In this research, we investigate a higher regularity result in periodic directional homogenization for divergence-form elliptic systems with discontinuous coefficients in a bounded nonsmooth domain. The coefficients are assumed to have small bounded mean oscillation (BMO) seminorms and the domain has the $ \delta $-Reifenberg property. Under these assumptions we derive global uniform Calderón-Zygmund estimates by proving that the gradient of the weak solution is as integrable as the given nonhomogeneous term.
Citation: Yunsoo Jang. Global gradient estimates in directional homogenization[J]. AIMS Mathematics, 2023, 8(11): 27643-27658. doi: 10.3934/math.20231414
In this research, we investigate a higher regularity result in periodic directional homogenization for divergence-form elliptic systems with discontinuous coefficients in a bounded nonsmooth domain. The coefficients are assumed to have small bounded mean oscillation (BMO) seminorms and the domain has the $ \delta $-Reifenberg property. Under these assumptions we derive global uniform Calderón-Zygmund estimates by proving that the gradient of the weak solution is as integrable as the given nonhomogeneous term.
[1] | M. Avellaneda, F. Lin, Compactness methods in the theory of homogenization, Commun. Pure Appl. Math., 40 (1987), 803–847. https://doi.org/10.1002/cpa.3160400607 doi: 10.1002/cpa.3160400607 |
[2] | A. Bensoussan, J. L. Lions, G. C. Papanicolaou, Asymptotic analysis for periodic structures, AMS Chelsea Publishing, 2011. |
[3] | S. -S. Byun, Y. Jang, Global $W^{1, p}$ estimates for elliptic systems in homogenization problems in Reifenberg domains, Ann. Mat. Pura Appl., 195 (2016), 2061–2075. https://doi.org/10.1007/s10231-016-0553-z doi: 10.1007/s10231-016-0553-z |
[4] | S. -S. Byun. Y. Jang, $W^{1, p}$ estimates in homogenization of elliptic systems with measurable coefficients, Math. Nachr., 290 (2017), 1249–1259. https://doi.org/10.1002/mana.201600055 doi: 10.1002/mana.201600055 |
[5] | S. -S. Byun, Y. Jang, Homogenization of the conormal derivative problem for elliptic systems in Reifenberg domains, Commun. Contemp. Math., 20 (2018), 1650062. https://doi.org/10.1142/S0219199716500620 doi: 10.1142/S0219199716500620 |
[6] | S. -S. Byun, S. Ryu, L. Wang, Gradient estimates for elliptic systems with measurable coefficients in nonsmooth domains, Manuscripta Math., 133 (2010), 225–245. https://doi.org/10.1007/s00229-010-0373-1 doi: 10.1007/s00229-010-0373-1 |
[7] | S. -S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Commun. Pure Appl. Math., 57 (2004), 1283–1310. https://doi.org/10.1016/j.jfa.2007.04.021 https://doi.org/10.1002/cpa.20037 |
[8] | S. -S. Byun, L. Wang, Gradient estimates for elliptic systems in non-smooth domains, Math. Ann., 341 (2008), 629–650. https://doi.org/10.1007/s00208-008-0207-6 doi: 10.1007/s00208-008-0207-6 |
[9] | S. -S. Byun, L. Wang, Elliptic equations with measurable coefficients in Reifenberg domains, Adv. Math., 225 (2010), 2648–2673. https://doi.org/10.1016/j.aim.2010.05.014 doi: 10.1016/j.aim.2010.05.014 |
[10] | L. A. Caffarelli, X. Cabré, Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, RI, 43 (1995). |
[11] | L. A. Caffarelli, I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., 51 (1998), 1–21. |
[12] | M. Chipot, D. Kinderlehrer, G. Vergara-Caffarelli, Smoothness of linear laminates, Arch. Rational Mech. Anal., 96 (1986), 81–96. https://doi.org/10.1007/BF00251414 doi: 10.1007/BF00251414 |
[13] | L. Diening, P. Kaplický, $L^q$ theory for a generalized Stokes system, Manuscripta Math., 141 (2013), 333–361. https://doi.org/10.1007/s00229-012-0574-x doi: 10.1007/s00229-012-0574-x |
[14] | H. Dong, D. Kim, Parabolic and elliptic systems in divergence form with variably partially BMO coefficients, SIAM J. Math. Anal., 43 (2011), 1075–1098. https://doi.org/10.1137/100794614 doi: 10.1137/100794614 |
[15] | R. Dong, D. Li, Gradient estimates for directional homogenization of elliptic systems, J. Math. Anal. Appl., 503 (2021), 125312. https://doi.org/10.1016/j.jmaa.2021.125312 doi: 10.1016/j.jmaa.2021.125312 |
[16] | R. Dong, D. Li, L. Wang, Regularity of elliptic systems in divergence form with directional homogenization, Discrete Contin. Dyn. Syst., 38 (2018), 75–90. https://doi.org/10.3934/dcds.2018004 doi: 10.3934/dcds.2018004 |
[17] | J. Geng, Z. Shen, L. Song, Uniform $W^{1, p}$ estimates for systems of linear elasticity in a periodic medium, J. Funct. Anal., 262 (2012), 1742–1758. https://doi.org/10.1016/j.jfa.2011.11.023 doi: 10.1016/j.jfa.2011.11.023 |
[18] | Y. Jang, Uniform estimates with data from generalized Lebesgue spaces in periodic structures, Bound. Value Probl., 2021. https://doi.org/10.1186/s13661-021-01504-x |
[19] | Y. Jang, Y. Kim, Gradient estimates for solutions of elliptic systems with measurable coefficients from composite material, Math. Method. Appl. Sci., 41 (2018), 7007–7031. https://doi.org/10.1002/mma.5213 doi: 10.1002/mma.5213 |
[20] | C. E. Kenig, F. Lin, Z. Shen, Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901–937. https://doi.org/10.1090/S0894-0347-2013-00769-9 doi: 10.1090/S0894-0347-2013-00769-9 |
[21] | T. Kilpel$\ddot{\text{a}}$inen, P. Koskela, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 23 (1994), 899–909. |
[22] | N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Commun. Part. Diff. Eq., 32 (2007), 453–475. https://doi.org/10.1080/03605300600781626 doi: 10.1080/03605300600781626 |
[23] | Y. Li, L. Nirenberg, Estimates for elliptic systems from composite material, Commun. Pure Appl. Math., 56 (2003), 892–925. https://doi.org/10.1002/cpa.10079 doi: 10.1002/cpa.10079 |
[24] | V. Mácha, J. Tichý, Higher integrability of solutions to generalized Stokes system under perfect slip boundary conditions, J. Math. Fluid Mech., 16 (2014), 823–845. https://doi.org/10.1007/s00021-014-0190-5 doi: 10.1007/s00021-014-0190-5 |
[25] | V. G. Maz'ya, Sobolev spaces, With Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 342 (2nd revised and augmented ed.), Berlin-Heidelberg-New York, Springer Verlag, 2011. |
[26] | E. Reifenberg, Solutions of the plateau problem for m-dimensional surfaces of varying topological type, Acta Math., 1960, 1–92. |
[27] | Z. Shen, $W^{1, p}$ estimates for elliptic homogenization problems in nonsmooth domains, Indiana Univ. Math. J., 57 (2008), 2283–2298. https://doi.org/10.1512/iumj.2008.57.3344 doi: 10.1512/iumj.2008.57.3344 |
[28] | T. Toro, Doubling and flatness: Geometry of measures, Not. Amer. Math. Soc., 1997, 1087–1094. |
[29] | L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.), 19 (2003), 381–396. |