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1. Introduction

Uncertainty affects all aspects of human life. Zadeh [18] introduced the concept of a fuzzy set
to overcome the limitations of classical set theory in dealing with such uncertainties. This approach
defined a fuzzy set using a membership function with values ranging in a unit interval. However,
further analysis showed that this definition fell short when addressing degrees of both membership
and non-membership. To resolve this issue, Atanassov [3] developed intuitionistic fuzzy theory as an
enhancement of the fuzzy set model. Although it provided a broader framework and found real-world
applications [2, 17], it faced challenges in practical use. In response, Smarandache [13] introduced
the concept of a neutrosophic set to handle problems involving ambiguous and inconsistent data.
Since then, research has explored neutrosophic sets in various areas, including the study of algebraic
structures [5,6, 10, 15] and real-world applications, as seen in [7, 8].

The definitions of intersection and union in neutrosophic sets have been examined from three
distinct angles. The initial interpretations, proposed by Smarandache [13, 15], are represented as N
and Uj. The second set of definitions, found in [16], are denoted as N, and U,. The third approach,
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introduced in [19], is symbolized by N3 and Uz. Additionally, Elrawy et al. [4] developed and explored
an alternative neutrosophic sub-group and level sub-group concept, based on the first perspective.

Recently, Bal and Olgun [12] introduced neutrosophic modules using an indeterminate element, I.
Also, Abed et al. [1] studied some results of the neutrosophic multiplication module. While Hameed
et al. [9] introduced an approach of single-valued neutrosophic sub-modules based on the second
perspective.

The investigation into the concepts of modules within the framework of neutrosophic sets is driven
by three main objectives. The first is to define the neutrosophic sub-module as an algebraic structure
without incorporating the indeterminate element I and based on the first perspective. The second is to
examine how classical module theory can be extended to neutrosophic modules, where elements satisfy
module conditions with varying levels of truth, indeterminacy, and falsity. The third objective is to
establish a more adaptable framework through neutrosophic modules to address uncertain, incomplete,
or conflicting information, which is crucial in fields such as artificial intelligence, economics, social
sciences, and decision-making, where data often exhibit uncertainty.

Unlike classical modules, which require strict membership conditions, neutrosophic modules
permit partial and uncertain membership. This flexibility results in more prosperous and versatile
algebraic structures that better capture the complexity of real-world situations. Additionally, this paper
introduces a novel approach to neutrosophic modules, altering the conventional perspective [12].

The study also includes the definition of neutrosophic modules over a ring and neutrosophic rings,
along with an analysis of their properties. Furthermore, various properties of the direct product and
homomorphism between neutrosophic modules are derived and explored.

The remainder of this article is organized as follows: Section 2 introduces essential definitions
and preliminary results, laying the foundation for the paper’s main contributions. Section 3 presents
the concept of a neutrosophic R-sub-module along with its properties. We also derive various
properties related to the direct product and homomorphism of neutrosophic modules. Finally, Section 4
summarizes the essential findings and conclusions of the study.

Table 1. Symbols and description of this article.

Symbol  Description Symbol Description

NS neutrosophic set ®, 9 classical group

R classical ring M classical module over R

D universe set M(R) the set of R-module

R neutrosophic sub-ring over R M’ module over neutrosophic sub-ring
NSM(R) the set of all neutrosophic R-sub-module  9ty, neutrosophic R-sub-module

2. Some basic concepts

Here, we give important concepts and outcomes as follows:

Definition 2.1. [/4, 16] An NS E on a universe set D is defined as:
E={<Lu@),y3),{(d)>:1eD},
with u,y,{ : D —[0,1].

AIMS Mathematics Volume 9, Issue 12, 35964-35977.



35966

Definition 2.2. [4] A neutrosophic subset M = {< w, u(w), y(w),(w) >: w € ®} of a group ® is said
to be a neutrosophic subgroup of ® if the next axioms are met:

(i) u(wb) = min(u(w), u(b)),

(iD) pw™!) > p(w),

(iii) y(wb) < max(y(w),y(b)),

(@) y (@) < (W),

(v) {(wb) < max({(w),{(D)),

i) ¢ (w™!) < (W),

where w,b € ®.
Definition 2.3. [/3] Consider 9t and Ny are two NSs on D. Then:

L9 N = {< w,u1(W) V p2(w), y1(w) Ay2(w), {1 (w) Ad(w) >: w € DY,
2. Ny Uy = {< w,p1(w) A piz(w), y1(w) V y2(w), {1(w) V {(w) >: w € D).

Definition 2.4. [11] Presume & and $ are a group and Iy and M, define on ® and 9, respectively.

Then
[sup{u1(6): 6€ 6,1 =p},  fT () # ¢,
r(ﬂl)(ﬁ) - {0’ l]‘F_l(p) — ¢
_ [infly1(6):6€ 6,T©®) =p}, T 1) # ¢,
1—‘(’yl )(p) - {0’ lfr—l(p) — ¢
_ [inf{£1(6): 6 € 6,T0) =p},  ifT~1(p) # ¢,
r({l)(p) - {O, lfr_l(p) — ¢’

where p € 9. Also, T (112)(0) = fa(T(S)), T~ (12)(8) = y2(T(8)), and T~ ({)(6) = L(T(6)).
3. Main results

3.1. Neutrosophic modules

Let us now present the notion of a neutrosophic module defined over a neutrosophic ring and

module.
First, we define a neutrosophic module over a neutrosophic ring. Consider M is a module over a ring

R, and M’ is a module over a neutrosophic sub-ring R.

Definition 3.1. An NS 0Dty = {< €, upr (€), vy (€),Enp () >: € € M’} over M is say a neutrosophic sub-
module if the next axioms are met:

pmr (€ + u) = min(upe (6), o (),
(D)1 ymr (E+uw) < max(ym (6), ymr (),

S (E+ u) < max($pe (6), Sy ().

pp (A0) = min(upy (A), upr (£)),
(i) ¢ ymr (A) < max(yy (), ym (£)),

Enr (A0) < max({r (), {mr (6)).
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pupr(0) =1,
(iit) 3 ym(0) =0,
I (0) =0,

where ue M’ ,upy (€), vy (€),Eap (€) : M" — [0,1] and A € R.
Now, we introduce the neutrosophic module over module.

Definition 3.2. An NS Nty = {< ,up(0), vy (€),{pm(€) >: € € M} over M is say a neutrosophic R-sub-
module if the next axioms are met:

pm (€ + u) = min(up (), pa(u)),

(@) ym(€+u) <max(ym(6),ym(un)),

Im(C+u) < max(Ey(6), {p(u)).
pm(A€) = min(up (), up(£)),
(i) { ym(A0) < max(yp (), ym(0)),
Im(A0) < max(&y (), {m(0)).

um(0) =1,
(iif) ¢ ym(0) =0,
{m(0) =0,

where u € M, up(€),yp(€),{pm(€) : M — [0,1] and A € R.

Example 3.3. Presume R = Z is a ring and M = Z over itself. Then, define a neutrosophic subset
My = {< 0,u(0),¥(0),{(0) >: 0 € Z} by:

I ife=0,
u@) =402 ifo#0iseven,
0.3 ifoisodd.

0 ife=0,
Y(©) =105 ifo#0iseven,
0.8 ifoisodd.

0 ifo=0,
{(0)=404 ifo#0iseven,
0.7 ifoisodd.

Thus, My is a neutrosophic module.

The following assertions describe the characteristics of the system of condition (i) and (i) for
different classes of rings.

Proposition 3.4. Let R be a ring with identity, then uy(A€) = up(€), ym(A€) = yp (), and {y(A€) =
m(0).
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Proof. Assume that 9)t); is a neutrosophic sub-module; then we have

pm () = ppm((1 = DE + A6) = min(up((1 = DE), pm (A6))
> min(min(gy (), up (=€), pup (L))
> min(min(ua (), upr(—A6)), par())
> min(up (6), pp (A0)).

yu(€) = ymu((1 = D+ A0) < max(ym((1—)E), ym(AL))
< max(max(ym(£), ym(=A6)), yu(AL))
< max(max(yp(€), ym(=16)), ym(0))
< max(ym(£), ym(A0)).

Em(€) = {n((1 = D+ A0) < max(@u((1 = D)), {m(AL))
< max(max({m(€), {m(—=A6)), {m(AL))
< max(max({y(€), {mu(=16)), {m(6))
< max({m(€), {m(A0)).

From the above and Definition 3.2, (ii) we obtain iy (A€) = up(€), Yy () = yp(€), and {(AL) =
m(0). O

Proposition 3.5. Let R be a field and 0 # A € R, then upy(A€) = up(€), Yy (A6) = yp(€), and {p(A€) =
Sm(0).

Proof. Assume that 0 # A € R and R is a field, then

1

pum(A) > pp(6) = ,UM(/—IM) > pup(A0),
1

Ym0 <ym(€) = )’M(z/w) < ym(al),
1

Im(A0) < Lm(6) = (M(Z/U’) < {m(10).

From the above and Definition 3.2, (ii) we follow that up;(A€) = up(€), yp(A€) = yp(€), and {p(A€) =
m(0). o

3.2. Properties of neutrosophic modules

Proposition 3.6. A neutrosophic R-sub-module Myy, then My ={1:3e€ M,up Q) =1,y (3) = Ly (3) = 0}
is an R-sub-module of the module M; also My, is a neutrosophic R-sub-module.

Proof. Suppose that J,£ € M and A € R, then

pm(+6) 2 min(upy (), um(0) = 1,
ymu(@+6) < max(yu (), ym(6) =0,
Cm(+0) < max(fu(),{u(0)) = 0,
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so upy(3+€)=1and yy(3+€) =L (3+€) =0, thus 1+ € € M. Since

um(A) > puy () =1,
Ym(A) <yu() =0,
{m(A) < &) =0,

thus we obtain pys(A]) = 1, and v (A1) = {y(A3) = 0. This follows that A1 € M. Finally, since uys(0) =1,
vm(0) =0, and £»;(0) = 0. Therefore O € M. So M| is an R-sub-module of the module M. The last
part of the proposition’s statement is self-evident. O

Proposition 3.7. Let R be a ring with unity and Wiy, be a neutrosophic R-sub-module, then My is a
neutrosophic sub-group of M.

Proof. Suppose that ] € M, then

um (=) = up((=1).0) > ymu(Q),
ym(=1) =ymu((=1).D) <yu@),
Im(=3) = m((=1).D) < Im (),

and since My is a neutrosophic R-sub-module, this leads to iy, being a neutrosophic sub-group
of M. O

Proposition 3.8. A neutrosophic R-sub-module My, then My ={1:1€ M,up(3) = 9, yn(Q) <9, () <
¥} is an R-sub-module of the module M also My, is a neutrosophic R-sub-module, where 0 <9 < 1.

Proof. Assume that J,x € M and A € R, then
pm(+ k) = min(up (), up () = 9,

()3 ym(Q+x) <max(ym(), ym(x)) =9,
I3+ k) < max(u (), {u(x) =13,
pm(Ad) = min(up (), up () = um () > 9,

(@) § ym(A) < max(yy (D), ynu ) =ym(@) <9,

Im(Ad) < max($y(A),{m ) = {u(d) < 0,

up(0)=12=19,
(i) { ym(©0)=0<9,
(0)=0<9.
Therefore, ]+ k € My, A1 € My and 0 € M. O

Here we suppose that N € M and M is an R-module; then we define a neutrosophic subset on N as
follows: My = {< I, un(),yn(),{n() >: 1€ N} and pn,yn,{n : N — [0, 1].

Proposition 3.9. t,, is a neutrosophic R-sub-module iff N is a sub-module of M.

Proof. Suppose that i, is a neutrosophic R-sub-module, then for any 7,4 € N and A € R, we obtain
pm(n + ) = min(up (), um () = 1,

(1) ¢ Ym(m+ k) <max(ym(n),ym(x)) =0,
Em(+ &) < max(fu (M), {m(x)) =0,
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Ym(An) < max(yp (), ypu(m) = ym(n) =0,
{m(An) < max($p (D), {m(n) = {m(n) =0,

pum(0) =1,
(iif) § ym(0) =0,
{m(0) =0.
Son+keN, Ane N and 0 € N. Therefore, N is sub-module of M.

{ par(An) = min(upr(A), () = par() = 1,
(ii)

The other direction, assume that N is a sub-module of M. Now, we show some cases:

Case 1. For any 0,7, € N and 1 € R, we obtain:

min(up (), up () = 1 < 1 = pp(n+x),

(i) ¢ max(yy(m),ym(k)) =020 =yyn+xK),
max({p (), {p(k) =02 0 = {y(n+«),
mpr(An) = 1 2 min(upr (), up (1)) = ppr(n),

(i) ¢ ym(An) =0 < max(ypy (D), ymu(m) = ymu(),

Em(An) = 0 < max($p (D), {pm(n) = Lm(),

pum(0) =1,
(iii) { ym(0) =0,
{m(0)=0.
Case 2. For any 0,7 € N,k ¢ N and A € R, we obtain:
min(up (), up(€)) = min(1,0) = 0 < pp(n + K,
(1) § max(ypm(m),ym(k)) =max(1,0) =12>0=ypy(n+«),
max({m(n), {m(x)) = max(1,0) =1 >0 = {y(n+«),
{ pp(An) = 1 > min(uar (), () = (),
(if)

Ym(An) = 0 < max(yu (D), ym(m) = ym(m),
v (An) = 0 < max($y (), {m(m) = Em (),

up(0) =1,
(@iii) ¢ ym(0) =0,
¢{m(0) =0.
Case 3. For any 0,7 ¢ N,k € N and A € R, we obtain:
{ min(u (1), up(x)) = min(0, 1) = 0 < up(n + &),
(D)

max(yp(n),ym(k)) = max(0,1) =1 >0 =yy(n+«),
max({y(m),{m(x)) = max(0,1) = 1 > 0 = {y(n+«),
um(n) =0 < up(An),
(@) ¢ ym =12yp(n),
{m(m) =1 > Iy(An)

up(0) =1,
(@iii) ¢ ym(0) =0,
{m(0) =0.
Case 4. For any 0,7 ¢ N,k ¢ N and A € R, we obtain:
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min(up (), () = min(0,0) = 0 < py(n + «),
(1) ¢ max(ym(m),ym(x)) =max(0,0) =020 =yyn+x),
max($y(n), {m(x)) = max(0,0) = 0> 0 = Ju(n +«),
pm (1) =0 < py(Am),
(i) ¢ ym(p) =1 =ymu(an),
m() =12 Eu(An)
pum(0) =1,
(i) § ym(0) =0,
{m(0) =0.
Thus, iy, is a neutrosophic R-sub-module. |

In what follows, the set of all neutrosophic R-sub-modules of 9t,, is denoted by NSM(R).
Proposition 3.10. Let 9t7,B s eNSM(R), then Ny N1 Ppr eNSM(R).

Proof. Assume that ],k € M and A € R, then
(1 V )G+ ) = g G+ RV i (3440
> min (). i () V minyy ()41 ()
= min((ua V (13D, (s V ) (%)),
(ym AV +K) =y + ) Ay G+ k)
(@) < max(yp (), ym () Amax(yy,(3), 7y, (k))
= max((ym A Yy D, (Ym Ayy)(K)),
U NG +K) = i3+ K) ALy + k)
< max({y(3), {m (k) Amax(£y,(3),£),(k))
= max(({y A L)), (s ALy (K)),
(i V () (A0) = pupg () V pa,(AT)
> )V iy ()
= (um V 1)),
(ym Ay = ym(A3) Ay (D)
(i0) <yuM A Yy
= (ym Ay,
(A Ey)(AD) = Ly (A A Ly (AT)
<IN 0)
=Um A,
(um Vi 0) = 1,
(iti) § (ym Ay))(0) =0, m
(&m N E3(0) =0.
Example 3.11. Let R = Z; be a ring; then we have a module M = Z,. Define NS M = {< 0,1,0,0> ,<
1,0.3,0.4,0.5 >} and B ={< 0,1,0,0 >,< 1,0.2,0.6,0.7 >} over M. It is clear that M, B eNSM(R).
Also, MN; B=1{<0,1,0,0>,<1,0.3,0.6,0.7 >} eNSM(R).

Now, we show the generalization of Proposition 3.10.
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Corollary 3.12. Let M;,, eNSM(R) with i =1,2,...,n, then N;MN;,, ENSM(R).
Next, we introduce the definition of direct product of NSM(R).

Definition 3.13. Let M;,, eNSM(R) with i = 1,2,...,n, then the direct product of M;,, is defined as
My = [1T72, Py, with

/‘liM)(Jla 327 R ,Jn) = min(ﬂlM(Jl)nuzM(JZ)a oo a,unM(Jn)),
1

,uM(Jl’JZa"'aJn) = (

n

1

VM(JI’ 329 e 73}’1) = (H ,)/ZM(JI’ 329 e ,Jn) = maX(yIM(Jl)’sz(JZ)a e a?’nM(Jn))»
i=1

éM(Jla 32’ e ’Jn) = (l_[ gl'M(Jlajz’ ey Jn) = max(glM(Jl)a §2M(32), e aénM(Jn))
i=1

The set of R-modules is denoted by M(R). Also, M = H?:] M,; is a direct product where M; eM(R).
Theorem 3.14. My, = [[:L, M;,, is a neutrosophic R-sub-module.

Proof. Suppose that J,k € M and A € R, where 1= (J1,),...,],) and k = (k1,k2,...,k,). Then

U Q+k) = up (1 +k1, 0+ k2,0 1+ Ky)
=min(uy,, (1 +&1), 42,2 +K2), -+ > iy, (I + Kn))
> min(min(uy,,(31), 41, (1)), min(uz,, (32), 42,,(€2)), - .., Min(tyy, 3n), iy, (Kn)))
= min(min(g,(31), 42, (32), - - > iy Gn))s min(uey (K1), 12, (K2, -« s iy (Kn)))

= min(up (), tm (),
ymM(Q+K) =y +k1,h+k2,.... 0 +Kn)

= maX(YIM(Jl + Kl)’sz(J2 + KZ)’ s ,')’nM(Jn + Kn))

(i) < max(max(y1,,(31),y1,,(k1)),max(y2,,(32),¥2,,(k2)), - . ., max (¥, C)s Yy, (kn))) o
= max(max(y1,,1)s Y2y, (2)s - - -» Yy, () max(uan ,, (K1), ¥2,, (K2)s - « - Vg (Kn)))
= max(yp (), ym(x)),

(Q+k) =y +k1, 0+ K2, k)
= max({1,, (31 + 1,82y, (2 +&2)s -+, Gy (G + Kn))
< max(max({1,,(31),1,,(k1)), max($2,,(32), 42, (k2)), - - ., max(Lny, ()5 Gy (Kn)))
= max(max({1,,(1),£2,,(32), - - - $ny (3n))s max(un, (k1),£2,, (K2)s - - - s Ly (Kn)))
= max({u (), {m(x)),
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ppm(Ad) = pp (A1, 41,0, A1y)
= min(uy,, (A1), 12, (A2), ..., iy, (A1)
2 min(ﬂlM(Jl)’MZM(JZ) ----- ,UnM(Jn))
= pum (),
}/M(/U) = 7M(/111, /Uz ..... /un)
Proof. (i) = max(y1,,(A431), Y2y, (A02), .., Yy (A3n))
< max(y1,,(31),72,,(32)s - . Yip (3n))
=yu(,
Cy(A)) = Ly(Ady, Ada, ..., AL
= max({1,,(A01),42,,(A32), ..., {ny (Ad0))
<max({1,,(31),£2,,(2), - .-, {ny (3))
=Lm(),
U (0) = up(0,0,..., 0) = min(uy,,(0), u2,,(0),..., Hny,(0)) =min(1,1,..., =1,
(iii) 3 ym(0) =vp(0,0,..., 0) = max(y1,,(0),y2,,(0),..., Yny, (0)) = max(0,0,..., 0)=0, O
{v(0) =4y (0,0,..., 0) = max({1,,(0),42,,(0),..., {ny, (0)) = max(0,0,..., 0)=0.

3.3. Homomorphism between neutrosophic R-sub-modules

Proposition 3.15. Let T be an epimorphism from M into N R-modules. When Niy; eNSM(R), then
[(Mipr) € NSN(R).

Proof. Suppose that pj,p2 € N and 4 € R, then

L(um)(p1 +p2) = sup{up(or +02) : 01,02 € M,I(01) = p1,I'(02) = p2}
> sup{min(up(01), um(02)) : 01,02 € M,I'(01) = p1,1(02) = p2}
min(sup{up(o1) : I'(01) = p1},sup{um(o2) : T'(02) = p2})

= min(I(uar)(01), T(uar)(02)),

L(ym)(p1 +p2) = inflyy (o1 +02) : 01,02 € M,I'(01) = p1,1'(02) = p2}
0 < inf{max(ypm(01),ym(02)) : 01,02 € M,I'(01) = p1,1(02) = p2} °
= max(inf{yp(01) : ['(01) = p1},inf{yny(02) : T'(02) = p2})

= max(I'(ya) (1), T(ym)(02))
L(&m)(p1 +p2) = inf{dp (01 +02) : 01,02 € M,I'(01) = p1,1(02) = p2}

< inf{max({p(01),{m(02)) : 01,02 € M,I'(01) = p1,1'(02) = p2}
= max(inf{Zy(01) : I'(01) = p1},inf{{p(02) : T'(02) = p2})
= max(I'(¢a)(p1), [({m)(p2)),
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[(upr)(Ap1) = sup{up(dor) : o1 € M,I'(A01) = Ap1}
> sup{um(o1) : 01 € M,I'(01) = p1}

=T(um) (1),
I'(ym)(Ap1) = infl{yy(A01) : A01 € M, I'(A01) = Ap1}
Proof. (ii) < inf{yy(o1) : 01 € M,T(01) = p1}
=T'(ym)(p1),

L'(¢m)(Ap1) = inf{lp(d01) : 201 € M,T'(A01) = Ap1}
<inf{{m(o1) : 01 € M,I'(01) = p1}
=T'({m)(p1)s

L(up)(0) = supfum(0) : 0 € M, I'(0) =0} =1,

@@ii) 3 T'(ym)(0) =inf{yy(0): 0e M,T'(0) =0} =0,

I'({ar)(0) = inf{{p(0) : 0 € M, T'(0) =0} =0.

Therefore, I'(Mtys) € NSN(R). O

Proposition 3.16. Let I" be an epimorphism from M into N R-modules. When ¥y eNSN(R), then
I1(By) € NSM(R).

Proof. Suppose that o1,02 € M and A € R, then

T () (o1 +02) = 1y (T(01 +02))
=y (T(e1) +T(02))
> min(uy (T (01)), iy (T (02))

= min("" (uh)(eD). T~ (y)(02)),
T~ (yp)(e1 +02) = Yp (T (o1 +02))

=yyT(e1) +T(02))
< max(yy(T'(e). ¥y (02)

= max(I~ ' (y}) (e, T (¥y)(02))
()01 +02) = (T (o1 +02))

= {3(T(01) +T(02))
< max({y(T o)), T (02))
= max(I' ({1, T (L) (©02),
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I (uh) (o) = (T (A01))
= iy (AT (1))
> uy(T(01))
=T (o),

I (yj)(o1) = ¥y (T(A01))
= YT (01))
<Y (T(o1)
=T (¥,

I '()(e1) = (T (A1)
= (AT (01))
< (o)
=T (o),

T~ (u)(0) = 1y (T(0)) = py(0) = 1,

(iii) { T™1()(0) = ¥ (T(0)) = ¥ (0) =0,

I=1(Z)(0) = £y(T(0)) = £7,(0) = 0.

Proof. (ii)

Therefore T~ 1(B ) € NSM(R). |

Remark 3.17. We have enhanced the definition of a neutrosophic sub-module by building on the
foundation established in [9, 12] and using the methodology applied by the researchers in [4—6].
This revised approach offers significant advantages as it is consistent with the qualitative properties
of the components. In particular, the component y is treated as a measure of positive quality, while
v and { are associated with negative qualities. This distinction justifies the consistent application
of operations, with y and ¢ being subjected to the same operations, such as max/max and < / <. By
refining the structure in this way, the new definition better reflects the underlying theoretical framework
and provides a more coherent and practical perspective on the properties and behavior of neutrosophic
sub-modules.

4. Conclusions

This study has significantly extended the theoretical framework of neutrosophic algebra by
exploring the structure and properties of neutrosophic modules over rings and their associated systems.
By systematically analyzing the fundamental properties of neutrosophic modules, the research has
shed light on their behavior in direct product operations and homomorphism and provided a deeper
understanding of their algebraic nature.

The results provide a solid foundation for further study extensions and variations of neutrosophic
modules. They could open new avenues of research in the field of algebraic structures dealing
with uncertainty and indeterminacy, such as the neutrosophic Artinian multiplication module and the
neutrosophic Jacobson radical. Moreover, these findings could have wider implications for applied
mathematics, as they could improve decision-making methods, artificial intelligence, and system
modeling, where dealing with uncertain and inconsistent data is crucial by opening up possibilities
for practical applications.
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