Our goal of this study is to prevent marijuana smoking in the human population. In this manuscript, an updated mathematical model was established by incorporating two additional compartments: The hospitalized class and the prisoner's class. The updated model was validated, and it was shown to be novel compared to the non-user, experimental, recreational, and addicted (NERA) users' model. This distinction was crucial as it was challenging to prevent marijuana usage without these realistic classes. The entire population was split into six primary groups, including these new classes: non-users, experimental, recreational, addicted, hospitalized, and prisoners' class. Additionally, control techniques for marijuana prevention in the population were addressed with the aid of sensitivity analysis. The important point at which we may have determined the preliminary transmission rate of marijuana smoking was the basic reproductive number $ {\mathbb{R}}_{0} $. Utilizing MATLAB, the Runge-Kutta method of order four was employed for the numerical simulation of the updated model to investigate the impact of control measures on marijuana smoking prevention.
Citation: Atta Ullah, Hamzah Sakidin, Kamal Shah, Yaman Hamed, Thabet Abdeljawad. A mathematical model with control strategies for marijuana smoking prevention[J]. Electronic Research Archive, 2024, 32(4): 2342-2362. doi: 10.3934/era.2024107
Our goal of this study is to prevent marijuana smoking in the human population. In this manuscript, an updated mathematical model was established by incorporating two additional compartments: The hospitalized class and the prisoner's class. The updated model was validated, and it was shown to be novel compared to the non-user, experimental, recreational, and addicted (NERA) users' model. This distinction was crucial as it was challenging to prevent marijuana usage without these realistic classes. The entire population was split into six primary groups, including these new classes: non-users, experimental, recreational, addicted, hospitalized, and prisoners' class. Additionally, control techniques for marijuana prevention in the population were addressed with the aid of sensitivity analysis. The important point at which we may have determined the preliminary transmission rate of marijuana smoking was the basic reproductive number $ {\mathbb{R}}_{0} $. Utilizing MATLAB, the Runge-Kutta method of order four was employed for the numerical simulation of the updated model to investigate the impact of control measures on marijuana smoking prevention.
[1] | D. S. Timberlake, A comparison of drug use and dependence between blunt smokers and other cannabis users, Subst. Use Misuse, 44 (2009), 401−415. https://doi.org/10.1080/10826080802347651 doi: 10.1080/10826080802347651 |
[2] | L. E. Zimmer, J. P. Morgan, Marijuana myths, marijuana facts: A review of the scientific evidence, Lindes Center NY, (1997). |
[3] | A. Berenson, Tell your children: The truth about marijuana, mental illness, and violence, Free Press, (2020). |
[4] | C. L. Hart, W. van Gorp, M. Haney, R. W. Foltin, M. W. Fischman, Effects of acute smoked marijuana on complex cognitive performance, Neuropsychopharmacol, 25 (2001), 757−765. https://doi.org/10.1016/S0893-133X(01)00273-1 doi: 10.1016/S0893-133X(01)00273-1 |
[5] | R. L. Pacula, J. Ringel, Does marijuana use impair human capital formation?, NBERC, (2003). https://doi.org/10.3386/w9963 doi: 10.3386/w9963 |
[6] | W. H. Jeynes, Adolescent religious commitment and their consumption of marijuana, cocaine, and alcohol, J. Health Soc. Policy, 21 (2006), 1−20. https://doi.org/10.1300/J045v21n04_01 doi: 10.1300/J045v21n04_01 |
[7] | S. F. Tapert, A. D. Schweinsburg, S. A. Brown, The influence of marijuana use on neurocognitive functioning in adolescents, Curr. Drug Abuse Rev., 1 (2008), 99−111. https://doi.org/10.2174/1874473710801010099 doi: 10.2174/1874473710801010099 |
[8] | G. Thomas, R. A. Kloner, S. Rezkalla, Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: What cardiologists need to know, AM. J. Cardiol., 113 (2014), 187−190. https://doi.org/10.1016/j.amjcard.2013.09.042 doi: 10.1016/j.amjcard.2013.09.042 |
[9] | H. Wen, J. Hockenberry, J. R. Cummings, The effect of medical marijuana laws on marijuana, alcohol, and hard drug use, NBER, (2014). https://doi.org/10.1016/j.amjcard.2013.09.042 doi: 10.1016/j.amjcard.2013.09.042 |
[10] | M. A. Alsherbiny, C. G. Li, Medicinal cannabis—potential drug interactions, Medicines, 6 (2018), 3. https://doi.org/10.3390/medicines6010003 doi: 10.3390/medicines6010003 |
[11] | A. Bhatnagar, W. Maziak, T. Eissenberg, K. D. Ward, G.Thurston, B. A. King, et al., Water pipe (hookah) smoking and cardiovascular disease risk: A scientific statement from the American Heart Association, Circulation, 139 (2019), e917−e936. https://doi.org/10.1161/CIR.0000000000000671 doi: 10.1161/CIR.0000000000000671 |
[12] | Aruni Bhatnagar, L. P. Whitsel, K. M. Ribisl, C. Bullen, F. Chaloupka, M. R. Piano, et al., Electronic cigarettes: A policy statement from the American Heart Association, Circulation, 130 (2014), 1418−1436. https://doi.org/10.1161/CIR.0000000000000107 doi: 10.1161/CIR.0000000000000107 |
[13] | J. E. Layden, I. Ghinai, I. Pray, A. Kimball, M. Layer, M. W. Tenforde, et al., Pulmonary illness related to e-cigarette use in Illinois and Wisconsin, N. Eng. J. Med., 382 (2020), 903−916. https://doi.org/10.1056/NEJMoa1911614 doi: 10.1056/NEJMoa1911614 |
[14] | T. M. Kaufman, S. Fazio, M.D. Shapiro, Brief commentary: Marijuana and cardiovascular disease—what should we tell patients? Ann. Intern. Med., 170 (2019), 119−120. https://doi.org/10.7326/M18-3009 doi: 10.7326/M18-3009 |
[15] | S. Mushayabasa, G. Tapedzesa, Modeling illicit drug use dynamics and its optimal control analysis, Comput. Math. Methods Med., 2015 (2015). |
[16] | A. L. Bretteville-Jensen, H. O. Melberg, A. M. Jones, Sequential patterns of drug use initiation-Can we believe in the gateway theory?, BE. J. Econ. Anal. Policy, 8 (2008). https://doi.org/10.2202/1935-1682.1846 doi: 10.2202/1935-1682.1846 |
[17] | A. Ghaffar, M. Iqbal, M. Bari, S. M. Hussain, R. Manzoor, K. S. Nisar, et al., Construction and application of nine-tic B-spline tensor product SS, Math, 7 (2019), 675. https://doi.org/10.3390/math7080675 doi: 10.3390/math7080675 |
[18] | M. E. Passey, R. W. Sanson-Fisher, C. A. D'Este, J. M. Stirling, Tobacco, alcohol and cannabis use during pregnancy: clustering of risks, Drug. Alcohol. Dep., 134 (2014), 44−50. https://doi.org/10.1016/j.drugalcdep.2013.09.008 doi: 10.1016/j.drugalcdep.2013.09.008 |
[19] | L. Cristino, V. Di Marzo, Fetal cannabinoid receptors and the "dis‐joint‐ed" brain, EMBO J., 33 (2014), 665−667. https://doi.org/10.1002/embj.201488086 doi: 10.1002/embj.201488086 |
[20] | A. Shah, H. Khan, M. De la Sen, J. Alzabut, S. Etemad, C. T. Deressa, et al., On non-symmetric fractal-fractional modeling for ice smoking: Mathematical analysis of solutions, Symmetry, 15 (2022), 87. https://doi.org/10.3390/sym15010087 doi: 10.3390/sym15010087 |
[21] | T. D. Metz, E. H. Stickrath, Marijuana use in pregnancy and lactation: A review of the evidence, Am. J. Obstet. Gynecol., 213 (2015), 761−778. https://doi.org/10.1016/j.ajog.2015.05.025 doi: 10.1016/j.ajog.2015.05.025 |
[22] | A. Alkhazzan, J. Wang, Y. Nie, H. Khan, J. Alzabut, A stochastic SIRS modeling of transport-related infection with three types of noises, Alexandria Eng. J., 76 (2023), 557−572. https://doi.org/10.1016/j.aej.2023.06.049 doi: 10.1016/j.aej.2023.06.049 |
[23] | J. D. Ellis, S. M. Resko, K. Szechy, R. Smith, T. J. Early, Characteristics associated with attitudes toward marijuana legalization in Michigan, J. Psychoact. Drugs, 51 (2019), 335−342. https://doi.org/10.1080/02791072.2019.1610199 doi: 10.1080/02791072.2019.1610199 |
[24] | R. Dapari, M. H. Mahfot, A. M. Nazan, M. R.Hassan, Na. C. Dom, S. S. S. A. Rahim, Acceptance towards decriminalization of medical marijuana among adults in Selangor, Malaysia, Plos One, 17 (2022), e0262819. https://doi.org/10.1371/journal.pone.0262819 doi: 10.1371/journal.pone.0262819 |
[25] | H. Khan, J. Alzabut, A. Shah, S. Etemad, S. Rezapour, C. Park, A study on the fractal-fractional tobacco smoking model, AIMS Math., 7 (2022), 13887−13909. https://doi.org/10.3934/math.2022767 doi: 10.3934/math.2022767 |
[26] | A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Solitons Fractal, 122 (2019), 119−128. https://doi.org/10.1016/j.chaos.2019.03.022 doi: 10.1016/j.chaos.2019.03.022 |
[27] | W. Shatanawi, A. Raza, M. Shoaib Arif, M. Rafiq, M. Bibi, M. Mohsin, Essential features preserving dynamics of stochastic Dengue model, Model Eng. Sci., 126 (2021), 201−215. https://doi.org/10.32604/cmes.2021.012111 doi: 10.32604/cmes.2021.012111 |
[28] | R. J. Evans-Polce, M. E. Patrick, S. E. McCabe, R. A. Miech, Prospective associations of e-cigarette use with cigarette, alcohol, marijuana, and nonmedical prescription drug use among US adolescents, Drug Alcohol. Dep., 216 (2020), 108303. https://doi.org/10.1016/j.drugalcdep.2020.108303 doi: 10.1016/j.drugalcdep.2020.108303 |
[29] | S. Pisanti, M. Bifulco, Medical cannabis: A plurimillennial history of an evergreen, J. Cell Physiol., 234 (2019), 8342−8351. https://doi.org/10.1002/jcp.27725 doi: 10.1002/jcp.27725 |
[30] | E. Krediet, D. G. A. Janssen, E. R. Heerdink, T. C. G. Egberts, E. Vermetten, Experiences with medical cannabis in the treatment of veterans with PTSD: Results from a focus group discussion, Eur. Neuropsychopharmacol., 36 (2020), 244−254. https://doi.org/10.1016/j.euroneuro.2020.04.009 doi: 10.1016/j.euroneuro.2020.04.009 |
[31] | J. Rehm, T. Elton-Marshall, B. Sornpaisarn, J. Manthey, Medical marijuana. What can we learn from the experiences in Canada, Germany and Thailand?, Int. J. Drug Policy, 74 (2019), 47−51. https://doi.org/10.1016/j.drugpo.2019.09.001 doi: 10.1016/j.drugpo.2019.09.001 |
[32] | N. R. Dash, G. Khoder, A. M. Nada, M. T. Al-Bataineh, Correction: Exploring the impact of Helicobacter pylori on gut microbiome composition, Plos One, 16 (2021), e0256274. https://doi.org/10.1371/journal.pone.0256274 doi: 10.1371/journal.pone.0256274 |
[33] | A. Elmazny, S. M. Hamdy, M. Abdel-Naseer, N. M. Shalaby, H. S. Shehata, N. A. Kishk, et al., Interferon-beta-induced headache in patients with multiple sclerosis: Frequency and characterization, J. Pain. Res., (2020), 537−545. https://doi.org/10.2147/JPR.S230680 doi: 10.2147/JPR.S230680 |
[34] | D. C. Oshi, T. Ricketts-Roomes, S. N. Oshi, K. A. Campbell-Williams, T. Ricketts-Roomes, S. N. Oshi, et al., Factors associated with awareness of decriminalization of marijuana in Jamaica, J. Subst. Use, 25 (2020), 152−156. https://doi.org/10.1080/14659891.2019.1664671 doi: 10.1080/14659891.2019.1664671 |
[35] | N. R. A. Rahman, F. Mohmad, M. S. Isuan, M. R. Isa, Towards a higher percentage of recreational drugs-free among patients on methadone maintenance treatment in Larkin Health Clinic, Q. Bull., 1 (2021), 60−71. |
[36] | E. Cook, State of the death penalty in Southeast Asia, Eureka Street, 28 (2018), 13−15. |
[37] | J. M. Ginoux, R. Naeck, Y. B. Ruhomally, M. Z. Dauhoo, M. Perc, Chaos in a predator–prey-based mathematical model for illicit drug consumption, Appl. Math. Comput., 347 (2019), 502−513. https://doi.org/10.1016/j.amc.2018.10.089 doi: 10.1016/j.amc.2018.10.089 |
[38] | M. Z. Dauhoo, B. S. N. Korimboccus, S. B. Issack, On the dynamics of illicit drug consumption in a given population IMA J. Appl. Math., 78 (2013), 432−448. https://doi.org/10.1093/imamat/hxr058 doi: 10.1093/imamat/hxr058 |
[39] | A. Ullah, H. Sakidin, S. Gul, K. Shah, M. S. Muthuvalu, T. Abdeljawad, et al., Sensitivity analysis-based validation of the modified NERA model for improved performance, J. Adv. Res. Appl. Sci. Eng. Technol., 32 (2023), 1−11. https://doi.org/10.37934/araset.32.3.111 doi: 10.37934/araset.32.3.111 |
[40] | M. Zamir, G. Zaman, A. S. Alshomrani, Sensitivity analysis and optimal control of anthroponotic cutaneous leishmania, PloS One, 11 (2016), e0160513. https://doi.org/10.1371/journal.pone.0160513 doi: 10.1371/journal.pone.0160513 |
[41] | A. Ullah, H. Sakidin, S. Gul, K. Shah, Y. Hamed, M. Aphane, et al., Sensitivity analysis-based control strategies of a mathematical model for reducing marijuana smoking, AIMS Bioeng, 10 (2023), 491−510. https://doi.org/10.3934/bioeng.2023028 doi: 10.3934/bioeng.2023028 |
[42] | W. A. Khan, R. Zarin, A. Zeb, Y. Khan, A. Khan, Navigating food allergy dynamics via a novel fractional mathematical model for antacid-induced allergies, J. Math. Technol. Model., 1 (2024), 25−51. https://orcid.org/0009-0004-0810-280X |
[43] | M. Zamir, T. Abdeljawad, F. Nadeem, A. Wahid, A. Yousef, An optimal control analysis of a COVID-19 model, Alexandria Eng. J., 60 (2021), 2875−2884. https://doi.org/10.1016/j.aej.2021.01.022 doi: 10.1016/j.aej.2021.01.022 |
[44] | P. Liu, A. Din, R. Zarin, Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels, Results Phys., 39 (2022), 105757. https://doi.org/10.1016/j.rinp.2022.105757 doi: 10.1016/j.rinp.2022.105757 |
[45] | F. M. Khan, Z. U. Khan, Numerical analysis of fractional order drinking mathematical model, J. Math. Technol. Model., 1 (2024), 11−24. https://doi.org/10.56868/jmtm.v1i1.4 doi: 10.56868/jmtm.v1i1.4 |
[46] | J. Yang, M. Gong, G. Q. Sun, Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneous environment, J. Differ. Equations, 377 (2023), 71−112. https://doi.org/10.1016/j.jde.2023.09.001 doi: 10.1016/j.jde.2023.09.001 |
[47] | M. Zamir, R. Sultana, R. Ali, W. A. Panhwar, S. Kumar, Study on the threshold conditions for infection of visceral leishmaniasis, Surj-Sci Ser, 47 (2015), 619−622. |
[48] | M. Zamir, F. Nadeem, M. A. Alqudah, T. Abdeljawad, Future implications of covid-19 through mathematical modeling, Result. Phys., 33 (2022), 105097. https://doi.org/10.1016/j.rinp.2021.105097 doi: 10.1016/j.rinp.2021.105097 |
[49] | V. Madhusudanan, M. N. Srinivas, B. S. N. Murthy, K. J. Ansari, A. Zeb, A. Althobaiti, et al., The influence of time delay and Gaussian white noise on the dynamics of tobacco smoking model, Chaos Soliton Fractal, 173 (2023), 113616. https://doi.org/10.1016/j.chaos.2023.113616 doi: 10.1016/j.chaos.2023.113616 |
[50] | A. Din, Y. Li, Q. Liu, Viral dynamics and control of hepatitis B virus (HBV) using an epidemic model, Alexandria Eng. J., 59 (2020), 667−679. https://doi.org/10.1016/j.aej.2020.01.034 doi: 10.1016/j.aej.2020.01.034 |
[51] | A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Alexandria Eng. J., 141 (2020), 110286. https://doi.org/10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286 |
[52] | S. Bushnaq, K. Shah, S. Tahir, K. J. Ansari, M.Sarwar, T. Abdeljawad, Computation of numerical solutions to variable order fractional differential equations by using non-orthogonal basis, AIMS Math., 7 (2022), 10917−10938. https://doi.org/10.3934/math.2022610 doi: 10.3934/math.2022610 |
[53] | L. Rarità, C. D'Apice, B. Piccoli, D. Helbing, Sensitivity analysis of permeability parameters for flows on Barcelona networks, J. Differ. Equations, 249 (2010), 3110−3131. https://doi.org/10.3934/math.2022610 doi: 10.3934/math.2022610 |
[54] | N. Ahmad, S. Charan, V. P. Singh, Study of numerical accuracy of Runge-Kutta second, third and fourth order method, Int. J. Comput. Math. Sci., 4 (2015), 111. |
[55] | M. A. Islam, Accurate solutions of initial value problems for ordinary differential equations with the fourth order Runge Kutta method, J. Math. Res., 7 (2015), 41. https://doi.org/10.5539/jmr.v7n3p41 doi: 10.5539/jmr.v7n3p41 |