Research article

Radial distributions of Julia sets of difference operators of entire solutions of complex differential equations

  • Received: 28 October 2021 Revised: 13 December 2021 Accepted: 16 December 2021 Published: 04 January 2022
  • MSC : 30D30, 30D35

  • In this paper, we mainly investigate the radial distribution of Julia sets of difference operators of entire solutions of complex differential equation $ F(z)f^{n}(z)+P(z, f) = 0 $, where $ F(z) $ is a transcendental entire function and $ P(z, f) $ is a differential polynomial in $ f $ and its derivatives. We obtain that the set of common limiting directions of Julia sets of non-trivial entire solutions, their shifts have a definite range of measure. Moreover, an estimate of lower bound of measure of the set of limiting directions of Jackson difference operators of non-trivial entire solutions is given.

    Citation: Jingjing Li, Zhigang Huang. Radial distributions of Julia sets of difference operators of entire solutions of complex differential equations[J]. AIMS Mathematics, 2022, 7(4): 5133-5145. doi: 10.3934/math.2022286

    Related Papers:

  • In this paper, we mainly investigate the radial distribution of Julia sets of difference operators of entire solutions of complex differential equation $ F(z)f^{n}(z)+P(z, f) = 0 $, where $ F(z) $ is a transcendental entire function and $ P(z, f) $ is a differential polynomial in $ f $ and its derivatives. We obtain that the set of common limiting directions of Julia sets of non-trivial entire solutions, their shifts have a definite range of measure. Moreover, an estimate of lower bound of measure of the set of limiting directions of Jackson difference operators of non-trivial entire solutions is given.



    加载中


    [1] A. Baernstein, Proof of Edreis spread conjecture, Proc. Lond. Math. Soc., 26 (1973), 418–434. http://dx.doi.org/10.1112/plms/s3-26.3.418 doi: 10.1112/plms/s3-26.3.418
    [2] I. Baker, Sets of non-normality in iteration theory, J. Lond. Math. Soc., 40 (1965), 499–502. http://dx.doi.org/10.1112/jlms/s1-40.1.499 doi: 10.1112/jlms/s1-40.1.499
    [3] I. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn.-M., 1 (1975), 277–283.
    [4] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29 (1993), 151–188. http://dx.doi.org/10.1090/S0273-0979-1993-00432-4 doi: 10.1090/S0273-0979-1993-00432-4
    [5] Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105–129. http://dx.doi.org/10.1007/s11139-007-9101-1 doi: 10.1007/s11139-007-9101-1
    [6] A. Goldberg, I. Ostrovskii, Value distribution of meromorphic functions, Providence: American Mathematical Society, 2008.
    [7] R. Halburd, R. Korhonen, Difference analogue of the lemma on the logarithmic drivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487. http://dx.doi.org/10.1016/j.jmaa.2005.04.010 doi: 10.1016/j.jmaa.2005.04.010
    [8] W. Hayman, Meromorphic functions, Oxford: Clarendon Press, 1964.
    [9] Z. Huang, J. Wang, On the radial distribution of Julia sets of entire solutions of $f^{(n)}+A(z)f = 0$, J. Math. Anal. Appl., 387 (2012), 1106–1113. http://dx.doi.org/10.1016/j.jmaa.2011.10.016 doi: 10.1016/j.jmaa.2011.10.016
    [10] Z. Huang, J. Wang, On limit directions of Julia sets of entire solutions of linear differential equations, J. Math. Anal. Appl., 409 (2014), 478–484. http://dx.doi.org/10.1016/j.jmaa.2013.07.026 doi: 10.1016/j.jmaa.2013.07.026
    [11] I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993. http://dx.doi.org/10.1515/9783110863147
    [12] A. Mokhonko, An estimate of the modules of the logarithmic derivative of a function which is meromorphic in an angular region, and its application, Ukr. Math. J., 41 (1989), 722–725. http://dx.doi.org/10.1007/BF01060580 doi: 10.1007/BF01060580
    [13] J. Qiao. Stable domains in the iteration of entire functions (Chinese), Acta. Math. Sin., 37 (1994), 702–708.
    [14] J. Qiao, On limiting directions of Julia set, Ann. Acad. Sci. Fenn.-M., 26 (2001), 391–399.
    [15] L. Qiu, S. Wu, Radial distributions of Julia sets of meromorphic functions, J. Aust. Math. Soc., 81 (2006), 363–368. http://dx.doi.org/10.1017/S1446788700014361 doi: 10.1017/S1446788700014361
    [16] J. Wang, X. Yao, C. Zhang, Julia limit directions of entire solutions of complex differential equations, Acta. Math. Sci., 41 (2021), 1275–1286. http://dx.doi.org/10.1007/s10473-021-0415-7 doi: 10.1007/s10473-021-0415-7
    [17] S. Wang, On radial distributions of Julia sets of meromorphic functions, Taiwan. Math. J., 11 (2007), 1301–1313.
    [18] S. Wu, On the location of zeros of solutions of $f''(z)+A(z)f = 0$ where $A(z)$ is entire, Math. Scand., 74 (1994), 293–312.
    [19] G. Zhang, J. Ding, L. Yang, Radial distribution of Julia sets of derivatives of solutions to complex linear differential equations, Scientia Sinica Mathematica, 44 (2014), 693–700. http://dx.doi.org/10.1360/012014-32 doi: 10.1360/012014-32
    [20] J. H. Zheng, S. Wang, Z. G. Huang, Some properties of Fatou and Julia sets of transcendental meromorphic functions, Bull. Aust. Math. Soc., 66 (2002), 1–8. http://dx.doi.org/10.1017/S000497270002061X doi: 10.1017/S000497270002061X
    [21] J. Zheng, Value distribution of meromorphic functions, Berlin: Springer, 2010. http://dx.doi.org/10.1007/978-3-642-12909-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1521) PDF downloads(60) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog