In this paper, we study the multiplicity of solutions for the following fourth-order Kirchhoff type problem involving concave-convex nonlinearities and indefinite weight function
$ \begin{equation*} \Delta^2u-\left(a+b\int_{ \mathbb{R}^N}|\nabla u|^2dx\right)\Delta u+V(x)u = \lambda f(x)|u|^{q-2}u+|u|^{p-2}u, \end{equation*} $
where $ u\in H^2(\mathbb{R}^N)(4 < N < 8) $, $ \lambda > 0, 1 < q < 2, 4 < p < 2_\ast(2_\ast = 2N/(N-4)) $, $ f(x) $ satisfy suitable conditions, and $ f(x) $ may change sign in $ \mathbb{R}^N $. Using Nehari manifold and fibering maps, the existense of multiple solutions is established. Moreover, the existence of sign-changing solution is obtained for $ f(x)\equiv0 $. Our results generalize some recent results in the literature.
Citation: Zijian Wu, Haibo Chen. Multiple solutions for the fourth-order Kirchhoff type problems in $ \mathbb{R}^N $ involving concave-convex nonlinearities[J]. Electronic Research Archive, 2022, 30(3): 830-849. doi: 10.3934/era.2022044
In this paper, we study the multiplicity of solutions for the following fourth-order Kirchhoff type problem involving concave-convex nonlinearities and indefinite weight function
$ \begin{equation*} \Delta^2u-\left(a+b\int_{ \mathbb{R}^N}|\nabla u|^2dx\right)\Delta u+V(x)u = \lambda f(x)|u|^{q-2}u+|u|^{p-2}u, \end{equation*} $
where $ u\in H^2(\mathbb{R}^N)(4 < N < 8) $, $ \lambda > 0, 1 < q < 2, 4 < p < 2_\ast(2_\ast = 2N/(N-4)) $, $ f(x) $ satisfy suitable conditions, and $ f(x) $ may change sign in $ \mathbb{R}^N $. Using Nehari manifold and fibering maps, the existense of multiple solutions is established. Moreover, the existence of sign-changing solution is obtained for $ f(x)\equiv0 $. Our results generalize some recent results in the literature.
[1] | M. Ferrara, B. Khademloo, S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput., 234 (2014), 316–325. https://doi.org/10.1016/j.amc.2014.02.041 doi: 10.1016/j.amc.2014.02.041 |
[2] | F. Wang, M. Avci, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, J. Math. Anal. Appl., 409 (2014), 140–146. https://doi.org/10.1016/j.jmaa.2013.07.003 doi: 10.1016/j.jmaa.2013.07.003 |
[3] | L. Xu, H. B. Chen, Multiplicity results for fourth order elliptic equations of Kirchhoff-type, Acta Math. Sci., 35 (2015), 1067–1076. https://doi.org/10.1016/S0252-9602(15)30040-0 doi: 10.1016/S0252-9602(15)30040-0 |
[4] | J. M. Ball, Initial boundary value problem for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61–90. https://doi.org/10.1016/0022-247X(73)90121-2 doi: 10.1016/0022-247X(73)90121-2 |
[5] | H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465–472. https://doi.org/10.1115/1.4011138 doi: 10.1115/1.4011138 |
[6] | A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519–543. https://doi.org/10.1006/jfan.1994.1078 doi: 10.1006/jfan.1994.1078 |
[7] | L. Damascelli, M. Grossi, F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 16 (1999), 631–652. https://doi.org/10.1016/S0294-1449(99)80030-4 |
[8] | P. Korman, On uniqueness of positive solutions for a class of semilinear equations, Discrete Contin. Dyn. Syst., 8 (2002), 865–871. https://doi.org/10.3934/dcds.2002.8.865 doi: 10.3934/dcds.2002.8.865 |
[9] | T. Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem II, J. Differ. Equ., 158 (1999), 94–151. https://doi.org/10.1016/S0022-0396(99)80020-5 doi: 10.1016/S0022-0396(99)80020-5 |
[10] | C. Y. Chen, Y. C. Kuo, T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876–1908. https://doi.org/10.1016/j.jde.2010.11.017 doi: 10.1016/j.jde.2010.11.017 |
[11] | T. Bartsch, Z. Q. Wang, Existence and multiple results for some superlinear elliptic problems on $ \mathbb{R}^N$, Commun. Partial Differ. Equ., 20 (1995), 1725–1741. https://doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149 |
[12] | K. J. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differ. Equ., 193 (2003), 481–499. https://doi.org/10.1016/S0022-0396(03)00121-9 doi: 10.1016/S0022-0396(03)00121-9 |
[13] | T. F. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $ \mathbb{R}^N$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99–131. https://doi.org/10.1016/j.jfa.2009.08.005 doi: 10.1016/j.jfa.2009.08.005 |
[14] | G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 9 (1992), 281–304. https://doi.org/10.1016/S0294-1449(16)30238-4 |
[15] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 |
[16] | X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $ \mathbb{R}^3$, J. Differ. Equ., 252 (2012), 1813–1834. https://doi.org/10.1016/j.jde.2011.08.035 doi: 10.1016/j.jde.2011.08.035 |
[17] | S. J. Chen, L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $ \mathbb{R}^N$, Nonlinear Anal. Real Word Appl., 14 (2013), 1477–1486. https://doi.org/10.1016/j.nonrwa.2012.10.010 doi: 10.1016/j.nonrwa.2012.10.010 |
[18] | W. Zhang, X. H. Tang, J. Zhang, Infinitely many solutions for fourth-order elliptic equations with sign-changing potential, Taiwanese J. Math., 18 (2014), 645–659. https://doi.org/10.11650/tjm.18.2014.3584 doi: 10.11650/tjm.18.2014.3584 |
[19] | M. Willem, Minimax Theorems, Birkh$\ddot{a}$user, Berlin, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[20] | K. J. Brown, T. F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electron. J. Differ. Equ., 2007 (2007), 1–9. https://doi.org/10.1007/978-88-470-0665-2_19 doi: 10.1007/978-88-470-0665-2_19 |
[21] | G. Carboni, D. Mugnai, On some fractional equations with convex–concave and logistic-type nonlinearities, J. Differ. Equ., 262 (2017), 2393–2413. https://doi.org/10.1016/j.jde.2016.10.045 doi: 10.1016/j.jde.2016.10.045 |
[22] | K. Silva, A. Macedo, Local minimizers over the Nehari manifold for a class of concave-convex problems with sign changing nonlinearity, J. Differ. Equ., 265 (2018), 1894–1921. https://doi.org/10.1016/j.jde.2018.04.018 doi: 10.1016/j.jde.2018.04.018 |
[23] | J. T. Sun, T. F. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differ. Equ., 256 (2014), 1771–1792. https://doi.org/10.1016/j.jde.2013.12.006 doi: 10.1016/j.jde.2013.12.006 |
[24] | W. H. Xie, H. B. Chen, Infinitely many bound state solutions for Kirchhoff type problems, Appl. Math. Lett., 93 (2019), 1–7. https://doi.org/10.1016/j.aml.2019.01.020 doi: 10.1016/j.aml.2019.01.020 |