Research article

Dynamical behavior and control of a new hyperchaotic Hamiltonian system

  • Received: 13 September 2021 Revised: 15 December 2021 Accepted: 23 December 2021 Published: 31 December 2021
  • MSC : 34K18, 34H10, 65P20

  • In this paper, we firstly formulate a new hyperchaotic Hamiltonian system and demonstrate the existence of multi-equilibrium points in the system. The characteristics of equilibrium points, Lyapunov exponents and Poincaré sections are studied. Secondly, we investigate the complex dynamical behaviors of the system under holonomic constraint and nonholonomic constraint, respectively. The results show that the hyperchaotic system can generated by introducing constraint. Additionally, the hyperchaos control of the system is achieved by applying linear feedback control. The numerical simulations are carried out in order to analyze the complex phenomena of the systems.

    Citation: Junhong Li, Ning Cui. Dynamical behavior and control of a new hyperchaotic Hamiltonian system[J]. AIMS Mathematics, 2022, 7(4): 5117-5132. doi: 10.3934/math.2022285

    Related Papers:

  • In this paper, we firstly formulate a new hyperchaotic Hamiltonian system and demonstrate the existence of multi-equilibrium points in the system. The characteristics of equilibrium points, Lyapunov exponents and Poincaré sections are studied. Secondly, we investigate the complex dynamical behaviors of the system under holonomic constraint and nonholonomic constraint, respectively. The results show that the hyperchaotic system can generated by introducing constraint. Additionally, the hyperchaos control of the system is achieved by applying linear feedback control. The numerical simulations are carried out in order to analyze the complex phenomena of the systems.



    加载中


    [1] G. Franzese, H. E. Stanley, Liquid-liquid critical point in a Hamiltonian model for water: Analytic solution, J. Phys.: Condens. Matter, 14 (2002), 2201–2209. https://doi.org/10.1088/0953-8984/14/9/309 doi: 10.1088/0953-8984/14/9/309
    [2] T. Igata, T. Koike, H. Ishihara, Constants of motion for constrained Hamiltonian systems: A particle around a charged rotating black hole, Phys. Rev. D, 83 (2010), 065027. https://doi.org/10.1103/PhysRevD.83.065027 doi: 10.1103/PhysRevD.83.065027
    [3] D. G. C. Mckeon, Hamiltonian formulation of the Freedman-Townsend model of massive vector mesons, Can. J. Phys., 69 (2011), 569–572. https://doi.org/10.1139/p91-094 doi: 10.1139/p91-094
    [4] B. B. Xu, D. Y. Chen, H. Zhang, F. F. Wang, X. G. Zhang, Y. H. Wu, Hamiltonian model and dynamic analyses for a hydro-turbine governing system with fractional item and time-lag, Commun. Nonlinear Sci., 47 (2017), 35–47. https://doi.org/10.1016/j.cnsns.2016.11.006 doi: 10.1016/j.cnsns.2016.11.006
    [5] J. L. Bona, X. Carvajal, M. Panthee, M. Scialom, Higher-Order Hamiltonian model for unidirectional water waves, J. Nonlinear Sci., 28 (2018), 543–577. https://doi.org/10.1007/s00332-017-9417-y doi: 10.1007/s00332-017-9417-y
    [6] G. Contopoulos, Order and chaos in dynamical astronomy, Berlin Heidelberg: Springer, 2004.
    [7] T. Bountis, H. Skokos, Complex Hamiltonian dynamics, Berlin Heidelberg: Springer, 2012.
    [8] H. Y. Jia, W. X. Shi, L. Wang, G. Y. Qi, Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors, Chaos Soliton. Fract., 133 (2020), 109635. https://doi.org/10.1016/j.chaos.2020.109635 doi: 10.1016/j.chaos.2020.109635
    [9] J. C. Sprott, Some simple chaotic flows, Phys. Rev. E, 50 (1994), R647–R650. https://doi.org/10.1103/PhysRevE.50.R647 doi: 10.1103/PhysRevE.50.R647
    [10] D. Jánosi, T. Tél, Chaos in Hamiltonian systems subjected to parameter drift, Chaos, 29 (2019), 121105. https://doi.org/10.1063/1.5139717 doi: 10.1063/1.5139717
    [11] F. Ginelli, K. A. Takeuchi, H. Chaté, A. Politi, A. Torcini, Chaos in the Hamiltonian mean-field model. Phys. Rev. E, 84 (2011), 066211. https://doi.org/10.1103/PhysRevE.84.066211 doi: 10.1103/PhysRevE.84.066211
    [12] E. Z. Dong, M. F. Yuan, S. Z. Du, Z. Q. Chen, A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator, Appl. Math. Model., 73 (2019), 40–71. https://doi.org/10.1016/j.apm.2019.03.037 doi: 10.1016/j.apm.2019.03.037
    [13] D. Martínez-Del-Río, D. del-Castillo-Negrete, A. Olvera, R. Calleja, Self-consistent chaotic transport in a high-dimensional mean-field Hamiltonian map model. Qual. Theory Dyn. Syst., 14 (2015), 313–335. https://doi.org/10.1007/s12346-015-0168-6 doi: 10.1007/s12346-015-0168-6
    [14] L. Crane, Hyperchaos could help us build better quantum computers, New Sci., 249 (2021), 15. https://doi.org/10.1016/S0262-4079(21)00136-6 doi: 10.1016/S0262-4079(21)00136-6
    [15] F. E. Udwadia, Constrained motion of Hamiltonian systems, Nonlinear Dyn., 84 (2016), 1135–1145. https://doi.org/10.1007/s11071-015-2558-3 doi: 10.1007/s11071-015-2558-3
    [16] C. Skokos, On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems, Physica D, 159 (2001), 155–179. https://doi.org/10.1016/S0167-2789(01)00347-5 doi: 10.1016/S0167-2789(01)00347-5
    [17] P. Gaspard, M. B. Briggs, M. K. Francis, J. V. Sengers, R. W. Gammon, J. R. Dorfman, et al., Experimental evidence for microscopic chaos, Nature, 394 (1998), 865–868. https://doi.org/10.1038/29721 doi: 10.1038/29721
    [18] G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application, Meccanica, 15 (1980), 21–30. https://doi.org/10.1007/BF02128237 doi: 10.1007/BF02128237
    [19] C. Skokos, The Lyapunov characteristic exponents and their computation, In: Dynamics of small solar system bodies and exoplanets, Berlin Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-04458-8_2
    [20] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
    [21] J. A. Vastano, E. J. Kostelich, Comparison of algorithms for determining Lyapunov exponents from experimental data, In: Dimensions and entropies in chaotic systems, Berlin Heidelberg: Springer, 1986. https://doi.org/10.1007/978-3-642-71001-8_13
    [22] O. E. Rössler, An equation for continuous chaos, Phys. Lett. A, 57 (1976), 397–398. https://doi.org/10.1016/0375-9601(76)90101-8 doi: 10.1016/0375-9601(76)90101-8
    [23] A. J. Lichtenberg, M. A. Lieberman, Regular and chaotic dynamics, New York: Springer, 1992. https://doi.org/10.1007/978-1-4757-2184-3 doi: 10.1007/978-1-4757-2184-3
    [24] P. A. Patsis, L. Zachilas, Using color and rotation for visualizing four-dimensional Poincare cross-sections: With applications to the orbital behavior of a three-dimensional hamiltonian system, Int. J. Bifurcat. Chaos, 4 (1994), 1399–1424. https://doi.org/10.1142/S021812749400112X doi: 10.1142/S021812749400112X
    [25] M. Katsanikas, P. A. Patsis, The structure of invariant tori in a 3D galactic potential, Int. J. Bifurcat. Chaos, 21 (2011), 467–496. https://doi.org/10.1142/S0218127411028520 doi: 10.1142/S0218127411028520
    [26] M. Katsanikas, P. A. Patsis, G. Contopoulos, Instabilities and stickiness in a 3D rotating galactic potential, Int. J. Bifurcat. Chaos, 23 (2013), 1330005. https://doi.org/10.1142/S021812741330005X doi: 10.1142/S021812741330005X
    [27] S. Lange, M. Richter, F. Onken, A. Bäcker, Global structure of regular tori in a generic 4D symplectic map, Chaos, 24 (2014), 024409. https://doi.org/10.1063/1.4882163 doi: 10.1063/1.4882163
    [28] F. Onken, S. Lange, R. Ketzmerick, A. Bäcker, Bifurcations of families of 1D-tori in 4D symplectic maps, Chaos, 26 (2016), 063124. https://doi.org/10.1063/1.4954024 doi: 10.1063/1.4954024
    [29] M. Richter, S. Lange, A. Bäcker, R. Ketzmerick, Visualization and comparison of classical structures and quantum states of four-dimensional maps, Phys. Rev. E, 89 (2014), 022902. https://doi.org/10.1103/PhysRevE.89.022902 doi: 10.1103/PhysRevE.89.022902
    [30] Z. Chen, L. G. Gibilaro, N. Jand, Particle packing constraints in fluid-particle system simulation, Comput. Chem. Eng., 27 (2003), 681–687. https://doi.org/10.1016/S0098-1354(02)00258-2 doi: 10.1016/S0098-1354(02)00258-2
    [31] J. S. Kim, Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy, Ann. Phys., 373 (2016), 197–206. https://doi.org/10.1016/j.aop.2016.07.021 doi: 10.1016/j.aop.2016.07.021
    [32] C. Behn, K. Siedler, Adaptive PID-tracking control of muscle-like actuated compliant robotic systems with input constraints, Appl. Math. Model., 67 (2019), 9–21. https://doi.org/10.1016/j.apm.2018.10.012 doi: 10.1016/j.apm.2018.10.012
    [33] J. B. Wang, L. Liu, C. X. Liu, Sliding mode control with mismatched disturbance observer for chaotic oscillation in a seven-dimensional power system model, Int. T. Electr. Energy, 30 (2020), e12583. https://doi.org/10.1002/2050-7038.12583 doi: 10.1002/2050-7038.12583
    [34] H. J. Peng, X. W. Wang, B. Y. Shi, Z. Sheng, B. S. Chen, Stabilizing constrained chaotic system using a symplectic psuedospectral method, Commun. Nonlinear Sci., 56 (2018), 77–92. https://doi.org/10.1016/j.cnsns.2017.07.028 doi: 10.1016/j.cnsns.2017.07.028
    [35] X. W. Wang, J. Liu, H. J. Peng, L. C. Gao, J. Fottner, P. L. Liu, Input-constrained chaos synchronization of horizontal platform systems via a model predictive controller, P. I. Mech. Eng. C-J. Mec., 235 (2021), 4862–4872. https://doi.org/10.1177/0954406220979005 doi: 10.1177/0954406220979005
    [36] M. F. Danca, M. Feckan, N. Kuznetsov, Chaos control in the fractional order logistic map via impulses, Nonlinear Dyn., 98 (2019), 1219–1230. https://doi.org/10.1007/s11071-019-05257-2 doi: 10.1007/s11071-019-05257-2
    [37] F. Dou, J. Sun, W. Duan, K. Lü, Controlling hyperchaos in the new hyperchaotic system. Commun. Nonlinear Sci., 14 (2009), 552–559. https://doi.org/10.1016/j.cnsns.2007.10.009 doi: 10.1016/j.cnsns.2007.10.009
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1683) PDF downloads(91) Cited by(4)

Article outline

Figures and Tables

Figures(14)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog