating multiple zeta star values $ \zeta^\star({\bar 1}, \{1\}_{m-1}, {\bar 1}) $ and $ \zeta^\star(2, \{1\}_{m-1}, {\bar 1}) $[J]. AIMS Mathematics, 2022, 7(1): 288-293. doi: 10.3934/math.2022019

    Related Papers:

  • In a recent paper [4], Xu studied some alternating multiple zeta values. In particular, he gave two recurrence formulas of alternating multiple zeta values $ \zeta^\star({\bar 1}, \{1\}_{m-1}, {\bar 1}) $ and $ \zeta^\star(2, \{1\}_{m-1}, {\bar 1}) $. In this paper, we will give the closed forms representations of $ \zeta^\star({\bar 1}, \{1\}_{m-1}, {\bar 1}) $ and $ \zeta^\star(2, \{1\}_{m-1}, {\bar 1}) $ in terms of single zeta values and polylogarithms.



    加载中


    [1] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: A compendium of results for arbitrary k, Electron. J. Combin., 4 (1997), 1–21.
    [2] M. E. Hoffman, Multiple harmonic series, Pac. J. Math., 152 (1992), 275–290. doi: 10.2140/pjm.1992.152.275.
    [3] C. Xu, Multiple zeta values and Euler sums, J. Number Theory, 177 (2017), 443–478. doi: 10.1016/j.jnt.2017.01.018.
    [4] C. Xu, Identities for the multiple zeta (star) values, Results Math., 73 (2018), 1–22. doi: 10.1007/S00025-018-0761-5. doi: 10.1007/S00025-018-0761-5
    [5] C. Xu, Evaluations of Euler type sums of weight $\leq$ 5, B. Malays. Math. Sci. So., 43 (2020), 847–877. doi: 10.1007/S40840-018-00715-3. doi: 10.1007/S40840-018-00715-3
    [6] D. Zagier, Values of zeta functions and their applications, In: First european congress of mathematics paris, Volume II, Basel: Birkhauser, 1994. doi: 10.1007/978-3-0348-9112-7_23.
    [7] J. Q. Zhao, Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and its Applications, Vol. 12, New Jersey: World Scientific, 2016. doi: 10.1142/9634.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2381) PDF downloads(199) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog