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Abstract: In this paper, we study the multiplicity of solutions for the following fourth-order Kirchhoff
type problem involving concave-convex nonlinearities and indefinite weight function

∆2u −
(
a + b

∫
RN
|∇u|2dx

)
∆u + V(x)u = λ f (x)|u|q−2u + |u|p−2u,

where u ∈ H2(RN)(4 < N < 8),λ > 0, 1 < q < 2, 4 < p < 2∗(2∗ = 2N/(N − 4)), f (x) satisfy suitable
conditions, and f (x) may change sign in RN . Using Nehari manifold and fibering maps, the existense
of multiple solutions is established. Moreover, the existence of sign-changing solution is obtained for
f (x) ≡ 0. Our results generalize some recent results in the literature.

Keywords: fourth-order Kirchhoff type problems; multiple solutions; indefinite weight functions;
Nehari manifold; fibering maps

1. Introduction and main results

In this paper we study the following fourth-order Kirchhoff type problem:

∆2u −
(
a + b

∫
RN
|∇u|2dx

)
∆u + V(x)u = λ f (x)|u|q−2u + |u|p−2u, (1.1)

where u ∈ H2(RN)(4 < N < 8), 1 < q < 2, 4 < p < 2∗(2∗ = 2N/(N − 4)). The parameter λ > 0, a
and b are positive constants, the potential function V and the weight function f satisfy the following
conditions:
(V) V(x) ∈ C(RN ,R),V0 := infRN V(x) > 0 and there exists a constant l0 > 0 such that

lim
|y|→∞

meas({x ∈ RN ||x − y| ≤ l0,V(x) ≤ M}) = 0, ∀M > 0,
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where meas(·) denotes the Lebesgue measure in RN .
(F) f ∈ C(RN) ∩ Lrq(RN), where rq = r/(r − q) for some r ∈ (2, 2∗).

The general form of (1.1) can be written as

∆2u −
(
a + b

∫
RN
|∇u|2dx

)
∆u + V(x)u = g(x, u), (1.2)

where u ∈ H2(RN), a and b are positive constants, V(x) : RN → R is a continuous potential. Different
forms of the nonlinearity g(x, u) will lead to different difficulties, such as the existence of critical
sequence in sublinear case, the boundedness of critical sequence in superlinear case or the compactness
in critical case. The nonlinearity g(x, u) is superlinear, sublinear and critical growth, which has been
widely studied by many scholars, see [1–3] and their references therein.

Let V(x) = 0, replace RN by a smooth bounded domain Ω ⊂ RN and set u = ∇u = 0 on ∂Ω, the
problem (1.2) is reduced to the following fourth-order Kirchhoff type problem:∆2u −

(
a + b

∫
Ω
|∇u|2dx

)
∆u = g(x, u), in Ω,

u = ∇u = 0, on ∂Ω,
(1.3)

which is related to the following stationary analogue of the Kirchhoff type problem:

utt + ∆
2u −

(
a + b

∫
Ω

|∇u|2dx
)
∆u = g(x, u), in Ω, (1.4)

where ∆2 is the biharmonic operator. In low dimensions, (1.4) is often used to describe the phenomenon
of nonlinear vibration of beam or plate in physics and engineering (see [4,5]). Because of the existence
of integral term

∫
Ω
|∇u|2dx, this kind of problem is nonlocal, which indicates that Eq (1.4) is no longer

pointwise identity. This phenomenon has caused some difficulties for mathematical research, so it has
attracted the attention of a large number of scholars.

Here we focus on g(x, u) with concave-convex nonlinearities. Semilinear elliptic equations with
concave-convex nonlinearities in bounded domains are extensively researched. Ambrosetti et al. [6],
for example, considered the following equation:

−∆u = λuq−1 + up−1, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(1.5)

where λ > 0, 1 < q < 2 < p < 2∗ = 2N/(N − 2). They proved that there exists λ0 > 0 such that
(1.5) admits at least two positive solutions for all λ ∈ (0, λ0) and has one positive solution for λ = λ0

and no positive solution for λ > λ0. Actually, many scholars have also obtained this result in the unit
ball BN(0; 1), see [7–9]. In addition, Chen, Kuo and Wu [10] investigated the following Kirchhoff type
problem: −(a + b

∫
Ω
|∇u|2dx)∆u = λ f (x)|u|q−2u + g(x)|u|p−2u, in Ω,

u = 0, on ∂Ω,
(1.6)

where a, b > 0, 1 < q < 2 < p < 2∗ and f , g ∈ C(Ω̄) are sign-changing weight functions. Using the
Nehari manifold and fibering maps, the authors examined the existence of multiple positive solutions
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for three cases: p > 4, p = 4 and p < 4 when b and λ belong to specific intervals. For more results
of problems involving concave-convex nonlinearities and sign-changing weights in bounded domain,
the reader may see [11, 12] and the references therein. Furthermore, this kind of question in RN also
arouses the scholar’s interest. Wu [13] has researched the following equation involving sign-changing
weight functions: −∆u + u = aλ(x)uq−1 + bµ(x)up−1, in RN ,

u > 0, in RN ,
(1.7)

where u ∈ H1(RN), 1 < q < 2 < p < 2∗, the parameters λ, µ > 0. He assumed that aλ(x) =
λa+(x) + a−(x) is sign-changing and bµ(x) = c(x) + µd(x), where c(x) and d(x) satisfy appropriate
hypotheses, and obtained the multiplicity of positive solutions for the problem (1.7).

Inspired by the above work, the main aim of this paper is to study the Kirchhoff problem (1.1) in
RN involving conave-convex nonlinearities and sign-changing weight function. In addition, from the
condition (F), we can see that f is allowed to be sign-changing. As far as we know, there are few
articles to deal with the fourth-order Kirchhoff type problem (1.1). We are going to discuss the Nehari
manifold and thoroughly check the relation between the Nehari manifold and the fibering maps; then
using methods similar to those used in [14], we will prove the existence of two solutions by using
Ekeland variational principle [15].

Set

λ1 =

(
p − 2

(p − q)| f |rq

) (
2 − q
p − q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r > 0

and 0 < λ2 =
q

p−2λ1 < λ1, where | f |rq =
(∫
RN | f |rqdx

)1/rq
and S p is described below. Now, we state the

main result about the multiciplity of solution of (1.1) in RN .

Theorem 1.1. Assume that (V) and (F) hold. If λ ∈ (0, λ1), then (1.1) admits at least two nontrivial
solutions, one of which has negative energy. Furthermore, if λ ∈ (0, λ2), then (1.1) has at least one
negative energy ground state solution and one positive energy solution.

Theorem 1.2. Assume (V) holds. Then (1.1) has a sign-changing solution for f (x) ≡ 0.

In Eq (1.1), the unboundedness of the whole space RN leads to no compactness, therefore we con-
sider condition (V) to recover the compactness. The condition (V) was first mentioned by Bartsch and
Wang in [11]. At the same time, we also have (V1) and (V2) conditions in the following remark to
repair compactness. Therefore, using (V1) or (V2) instead of (V) can also get the same result. But the
following two conditions are stronger than (V).

Remark 1.2. These conditions are usually used to restore compactness.
(V1) V(x) ∈ C(RN ,R),V0 := infRN V(x) > 0,V(x)→ +∞ as |x| → +∞ (see [16]).
(V2) V(x) ∈ C(RN ,R),V0 := infRN V(x) > 0, for each M > 0, meas({x ∈ RN |V(x) ≤ M}) < ∞
(see [17]).

This paper is organized as follows. In Section 2, some notations and preliminaries are given, in-
cluding lemmas that are required in proving the main theorem. In Section 3, we are concerned with
the proof of Theorem 1.1. In Section 4, we are concerned with the proof of Theorem 1.2.
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2. Preliminaries

Define our working space

E :=
{

u ∈ H2(RN)|
∫
RN

(|∆u|2 + |∇u|2 + V(x)u2)dx < +∞
}

with the inner product and norm

(u, v) =
∫
RN

(∆u∆v + a∇u∇v + V(x)uv)dx, ||u||2 = (u, u).

where H2(RN) is the well known Sololev space.
Throughout this paper, under assumption (V), the embedding E ↪→ Lr(RN) is continuous for r ∈

[2, 2∗] and compact for r ∈ [2, 2∗) [18]. We denote by S r the best Sobolev constant for the embedding
of E in Lr(RN) with r ∈ [2, 2∗). In particular,

|u|r ≤ S −1/2
r ||u|| for all u ∈ E\{0},

where Lr(RN) is the usual Lebesgue space endowed with the standard norm |u|r =
(∫
RN |u|rdx

)1/r
for

1 ≤ r < ∞.
The energy functional Iλ we consider that corresponds to (1.1) is given by, for each u ∈ E,

Iλ(u) =
1
2

∫
RN

(|∆u|2 + a|∇u|2 + V(x)u2)dx +
b
4

(
∫
RN
|∇u|2dx)2 −

λ

q

∫
RN

f (x)|u|qdx

−
1
p

∫
RN
|u|pdx.

(2.1)

It is well known that the functional Iλ is of class C1 in E and the solutions of (1.1) are the critical points
of energy functional Iλ [19] and thus, by taking (V)(F) and using a direct computation, we have

⟨I′λ(u), v⟩ =
∫
RN

(∆u∆v + a∇u∇v + V(x)uv)dx + b
∫
RN
|∇u|2dx

∫
RN
∇u∇vdx

− λ

∫
RN

f (x)|u|q−2uvdx −
∫
RN
|u|p−2uvdx,

(2.2)

for any u, v ∈ E, and where ⟨·, ·⟩ denotes the usual scalar product in H2(RN). Moreover, it is clear that
limt→∞Iλ(tu) = −∞ and so Iλ is not bounded below on E. In order to obtain critical points, we consider
the Iλ on the Nehari manifold

Nλ = {u ∈ E\{0}|⟨I′λ(u), u⟩ = 0}.

Thus, u ∈ Nλ if and only if

⟨I′λ(u), u⟩ = ||u||2 + b|∇u|42 − λ
∫
RN

f (x)|u|qdx −
∫
RN
|u|pdx = 0.

Moreover, Nλ comprises all nontrivial solutions of problem (1.1). And we have the following lemma.

Lemma 2.1. The energy functional Iλ is coercive and bounded below on Nλ.
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Proof. For u ∈ Nλ, by the Hölder and Sobolev inequalities,

Iλ(u) = Iλ(u) −
1
4
⟨I′λ(u), u⟩

=
1
4
||u||2 − λ

(
1
q
−

1
4

) ∫
RN

f (x)|u|qdx −
(

1
p
−

1
4

) ∫
RN
|u|pdx

≥
1
4
||u||2 − λ

(
1
q
−

1
4

)
| f |rqS

−
q
2

r ||u||q.

This ends the proof due to 1 < q < 2. □

Distinctly, Nλ is a much smaller set than E and so it is simpler to discuss Iλ on Nλ. The Nehari
manifoldNλ is closely related to the character of functions of the form φλ,u : t → Iλ(tu) for t > 0. Such
functions are known as fibering maps, which were studied by Brown and Wu in [20]. If u ∈ E, we have

φλ,u(t) = Iλ(tu) =
t2

2
||u||2 +

b
4

t4|∇u|42 −
λ

q
tq

∫
RN

f (x)|u|qdx −
tp

p

∫
RN
|u|pdx,

φ′λ,u(t) = t||u||2 + bt3|∇u|42 − λtq−1
∫
RN

f (x)|u|qdx − tp−1
∫
RN
|u|pdx,

φ′′λ,u(t) = ||u||2 + 3bt2|∇u|42 − (q − 1)λtq−2
∫
RN

f (x)|u|qdx − (p − 1)tp−2
∫
RN
|u|pdx.

Evidently,
tφ′λ,u(t) = ⟨I′λ(tu), tu⟩

and so, for u ∈ E\{0} and t > 0, φ′λ,u(t) = 0 if and only if tu ∈ Nλ, that is, the critical points of φλ,u
correspond to points on the Nehari manifold, In particular, u ∈ Nλ if and only if φ′λ,u = 0. Thus, it is
inartificial to split Nλ into three parts [14]:

N+λ = {u ∈ Nλ|φ
′′
λ,u(1) > 0};

N0
λ = {u ∈ Nλ|φ

′′
λ,u(1) = 0};

N−λ = {u ∈ Nλ|φ
′′
λ,u(1) < 0}.

It is easy to see that

φ′′λ,u(1) = ||u||2 + 3b|∇u|42 − (q − 1)λ
∫
RN

f (x)|u|qdx − (p − 1)
∫
RN
|u|pdx. (2.3)

Thus, for each u ∈ Nλ, we have

φ′′λ,u(1) = φ′′λ,u(1) − (p − 1)⟨I′λ(u), u⟩

= (2 − p)||u||2 + (4 − p)b|∇u|42 − (q − p)λ
∫
RN

f (x)|u|qdx
(2.4)

and
φ′′λ,u(1) = φ′′λ,u(1) − (q − 1)⟨I′λ(u), u⟩

= (2 − q)||u||2 + (4 − q)b|∇u|42 − (p − q)
∫
RN
|u|pdx.

(2.5)

We now derive some basic properties of N+λ , N0
λ and N−λ .
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Lemma 2.2. Assume that u is a local minimizer for Iλ on Nλ and u < N0
λ . Then I′λ(u) = 0.

Proof. The details of the proof can be referred to Brown and Zhang [12]. □

Lemma 2.3. If λ ∈ (0, λ1), then N0
λ = ∅.

Proof. Suppose the contrary. There exist u ∈ Nλ such that φ′′λ,u(1) = 0. From (2.5) and the Sobolev
inequality, we have

(2 − q)||u||2 ≤ (2 − q)||u||2 + (4 − q)b|∇u|42

= (p − q)
∫
RN
|u|pdx

≤ (p − q)S −
p
2

p ||u||p

and so

||u|| ≥

 (2 − q)S
p
2
p

p − q


1

p−2

. (2.6)

Similarly, using (2.4) and Hölder and Sobolev inequalities, we have

(p − 2)||u||2 ≤ (p − 2)||u||2 + (p − 4)b|∇u|42

= (p − q)λ
∫
RN

f (x)|u|qdx

≤ (p − q)λ| f |rqS
−

q
2

r ||u||q

which implies that

||u|| ≤

 (p − q)λ| f |rq

(p − 2)S
q
2
r


1

2−q

. (2.7)

Combining (2.6) and (2.7) we deduce that

λ ≥

(
p − 2

(p − q)| f |rq

) (
2 − q
p − q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r = λ1,

which is a contradiction.This completes the proof. □

Lemma 2.4. If λ ∈ (0, λ1), then the set N−λ is closed in E.

Proof. Let {un} ⊂ N
−
λ such that un → u in E. In the following we show u ∈ N−λ . In fact, by ⟨I′λ(un), un⟩ =

0 and
⟨I′λ(un), un⟩ − ⟨I′λ(u), u⟩ = ⟨I′λ(un) − I′λ(u), u⟩ + ⟨I′λ(un), un − u⟩ → 0, as n→ ∞,

we have ⟨I′λ(u), u⟩ = 0. So u ∈ Nλ. For any u ∈ N−λ , from (2.5) we have

φ′′λ,u(1) = (2 − q)||u||2 + (4 − q)b|∇u|42 − (p − q)
∫
RN
|u|pdx < 0.
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Then by Sobolev inequality, we have

(2 − q)||u||2 < (2 − q)||u||2 + (4 − q)b|∇u|42

< (p − q)
∫
RN
|u|pdx

≤ (p − q)S −
p
2

p ||u||p,

that is,

||u|| >

 (2 − q)S
p
2
p

p − q


1

p−2

> 0.

Hence N−λ is bounded away from 0. Obviously, by (2.4), it follows that φ′′λ,un
(1)→ φ′′λ,u(1) as n→ +∞.

From φ′′λ,un
(1) < 0, we have φ′′λ,u(1) ≤ 0. By Lemma 2.3, for λ ∈ (0, λ1), N0

λ = ∅, then φ′′λ,u(1) < 0. Thus
we deduce u ∈ N−λ . This completes the proof. □

In order to obtain a better comprehension of the Nehari manifold and fibering maps, we consider
the function ψb : R+ → R defined by

ψb(t) = t2−q||u||2 + t4−qb|∇u|42 − tp−q
∫
RN
|u|pdx, for t > 0.

Clearly tu ∈ Nλ if and only if ψb(t) = λ
∫
RN f (x)|u|qdx. Moreover,

ψ′b(t) = (2 − q)t1−q||u||2 + (4 − q)t3−qb|∇u|42 − (p − q)tp−q−1
∫
RN
|u|pdx, for t > 0,

and so it is easy to see that, if tu ∈ Nλ, then tq−1ψ′b(t) = φ′′λ,u(t). Hence, tu ∈ N+λ (or tu ∈ N−λ ) if and
only if ψ′b(t) > 0 (or ψ′b(t) < 0). Furthermore, from 1 < q < 2, 4 < p < 2∗, ψ′b(t) = 0 and ψb(0) = 0, we
can deduce that there is a unique tb,max > 0 such that ψb(t) achieves its maximum at tb,max, increasing
for t ∈ [0, tb,max) and decreasing for t ∈ (tb,max,+∞) with lim

t→+∞
ψb(t) = −∞.

The next lemma allows us to assume that N+λ and N−λ are nonempty under the hypothesis.

Lemma 2.5. Suppose that λ ∈ (0, λ1), u ∈ E\{0}. Then

(i) if λ
∫
RN f (x)|u|qdx ≤ 0, then there is a unique t− > tb,max such that t−u ∈ N−λ and

Iλ(t−u) = sup
t≥0

Iλ(tu).

(ii) if λ
∫
RN f (x)|u|qdx > 0, then there are unique t+ and t− with 0 < t+ < tb,max < t− such that t+u ∈ N+λ ,

t−u ∈ N−λ and
Iλ(t+u) = inf

tb,max≥t≥0
Iλ(tu), Iλ(t−u) = sup

t≥tb,max

Iλ(tu).

Proof. (i) if λ
∫
RN f (x)|u|qdx ≤ 0, noting that ψb(t) achieves its maximum at tb,max, increasing for t ∈

[0, tb,max) and decreasing for t ∈ (tb,max,+∞) with lim
t→+∞

ψb(t) = −∞, then there is a unique t− > tb,max
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such that ψb(t−) = λ
∫
RN f (x)|u|qdx, that is t−u ∈ Nλ. Moreover by ψ′b(t) < 0, we obtain that t−u ∈ N−λ .

And by

φ′λ,u(t) =
dIλ(tu)

dt
= tq−1

(
ψb(t) − λ

∫
RN

f (x)|u|qdx
)
,

we have Iλ(t−u) = supt≥0 Iλ(tu).
(ii) Since b > 0, t > 0, we have

ψb(t) > ψ0(t) = t2−q||u||2 − tp−q
∫
RN
|u|pdx,

where ψ0(t) = ψb(t)|b=0. Clearly, ψ0(t) has a unique critical point at t0,max = t0,max(u), where

t0,max =

 (2 − q)||u||2

(p − q)
∫
RN |u|pdx


1

p−2

.

Moreover, by Sobolev inequality, we obtain

ψ0(t0,max) =

 (2 − q)||u||2

(p − q)
∫
RN |u|pdx


2−q
p−2

||u||2 −

 (2 − q)||u||2

(p − q)
∫
RN |u|pdx


p−q
p−2 ∫

RN
|u|pdx

= ||u||q
 ||u||p∫
RN |u|pdx


2−q
p−2 (

2 − q
p − q

) 2−q
p−2 p − 2

p − q

≥ ||u||q
 ||u||p
S −

p
2

p ||u||p


2−q
p−2 (

2 − q
p − q

) 2−q
p−2 p − 2

p − q

= ||u||q
 (2 − q)S

p
2
p

p − q


2−q
p−2

p − 2
p − q

> 0.

(2.8)

Thus, ψb(tb,max) > ψ0(t0,max) > 0.
From λ ∈ (0, λ1), (2.8), Hölder and Sobolev inequalities we also have

λ

∫
RN

f (x)|u|qdx ≤ λ| f |rqS
−

q
2

r ||u||q

< ||u||q
 (2 − q)S

p
2
p

p − q


2−q
p−2

p − 2
p − q

≤ ψ0(t0,max) < ψb(tb,max).

(2.9)

If λ
∫
RN f (x)|u|qdx > 0. Since (2.9), the equation ψb(t) = λ

∫
RN f (x)|u|qdx has exactly two solutions

0 < t+ < tb,max < t− such that

ψb(t+) = λ
∫
RN

f (x)|u|qdx = ψb(t−)

and
ψ′b(t+) > 0 > ψ′b(t−).
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Thus, there exist exactly two multiples of u lying in Nλ, that is, t+u ∈ N+λ and t−u ∈ N−λ . Finally,
by analyzing dIλ(tu)

dt = tq−1
(
ψb(t) − λ

∫
RN f (x)|u|qdx

)
, Iλ(tu) is decreasing for t ∈ (0, t+) and increasing

for t ∈ (t+, tb,max). Moreover, Iλ(tu) is increasing for t ∈ (tb,max, t−) and decreasing for t ∈ (tb,max,+∞).
therefore,

Iλ(t+u) = inf
tb,max≥t≥0

Iλ(tu), Iλ(t−u) = sup
t≥tb,max

Iλ(tu),

□

3. Proof of Theorem 1.1

First, we remark that it follows from Lemma 2.3 that

Nλ = N
+
λ ∪ N

−
λ

for all λ ∈ (0, λ1). Furthermore, by Lemma 2.5 it follows that N+λ and N−λ are nonempty, and by
Lemma 2.1 we may define

αλ = inf
u∈Nλ

Iλ(u); α+λ = inf
u∈N+λ

Iλ(u); α−λ = inf
u∈N−λ

Iλ(u).

Then we get the following result.

Lemma 3.1. One has the following.

(i) If λ ∈ (0, λ1), then one has α+λ < 0.

(ii) If λ ∈ (0, λ2), then one has α−λ > d0 for some d0 > 0.
In particular, for each λ ∈ (0, λ2), one has α+λ = αλ.

Proof. (i) Let u ∈ N+λ . By (2.4)

(p − 2)||u||2 + (p − 4)b|∇u|42 < (p − q)λ
∫
RN

f (x)|u|qdx

and so
Iλ(u) = Iλ(u) −

1
p
⟨I′λ(u), u⟩

=
p − 2
2p
||u||2 +

p − 4
4p

b|∇u|42 −
p − q

pq
λ

∫
RN

f (x)|u|qdx

<
p − 2
2p
||u||2 +

p − 4
4p

b|∇u|42 −
1
pq

(
(p − 2)||u||2 + (p − 4)b|∇u|42

)
=

(p − 2)(q − 2)
2pq

||u||2 +
(p − 4)(q − 4)

4pq
b|∇u|42 < 0.

Therefore, α+λ < 0.
(ii) Let u ∈ N−λ . By Lemma 2.4, we have

||u|| >

 (2 − q)S
p
2
p

p − q


1

p−2

.
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Furthermore, by Hölder and Sobolev inequalities, we have

Iλ(u) = Iλ(u) −
1
4
⟨I′λ(u), u⟩

≥
1
4
||u||2 − λ

(
1
q
−

1
4

)
| f |rqS

−
q
2

r ||u||q

= ||u||q(
1
4
||u||2−q − λ

(
1
q
−

1
4

)
| f |rqS

−
q
2

r )

>

 (2 − q)S
p
2
p

p − q


q

p−2
1
4

 (2 − q)S
p
2
p

p − q


2−q
p−2

− λ

(
1
q
−

1
4

)
| f |rqS

−
q
2

r


≥

 (2 − q)S
p
2
p

p − q


q

p−2
1
4

 (2 − q)S
p
2
p

p − q


2−q
p−2

− λ

(
p − q

4q

)
| f |rqS

−
q
2

r

 > 0.

Thus, if λ ∈ (0, λ2), then
Iλ(u) > d0, ∀u ∈ N−λ ,

for some positive constant d0. This completes the proof. □

From Lemma 2.1 we can obtain the minimizing sequence of the Iλ(u) on the Nehari manifold Nλ.
To gain a (PS )c sequence from the minimizing sequence of the Iλ(u) on Nehari manifoldNλ, we require
the following three lemmas:

Lemma 3.2. If λ ∈ (0, λ1), then for every u ∈ N+λ , there exist ϵ > 0 and a differentiable function
g+ : Bϵ(0) ⊂ E → R+ := (0,+∞) such that

g+(0) = 1, g+(ω)(u − ω) ∈ N+λ , ∀ω ∈ Bϵ(0)

and

⟨(g+)′(0), v⟩ =
2(u, v) + 4b

∫
RN |∇u|2dx

∫
RN ∇u∇vdx − qλ

∫
RN f (x)|u|q−2uvdx − p

∫
RN |u|p−2uvdx

φ′′λ,u(1)
(3.1)

for all v ∈ E. Moreover, if 0 < C1 ≤ ||u|| ≤ C2, then there exists C > 0 such that

|⟨(g+)′(0), v⟩| ≤ C||v||. (3.2)

Proof. We define F : R × E → R by

F(t, ω) = ⟨I′λ(t(u − ω)), (u − ω)⟩

= t||u − ω||2 + t3b|∇(u − ω)|42 − λtq−1
∫
RN

f (x)|u − ω|qdx − tp−1
∫
RN
|u − ω|pdx,

it is easy to see F is differentiable. Since F(1, 0) = ⟨I′λ(u), u⟩ = 0 and Ft(1, 0) = φ′′λ,u(1) > 0, we apply
the implicit function theorem at point (1, 0) to get the existence of ϵ > 0 and differentiable function
g+ : Bϵ(0)→ R+ such that g+(0) = 1 and F(g+(ω), ω) = 0 for ∀ω ∈ Bϵ(0). Thus,

g+(ω)(u − ω) ∈ Nλ, ∀ω ∈ Bϵ(0).
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Next, we show g+(ω)(u − ω) ∈ N+λ , ∀ω ∈ Bϵ(0). By u ∈ N+λ and (2.3), we have

||u||2 + 3b|∇u|42 − (q − 1)λ
∫
RN

f (x)|u|qdx − (p − 1)
∫
RN
|u|pdx > 0.

Since g+(ω)(u − ω) is continuous with respect to ω, when ϵ is small enough, we know for ω ∈ Bϵ(0)

||g+(ω)(u − ω)||2 + 3b|∇(g+(ω)(u − ω))|42

− (q − 1)λ
∫
RN

f (x)|g+(ω)(u − ω)|qdx − (p − 1)
∫
RN
|g+(ω)(u − ω)|pdx > 0.

Thus, g+(ω)(u − ω) ∈ N+λ , ∀ω ∈ Bϵ(0).
Also by the differentiability of the implicit function theorem, we know that

⟨(g+)′(0), v⟩ = −
⟨Fω(1, 0), v⟩

Ft(1, 0)
.

Note that

−⟨Fω(1, 0), v⟩ = 2(u, v) + 4b
∫
RN
|∇u|2dx

∫
RN
∇u∇vdx − qλ

∫
RN

f (x)|u|q−2uvdx − p
∫
RN
|u|p−2uvdx

and Ft(1, 0) = φ′′λ,u(1). So we prove (3.1).
Moreover, by (3.1), 0 < C1 ≤ ||u|| ≤ C2 and Hölder inequality, we have

|⟨(g+)′(0), v⟩| ≤
C̃||v||
φ′′λ,u(1)

for some C̃ > 0. Therefore, in order to prove (3.2), we only need to show that |φ′′λ,u(1)| > d for some
d > 0. We argue by contradiction. Assume that there exists a sequence {un} ∈ N

+
λ , C1 ≤ ||un|| ≤ C2, we

have φ′′λ,un
(1) = on(1), where on(1) → 0 as n → +∞. Then for C1 ≤ ||un|| ≤ C2 by (2.5) and Sobolev

inequality, we have
(2 − q)||un||

2 ≤ (2 − q)||un||
2 + (4 − q)b|∇un|

4
2

= (p − q)
∫
RN
|un|

pdx + on(1)

≤ (p − q)S −
p
2

p ||un||
p + on(1)

and so

||un|| ≥

 (2 − q)S
p
2
p

p − q


1

p−2

+ on(1). (3.3)

Similarly, using (2.4), Hölder and Sobolev inequalities, we have

(p − 2)||un||
2 ≤ (p − 2)||un||

2 + (p − 4)b|∇un|
4
2

= (p − q)λ
∫
RN

f (x)|un|
qdx + on(1)

≤ (p − q)λ| f |rqS
−

q
2

r ||un||
q + on(1)
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which implies

||un|| ≤

 (p − q)λ| f |rq

(p − 2)S
q
2
r


1

2−q

+ on(1). (3.4)

Combining (3.3) and (3.4) as n→ +∞, we deduce

λ ≥

(
p − 2

(p − q)| f |rq

) (
2 − q
p − q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r = λ1,

which is a contradiction. Thus if 0 < C1 ≤ ||u|| ≤ C2, there exists C > 0 such that

|⟨(g+)′(0), v⟩| ≤ C||v||.

This completes the proof. □

Analogously, we establish the following lemma.

Lemma 3.3. If λ ∈ (0, λ1), then for every u ∈ N−λ , there exist ϵ > 0 and a differentiable function
g− : Bϵ(0) ⊂ E → R+ such that

g−(0) = 1, g−(ω)(u − ω) ∈ N−λ , ∀ω ∈ Bϵ(0)

and

⟨(g−)′(0), v⟩ =
2(u, v) + 4b

∫
RN |∇u|2dx

∫
RN ∇u∇vdx − qλ

∫
RN f (x)|u|q−2uvdx − p

∫
RN |u|p−2uvdx

φ′′λ,u(1)
(3.5)

for all v ∈ E. Moreover, if 0 < C1 ≤ ||u|| ≤ C2, then there exists C > 0 such that

|⟨(g−)′(0), v⟩| ≤ C||v||. (3.6)

Lemma 3.4. If λ ∈ (0, λ1), one has the following:

(i) there exists a minimizing sequence {un} ⊂ N
+
λ such that

Iλ(un) = α+λ + on(1),
I′λ(un) = on(1);

(ii) there exists a minimizing sequence {un} ⊂ N
−
λ such that

Iλ(un) = α−λ + on(1),
I′λ(un) = on(1).

Proof. (i) By Lemma 2.1 and the Ekeland variational principle on N+λ , there exists a minimizing se-
quence {un} ⊂ N

+
λ such that

α+λ ≤ Iλ(un) < α+λ +
1
n

(3.7)

and
Iλ(un) ≤ Iλ(v) +

1
n
||v − un|| for each v ∈ N+λ . (3.8)
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And we can show that there exists C1,C2 > 0 such that 0 < C1 ≤ ||un|| ≤ C2. Indeed, if not, that is,
un → 0 in E, then Iλ(un) would converge to zero, which contradict with Iλ(un) → α+λ < 0. Moreover,
by Lemma 2.1 we know that Iλ is coercive on N+λ , {un} is bounded in N+λ .

Now, we show that

||I′λ(un)|| → 0 as n→ ∞.

Applying Lemma 3.2 with un to obtain the functions g+n (ω) : Bϵn(0)→ R+ for some ϵn > 0, such that

g+n (0) = 1, g+n (ω)(un − ω) ∈ N+λ , ∀ω ∈ Bϵn(0).

We choose 0 < ρ < ϵn. Let u ∈ E\{0} and ωρ = ρu/||u||. Since g+n (ωρ)(un − ωρ) ∈ N+λ , we deduce from
(3.8) that

1
n

[|g+n (ωρ) − 1|||un|| + ρg+n (ωρ)]

≥
1
n
||g+n (ωρ)(un − ωρ) − un||

≥Iλ(un) − Iλ(g+n (ωρ)(un − ωρ))

=
1
2
||un||

2 +
b
4
|∇un|

4
2 −

λ

q

∫
RN

f (x)|un|
qdx −

1
p

∫
RN
|un|

pdx

−
1
2

(
g+n (ωρ)

)2
||un − ωρ||

2 −
b
4

(
g+n (ωρ)

)4
|∇(un − ωρ)|42

+
λ

q

(
g+n (ωρ)

)q
∫
RN

f (x)|un − ωρ|
qdx +

1
p

(
g+n (ωρ)

)p
∫
RN
|un − ωρ|

pdx

= −

(
g+n (ωρ)

)2
− 1

2
||un − ωρ||

2 −
1
2

(||un − ωρ||
2 − ||un||

2)

− b

(
g+n (ωρ)

)4
− 1

4
|∇(un − ωρ)|42 −

b
4

(|∇(un − ωρ)|42 − |∇un|
4
2)

+ λ

(
g+n (ωρ)

)q
− 1

q

∫
RN

f (x)|un − ωρ|
qdx +

λ

q

(∫
RN

f (x)|un − ωρ|
qdx −

∫
RN

f (x)|un|
qdx

)

+

(
g+n (ωρ)

)p
− 1

p

∫
RN
|un − ωρ|

pdx +
1
p

(∫
RN
|un − ωρ|

pdx −
∫
RN
|un|

pdx
)
.

(3.9)

Note that

lim
ρ→0+

g+n (ωρ) − 1
ρ

= lim
ρ→0+

g+n (0 + ρ u
||u|| ) − g+n (0)

ρ
= ⟨(g+n )′(0),

u
||u||
⟩.
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If we divide the ends of (3.9) by ρ and let ρ→ 0+, we have

1
n

[
|⟨(g+n )′(0),

u
||u||
⟩|||un|| + 1

]
≥ − ⟨(g+n )′(0),

u
||u||
⟩||un||

2 −

∫
RN
∆un∆(−

u
||u||

) + a∇un∇(−
u
||u||

) + V(x)un(−
u
||u||

)dx

− b⟨(g+n )′(0),
u
||u||
⟩|∇un|

4
2 − b

∫
RN
|∇un|

2dx
∫
RN
∇un∇(−

u
||u||

)dx

+ λ⟨(g+n )′(0),
u
||u||
⟩

∫
RN

f (x)|un|
qdx + λ

∫
RN

f (x)|un|
q−2un(−

u
||u||

)dx

+ ⟨(g+n )′(0),
u
||u||
⟩

∫
RN
|un|

pdx +
∫
RN
|un|

p−2un(−
u
||u||

)dx

= − ⟨(g+n )′(0),
u
||u||
⟩

(
||un||

2 + b|∇un|
4
2 − λ

∫
RN

f (x)|un|
qdx −

∫
RN
|un|

pdx
)

+
1
||u||

∫
RN

(∆un∆u + a∇un∇u + V(x)unu)dx +
b
||u||

∫
RN
|∇un|

2dx
∫
RN
∇un∇udx

−
λ

||u||

∫
RN

f (x)|un|
q−2unudx −

1
||u||

∫
RN
|un|

p−2unudx

= − ⟨(g+n )′(0),
u
||u||
⟩⟨I′λ(un), un⟩ +

1
||u||
⟨I′λ(un), u⟩

=
1
||u||
⟨I′λ(un), u⟩,

that is,
1
n

[
|⟨(g+n )′(0), u⟩|||un|| + ||u||

]
≥ ⟨I′λ(un), u⟩.

By the boundedness of ||un|| and Lemma 3.2, there exists Ĉ > 0 such that

Ĉ
n
≥ ⟨I′λ(un),

u
||u||
⟩.

Hence we have

||I′λ(un)|| = sup
u∈E\{0}

⟨I′λ(un), u⟩
||u||

≤
Ĉ
n
,

that is, I′λ(un) = o(1) as n→ +∞. This completes the proof of (i).
(ii) Similarly, by using Lemma 3.3, we can prove (ii). We will omit detailed proof here. □

Now, we establish the existence of a minimum for Iλ on N+λ .

Theorem 3.5. If λ ∈ (0, λ1), the functional Iλ has a minimizer u+0 in N+λ and it satisfies Iλ(u+0 ) = α+λ .

Proof. By Lemma 3.4, there exist a minimizing sequence {un} ⊂ N
+
λ such that

Iλ(un) = α+λ + on(1), and I′λ(un) = on(1).
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Then by Lemma 2.1 and the compact embedding theorem, there exist a subsequence {un} and u+0 ∈ E
such that

un ⇀ u+0 in E,

un → u+0 in Lr(RN) for 2 ≤ r < 2∗.

Next we prove un → u+0 in E. Note that

⟨I′λ(un) − I′λ(u
+
0 ), un − u+0 ⟩ = ⟨I

′
λ(un), un − u+0 ⟩ − ⟨I

′
λ(u
+
0 ), un − u+0 ⟩

=

∫
RN
∆un∆(un − u+0 ) + a∇un∇(un − u+0 ) + V(x)un(un − u+0 )dx

+ b
∫
RN
|∇un|

2dx
∫
RN
∇un∇(un − u+0 )dx

− λ

∫
RN

f (x)|un|
q−2un(un − u+0 )dx −

∫
RN
|un|

p−2un(un − u+0 )dx

−

∫
RN
∆u+0∆(un − u+0 ) + a∇u+0∇(un − u+0 ) + V(x)u+0 (un − u+0 )dx

− b
∫
RN
|∇u+0 |

2dx
∫
RN
∇u+0∇(un − u+0 )dx

+ λ

∫
RN

f (x)|u+0 |
q−2u+0 (un − u+0 )dx +

∫
RN
|u+0 |

p−2u+0 (un − u+0 )dx

=

∫
RN
|∆(un − u+0 )|2 + a|∇(un − u+0 )|2 + V(x)|un − u+0 |

2dx + b
∫
RN
|∇un|

2dx
∫
RN
|∇(un − u+0 )|2dx

− b
(∫
RN
|∇u+0 |

2dx −
∫
RN
|∇un|

2dx
) ∫
RN
∇u+0∇(un − u+0 )dx

− λ

∫
RN

f (x)(|un|
q−2un − |u+0 |

q−2u+0 )(un − u+0 )dx −
∫
RN

(|un|
p−2un − |u+0 |

p−2u+0 )(un − u+0 )dx

≥||un − u+0 ||
2 − b

(∫
RN
|∇u+0 |

2dx −
∫
RN
|∇un|

2dx
) ∫
RN
∇u+0∇(un − u+0 )dx

− λ

∫
RN

f (x)(|un|
q−2un − |u+0 |

q−2u+0 )(un − u+0 )dx −
∫
RN

(|un|
p−2un − |u+0 |

p−2u+0 )(un − u+0 )dx,

then we can deduce that ||un − u+0 || → 0 as n → ∞. Indeed, from the boundedness of {un} in E and the
continuous embedding, {un} is bounded in Lr(RN), r ∈ [2, 2∗]. Using Hölder inequality we see that

|λ

∫
RN

f (x)(|un|
q−2un − |u+0 |

q−2u+0 )(un − u+0 )dx|

≤λ

(∫
RN
| f |rqdx

) 1
rq

(∫
RN
||un|

q−2un − |u+0 |
q−2u+0 |

r
q |un − u+0 |

r
q dx

) q
r

≤C| f |rq(|un|
q−1
r + |u+0 |

q−1
r )|un − u+0 |r → 0, as n→ ∞,

where C is a positive constant. Similarly, we obtain

|

∫
RN

(|un|
p−2un − |u+0 |

p−2u+0 )(un − u+0 )dx| → 0, as n→ ∞.
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From

b
(∫
RN
|∇u+0 |

2dx −
∫
RN
|∇un|

2dx
) ∫
RN
∇u+0∇(un − u+0 )dx→ 0, as n→ ∞,

and
⟨I′λ(un) − I′λ(u

+
0 ), un − u+0 ⟩ = ⟨I

′
λ(un), un − u+0 ⟩ − ⟨I

′
λ(u
+
0 ), un − u+0 ⟩ → 0, as n→ ∞,

we have ||un − u+0 || → 0 as n→ ∞.
In addition, from the proof of Lemma 3.4 we know that there exists C1,C2 > 0 such that 0 < C1 ≤

||un|| ≤ C2, then 0 < C1 ≤ ||u+0 || ≤ C2. Thus u+0 , 0.
Next we prove u+0 ∈ N

+
λ . In fact, it follows from (2.4) that

φ′′λ,un
(1)→ φ′′λ,u+0

(1), n→ ∞.

From φ′′λ,un
(1) > 0, we have φ′′

λ,u+0
(1) ≥ 0. By Lemma 2.3, we know φ′′

λ,u+0
(1) > 0. Thus we deduce

u+0 ∈ N
+
λ , Iλ(u+0 ) = lim

n→∞
Iλ(un) = inf

u∈N+λ
Iλ(u) = α+λ .

This completes the proof. □

Next, we establish the existence of a minimum for Iλ on N−λ .

Theorem 3.6. If λ ∈ (0, λ1), the functional Iλ has a minimizer u−0 in N−λ and it satisfies Iλ(u−0 ) = α−λ .

Proof. By Lemma 3.4, there exist a minimizing sequence {un} ⊂ N
−
λ such that

Iλ(un) = α−λ + on(1), and I′λ(un) = on(1).

Then by Lemma 2.1 and the conpact embedding theorem, there exist a subsequence {un} and u−0 ∈ E
such that

un ⇀ u−0 in E,

un → u−0 in Lr(RN) for 2 ≤ r < 2∗.

In view of the proof of Lemma 3.4 we know that there exists C1,C2 > 0 such that 0 < C1 ≤ ||un|| ≤ C2,
then 0 < C1 ≤ ||u−0 || ≤ C2. Thus u−0 , 0. Moreover, in the same way as Theorem 3.5, we still have
un → u−0 in E. By Lemma 2.4 the set N−λ is closed in E, we know u−0 ∈ N

−
λ . Thus,

Iλ(u−0 ) = lim
n→∞

Iλ(un) = inf
u∈N−λ

Iλ(u) = α−λ .

This completes the proof. □

Now we can give the proof of the main result.

Proof of Theorem 1.1. From Theorems 3.5, 3.6 and Lemma 2.2, we know if λ ∈ (0, λ1), then Eq (1.1)
has at least two solutions u−0 , u+0 and Iλ(u+0 ) < 0. Since u+0 ∈ N

+
λ , u−0 ∈ N

−
λ and N+λ ∩ N

−
λ = ∅, this

implies that u+0 and u−0 are different. In addition, if λ ∈ (0, λ2), by Lemma 3.1 we have Iλ(u+0 ) < 0 and
Iλ(u−0 ) > 0, which implies αλ = α+λ = Iλ(u+0 ). So u+0 is a ground state solution of Eq (1.1). It completes
the proof of Theorem 1.1. □
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4. Proof of Theorem 1.2

In this section, we denote +u = max{u(x), 0} and −u = min{u(x), 0}, then u =+ u +− u. Define
working space

Ē = {u ∈ E|
∂iu
∂xi
∈ H for i = 1, 2, · · · ,N},

where H = {u ∈ H1(RN)|
∫
RN V(x)u2dx < +∞}. Moreover, the functional I : Ē → R by

I(u) =
1
2

∫
RN

(|∆u|2 + a|∇u|2 + V(x)u2)dx +
b
4

(
∫
RN
|∇u|2dx)2 −

1
p

∫
RN
|u|pdx.

In order to obtain a sign-changing solution of (1.1), we consider the minimization of the following
manifold

±N = {u ∈ Ē,± u , 0 and ⟨I′(u),+ u⟩ = ⟨I′(u),− u⟩ = 0}.

Define α = infu∈±N I(u). Similar to Lemma 2.2, if there exists u ∈± N such that I(u) = α, then u is a
solution of (1.1).

Proof of Theorem 1.2. Without loss of generality, we can assume b = 1. Let {un} ⊂
± N be a minimizing

sequence of α. Going if necessary to a subsequence, one has

1
4
||un||

2 +
p − 4
4p
|un|

p
p = I(un) − ⟨I′(un), un⟩ ≤ 2α,

that is, {un} is a bounded sequence of Ē. Then by the compact embedding theorem, there exist a
subsequence {un} and u ∈ Ē such that

un ⇀ u, ±un ⇀
± u in E,

±un →
± u in Lr(RN) for 2 ≤ r < 2∗,

∇±un → ∇
±u in Lr(RN) for 2 ≤ r < 2∗,

as n→ ∞. We assert that there exists C > 0 such that |±un|p ≥ C, which implies that ±u , 0. In fact, for
any u ∈± N , there exists C > 0 such that |u|p ≥ C. Suppose to the contrary that there exists a sequence
{un} ⊂

± N such that |un|p → 0 as n→ ∞. From ⟨I′(un),+ un⟩ = 0, there holds

||+un||
2 ≤ ||+un||

2 + |∇un|
2
2||∇

+un|
2
2 = |

+un|
p
p ≤ C||+un||

p.

Therefore, there exists C > 0 such that ||+un|| ≥ C. Moreover, it follows from |+un|p ≤ |un|p → 0
and ⟨I′(un),+ un⟩ = 0 that ||+un|| → 0 as n → ∞, which contradicts ||+un|| ≥ C > 0. Therefore, there
exists C > 0 such that |u|p ≥ C for any u ∈± N . Similar to the discussion of Lemma 2.5, there exists
0 <− t ≤+ t such that −t−u ++ t+u ∈± N , which implies that

||+u||2 ++ t2|∇+u|42 +
− t2|∇−u|22|∇

+u|22 =
+ tp−2|+u|pp.

Since −t ≤+ t, there holds
+tp−4|+u|pp ≤

1
+t2 ||

+u||2 + |∇u|22|∇
+u|22. (4.1)
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Moreover, it follows from {un} ⊂
± N that

|+un|
p
p = ||

+un||
2 + |∇un|

2
2|∇
+un|

2
2,

and by the weakly lower semicontinuity of norm, one has

|+u|pp ≥ ||
+u||2 + |∇u|22|∇

+u|22. (4.2)

It follows from (4.1) and (4.2) that

(1 −+ tp−4)|+u|pp ≥ (1 −
1
+t2 )||+u||2,

which implies +t ≤ 1. Therefore, 0 <− t ≤+ t ≤ 1. By −t−u ++ t+u ∈± N , one has

α ≤ I(−t−u ++ t+u) = I(−t−u ++ t+u) −
1
4
⟨I′(−t−u ++ t+u),− t−u ++ t+u⟩

=
+t2

4
||+u||2 + (

1
4
−

1
p

)+tp|+u|pp +
−t2

4
||−u||2 + (

1
4
−

1
p

)−tp|−u|pp

≤
1
4
||+u||2 + (

1
4
−

1
p

)|+u|pp +
1
4
||−u||2 + (

1
4
−

1
p

)|−u|pp

=
1
4
||u||2 + (

1
4
−

1
p

)|u|pp ≤ lim
n→∞

inf[
1
4
||un||

2 + (
1
4
−

1
p

)|un|
p
p]

= lim
n→∞

inf I(un) = α,

which implies that +t =− t = 1, u =+ u +− u ∈± N and I(u) = I(+u +− u) = α. Then, we conclude that
u =+ u +− u is a sign-changing solution of (1.1). It completes the proof of Theorem 1.2. □
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