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1. Introduction

Let Ω ⊂ RN(N ≥ 2) be a bounded simple connected domain, 0 < T < ∞ and QT = Ω × [0,T ]. We
study the following parabolic systems

min{Liui − fi(x, t, u1, u2), ui − ui,0} = 0, (x, t) ∈ QT ,

ui(0, x) = ui0(x), x ∈ Ω,

ui(t, x) = 0, (x, t) ∈ ∂Ω × (0,T ),
(1.1)

with quasilinear degenerate parabolic operators, where

Liui =
∂ui

∂t
− div(|∇ui|

pi−2∇ui), i = 1, 2.

The initial boundary value problem of variational inequalities arise in many application in pricing
American options and their derivatives . Through the risk neutral strategy, the intrinsic value of many
American options can ultimately be attributed to the solution of a variational inequality in the Black-
Scholes models. The author refers to [1–3] and the references their in.
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The nonexistence, existence and uniqueness theory for weak solutions of parabolic systems were
studied by many existing works, see e.g., [4–6]. In particular, Hassnaoui and Idrissi [6] studied the
existence and uniqueness of weak solutions for a nonlinear parabolic system with non-degenerate case
of (1.1). Escher, Laurencot and Matioc in [7] proved the global existence of nonnegative weak solutions
to a degenerate parabolic system without quasilinear terms in (1.1). Furthermore, the authors showed
that these weak solutions converge at an exponential rate.

In recent years, there has been tremendous interest in developing existence and uniqueness theory
for weak solutions of parabolic variational inequality (see, for example, [3, 8–14] and the references
therein). In 2014, the authors in [9] discussed the problem

min{ut − Lu − F(u, x, t), u(x, t) − u0(x)} = 0 in QT ,

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on ∂Ω,

(1.2)

with second order degenerate elliptic operator

Lu = −udiv(a(u)|∇u|p(x,t)−2
∇u) − γ|∇u|p(x,t).

Under the assumptions about u0 and F, they proved the existence and uniqueness of the weak
solution. When a(u) = 1, and p(x, t) = 2 , the authors in [10,11] discussed the existence and numerical
algorithm of solution. In [12], a new property of variable exponent Lebesgue and Sobolev spaces was
examined. Using these properties, the authors proved the existence of the solution of some parabolic
variational inequality.

To the best of our knowledge, the existence and uniqueness for multi-variable problem of parabolic
variational inequalities (called variational inequality systems) were less studied. We cannot easily put
the method in [10, 11] to the multi-variable case since the systems are coupled with quasilinear terms.

The aim of this paper is to study the existence and uniqueness of solution for parabolic systems
with quasilinear degenerate inequalities in a bounded domain. We mainly use comparison theorem and
penalty method to construct a sequence of approximation solutions with the help of monotone iteration
technique. Then we obtain the existence of solutions to the system (1.1) by a standard limiting process.

The paper is organized as follows. In Section 2, we present our main theorems. Section 3 gives
some estimates about penalty problems to prove our main results. Section 4 analyses the existence and
uniqueness of solutions to variational inequality system (1.1).

2. The main results of weak solutions

In spirit of [3] and [9], we introduce the following maximal monotone graph

G(x) =

{
0, x > 0,
1, x = 0.

(2.1)

The purpose of the paper is to obtain the existence and uniqueness of weak solutions of (1.1), and
the weak solution is defined as follows.
Definition 2.1. Function {(u1, ξ1), (u2, ξ2)} is called a generalized solution of the systems (1.1) if ui ∈

L∞(QT ) ∩ L(0,T,W1,pi
0 (Ω)), ∂tui ∈ L2(ΩT ), ξi ∈ L∞(0,T ; L∞(Ω)), i = 1, 2, and satisfies (a) ui(x, t) ≥
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ui0(x), (b) ui(x, 0) = ui0(x) , (c) ξi ∈ G(ui − ui0), (d) for every test-function ϕi ∈ C1
0(Q̄T )∫ ∫

QT
(−ui · ∂tϕi + |∇ui|

pi−2
∇ui∇ϕi)dxdt −

∫
QT

ui0 · ϕi(x, 0)dx

=
∫ ∫

QT
fi(x, t, u1, u2) · ϕidxdt +

∫ t

0

∫
Ω
ξi · ϕidxdt.

(2.2)

Here C1
0(Ω̄T ) is the space of all continuous and differentiable functions satisfying

ϕi(x,T ) = 0 for (x, t) ∈ ∂Ω × (0,T ), i = 1, 2.

Condition (d) of Definition 2.1 implies that∫ t

0

∫
Ω

(−ui · ∂tϕi + |∇ui|
pi−2
∇ui∇ϕi)dxdt +

∫
QT

ui(x, t) · ϕi(x, t)dx −
∫

ΩT
ui0 · ϕi(x, 0)dx

=
∫ t

0

∫
Ω

fi(x, t, u1, u2) · ϕidxdt +
∫ t

0

∫
Ω
ξi · ϕidxdt.

(2.3)

We introduce the constrains to the nonlinear functions fi, i = 1, 2 involved in this paper as follows.
Definition 2.2. A function f = f (u1, u2) is quasimonotone nondecreasing (resp., nonincreasing) if for
fixed u1 (or u2 ), f is nondecreasing (resp., nonincreasing) in u2 (or u1 ).

To study the problem (1.1), we make the following assumptions:
(H1) fi(x, t, u1, u2) is quasimonotonically nondecreasing for u1, u2, i = 1, 2.
(H2) fi(x, t, u1, u2) ∈ C(Ω× [0,T ]×R2) , and there exists a nonnegative function g(s) ∈ C1(R) such that

| fi(x, t, u1, u2)| ≤ min{g(u1), g(u2)}.

Our main results are present as follows:
Theorem 2.1. Let (H1) and (H2) be satisfied, and ui0 ∈ L∞(ΩT )∩W1,pi

0 (Ω),i = 1, 2. Then problem (1.1)
has a solution u = (u1, u2) in the sense of Definition 2.2.
Theorem 2.2. Assume that f = ( f1, f2) is Lipschitz continuous in (u1, u2), then the solution of
problem (1.1) is unique.

3. A penalty problem

To prove the theorem, we consider the following penalty problem
Liεuiε = fi(x, t, u1ε, u2ε) − βε(uiε − ui0), (x, t) ∈ QT ,

uiε(x, 0) = ui0ε(x) = ui0 + ε, x ∈ Ω,

uiε(x, t) = ε, (x, t) ∈ ∂QT ,

(3.1)

where

Liεuiε =
∂uiε

∂t
− div(

(
|∇uiε|

2 + ε
) pi−2

2
∇uiε).

Here, βε( · ) is the penalty function satisfying

ε ∈ (0, 1), βε(·) ∈ C2(R), βε(x) ≤ 0, βε(0) = −1,

β
′

ε(x) ≥ 0, β
′′

ε (x) ≤ 0, lim
ε→0+

βε(x) =

{
0, x > 0,
−1, x = 0.

(3.2)
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It is worth noting that when ui > ui,0, Liui − fi(x, t, u1, u2) = 0, and when ui = ui,0, one gets Liui ≥

fi(x, t, u1, u2) in (1.1). In (3.1), βε(uiε − ui0) plays a similar role. When uiε > ui0 + ε,

Liεuiε − fi(x, t, u1ε, u2ε) = −βε(uiε − ui0) = 0,

and when ui0 ≤ uiε ≤ ui0 + ε , we have

Liεuiε − fi(x, t, u1ε, u2ε) = −βε(uiε − ui0) ≥ 0.

With a similar method as in [8], we can prove that regularized problem has a unique weak solution

ui ∈ L∞(QT ) ∩ L(0,T,W1,pi
0 (Ω)), ∂tui ∈ L2(QT ), i = 1, 2,

satisfying the following integral identities∫
Ω
∂tui · ϕidx +

∫
Ω
|∇ui|

pi−2
∇ui∇ϕidx +

∫
Ω
βε(uiε − ui0)ϕidx

=
∫

QT
fi(x, t, u1, u2) · ϕidx (3.3)

with ϕi ∈ C1(Ω̄T ) and t ∈ (0,T ).
We start with two preliminary results that will be used several times henceforth.

Lemma 3.1. [ [15], Lemma2.1.] Let M(s) = |s|p(x,t)−2s , then ∀ξ, η ∈ RN

(M(ξ) − M(η)) · (ξ − η) ≥

 2−p|ξ − η|p, 2 ≤ p < ∞,

(p − 1)|ξ − η|2(|ξ|p + |η|p)
p−2

p , 1 ≤ p < 2.

Lemma 3.2. (Comparison principle) Assume ui and vi are in Lpi(0,T ; W1,pi(Ω)). If Liεui ≥ Liεvi in
QT and ui(x, t) ≤ vi(x, t) on ∂QT , then ui(x, t) ≤ vi(x, t) in QT , i = 1, 2.
Proof. We argue by contradiction. Suppose ui(x, t) and vi(x, t) satisfy Liεui ≥ Liεvi in QT , and there is a
δ > 0 such that for some 0 < τ ≤ T , wi = ui − vi > δ on the set

Ωδ = Ω ∩ {x : wi(x, t) > δ}

and |Ωδ| > 0, i = 1, 2. Let

Fε(ξ) =

{
2 · ε−

1
2 − 2 · ξ−

1
2 , if ξ > ε,

0, if ξ ≤ ε,

whereδ > ε > 0. Since Fε(wi) ≤ 0 , we multiply Liεui ≥ Liεvi by Fε(wi) and integrate in Qτ to have∫ ∫
Qτ

∂

∂t
wi · Fε(wi)dxdt +

∫ ∫
Qτ

[
(
|∇uiε|

2 + ε
) pi−2

2
∇uiε −

(
|∇viε|

2 + ε
) pi−2

2
∇viε]∇Fε(wi)dxdt ≤ 0

or equivalently
J1 + J2 ≤ 0, (3.4)

where Qτ,ε = {(x, t) ∈ QT |w > ε} ,

J1 =

∫ ∫
Qτ,ε

∂

∂t
wi · Fε(wi)dxdt,
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J2 =
1
2

∫ ∫
Qτ,ε

w−
3
2

i [
(
|∇uiε|

2 + ε
) pi−2

2
∇uiε −

(
|∇viε|

2 + ε
) pi−2

2
∇viε]∇widxdt.

Now let t0 = inf{t ∈ (0, τ] : w > ε}, then we estimate J1 as follows

J1 =
∫ ∫

Qτ,θ

∂
∂t wiFε(wi)dxdt =

∫
Ω

(
∫ t0

0
∂
∂t wiFε(wi)dt +

∫ t0
0

∂
∂t wiFε(wi)dt)dx

≥
∫

Ω

∫ wi

ε
Fε(s)dsdx ≥

∫
Ωδ

∫ wi

ε
Fε(s)dsdx.

(3.5)

Using δ > ε > 0 and the function Fε(·) to (3.5), we have

J1 ≥

∫
Ωθ

(wi − ε)Fε(s)dx ≥ (wi − ε)Fε(ε)|Ωδ|. (3.6)

By the virtue of the first inequality of Lemma 3.1, we use wi = ui − vi > δ to arrive at

J2 ≥ 2−(pi+1)
∫ ∫

Qτ,θ

w−
3
2

i |∇wi|
pidxdt ≥ 0. (3.7)

Since vi ∈ Lpi(0,T ; W1,pi(Ω)) , and we plug the above estimates (3.6) and (3.7) into (3.4) and drop the
nonnegative terms, we arrive at

(δ − ε)ε−
1
2 |Ωδ| < C̃.

Note that lim
ε→0

(δ − ε)ε−
1
2 |Ωδ| = +∞, we obtain a contradiction. This means that |Ωδ| = 0 and wi ≤ 0 a.e.

in Qτ, i = 1, 2.�
Lemma 3.3. Let be weak solutions of (3.1). Then

ui0ε ≤ uiε ≤ |ui0|∞ + ε, i = 1, 2, (3.8)

uiε1 ≤ uiε2 for ε1 ≤ ε2, i = 1, 2, (3.9)

where |u0| = sup
x∈Ω
|u0(x)|, for details, see [16, 17].

Proof. First, we prove uiε ≥ ui0ε by contradiction. Assume uiε ≤ ui0ε in Q0
T , i = 1, 2, Q0

T ⊂ QT . Noting
uiε ≥ ui0ε on ∂QT , we may assume that uiε = ui0ε on ∂Q0

T . With (3.1) and letting t = 0, it is easy to see
that

Lui0,ε = −βε(ui0,ε − ui0,ε) = 1, i = 1, 2, (3.10)

Luiε = −βε(uiε − ui0,ε) ≤ 1, i = 1, 2. (3.11)

From Lemma 3.2, we have that

uiε(x, t) ≥ ui0,ε(x) for any (x, t) ∈ QT , i = 1, 2. (3.12)

Therefore, we obtain a contradiction.
Second, we pay attention to uiε(t, x) ≤ |ui0|∞ + ε. Applying the definition of βε(·) gives

L(|ui0|∞ + ε) = 0, Luiε = −βε(uiε − ui0,ε) ≥ 0, i = 1, 2. (3.13)

Using Lemma 3.2, (3.13) leads to

uiε(t, x) ≤ |ui0|∞ + ε on ∂Ω × (0,T ),
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uiε(t, x) ≤ |ui0|∞ + ε in Ω, i = 1, 2. (3.14)

Thus, combining (3.13) and (3.14) and repeating Lemma 3.2, we have

uiε(t, x) ≤ |ui0|∞ + ε in QT , i = 1, 2. (3.15)

Third, we aim to prove (3.9). From (3.1), it is easy to see that

Luiε1 = βε1(uiε1 − ui0,ε1), i = 1, 2. (3.16)

Luiε2 = βε2(uiε2 − ui0,ε2), i = 1, 2. (3.17)

It follows by ε1 ≤ ε2 and the definition of βε(·) that

Lui0,ε2 + βε1(uiε2 − ui0,ε)
= βε2(uiε2 − ui0,ε) − βε1(uiε1 − ui0,ε) = βε2(uiε2 − ui0,ε) − βε1(uiε2 − ui0,ε) ≥ 0,

(3.18)

i = 1, 2 . Combining initial and boundary condition in (3.1), we obtain that the inequality (3.9) holds
by Lemma 3.2. �
Lemma 3.4. For any (x, t) ∈ ΩT , the solution of problem (3.1) satisfies the estimate

|∇uiε|Lpi (QT ) ≤

∫ ∫
QT

(
|∇uiε|

2 + ε
) pi−2

2
∣∣∣∇uiε

∣∣∣2dxdt ≤ C, (3.19)

where C is a constant independent of ε.
Proof. Choosing ϕi = uiε in (3.3), we have∫ ∫

QT
∂tuiε · uiε − div(

(
|∇uiε|

2 + ε
) pi−2

2
∇uiε) · uiεdxdt

=
∫ ∫

QT
fi(x, t, u1ε, u2ε)uiε − βε(uiε − ui0)uiεdxdt,

(3.20)

It is easy to see that∫ ∫
QT

∂tuiε · uiεdxdt =
1
2

∫ ∫
QT

∂t
(
uiε

)2dxdt =
1
2

∫
QT

uiε(·,T ) − uiε(·, 0)dx. (3.21)

Then we substitute (3.21) into (3.20) to arrive at∫ ∫
QT

(
|∇uiε|

2 + ε
) pi−2

2
∣∣∣∇uiε

∣∣∣2dxdt
=

∫ ∫
QT

fi(x, t, u1ε, u2ε)uiε − βε(uiε − ui0)uiεdxdt − 1
2

∫
QT

uiε(·,T ) − uiε(·, 0)dx.

By (3.8) and the property of fi, ∣∣∣∣∣∣
∫ ∫

QT

fi(x, t, u1ε, u2ε)uiεdxdt

∣∣∣∣∣∣ ≤ C. (3.22)

Applying (3.2) and (3.8) obtains∫ ∫
QT

−βε(uiε − ui0)uiεdxdt ≤ ε |Ω|T ≤ |Ω|T. (3.23)
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Then Lemma 3.4 is proved by combining (3.21)–(3.23).�
Lemma 3.5. The solution of problem (3.1) satisfies the estimate∥∥∥∂tuiε

∥∥∥
L2(QT )

≤ C(pi,T, |Ω|), i = 1, 2. (3.24)

Proof. From (3.3), we have that∫ ∫
QT

(∂tuiε)
2dxdt

= −
∫ ∫

QT

(
|∇uiε|

2 + ε
) pi−2

2
∇uiε∇∂tuiεdxdt

+
∫ ∫

QT
[ fi(x, t, u1ε, u2ε) − βε(uiε − ui0)] · ∂tuiεdxdt

= −A1 + A2,

(3.25)

where

A1 =

∫ ∫
QT

(
|∇uiε|

2 + ε
) pi−2

2
∇uiε∇∂tuiεdxdt,

A2 =

∫ ∫
QT

[ fi(x, t, u1ε, u2ε) − βε(uiε − ui0)] · ∂tuiεdxdt.

First, we pay attention to A1. Using some differential transform technique obtains

A1 = −
1
2

∫ ∫
QT

(
|∇uiε|

2 + ε
) pi−2

2
∂t

(
|∇uiε|

2+ε
)

dxdt = −
1
pi

∫ ∫
QT

∂t

(
|∇uiε|

2 + ε
) pi

2 dxdt.

Since ui0ε(x) = ui0 + ε, then

A1 ≤ −
1
pi

∫ ∫
QT

∂t
(
|∇uiε|

pi
)

dxdt ≤
∫

Ω

|∇ui0(·, 0)|pidx. (3.26)

Applying Holder inequalities again, we have that

A2 ≤
1
2

∫ ∫
QT

[ fi(x, t, u1ε, u2ε) − βε(uiε − ui0)]2dxdt +
1
2

∫ ∫
QT

(∂tuiε)
2dxdt. (3.27)

Using (a + b)2
≤ 2(a2 + b2), the property of fi and (3.2), we arrive at

1
2

∫ ∫
QT

[ fi(x, t, u1ε, u2ε) − βε(uiε − ui0)]2dxdt
≤

∫ ∫
QT

fi(x, t, u1ε, u2ε)
2dxdt +

∫ ∫
QT
βε(uiε − ui0)2dxdt

≤
∫ ∫

QT
fi(x, t, u1ε, u2ε)

2dxdt + T |Ω| ≤ C.
(3.28)

Then, we obtain Lemma 3.5 by submitting (3.26)–(3.28) into (3.25).�

4. Proof of the main result

In this section, we are ready to prove that the system (1.1) has a unique generalized solution. By
(3.18), (3.19) and (3.24) and the uniqueness of the weak limits, we know that there are functions

ui ∈ L∞(QT ) ∩ L(0,T,W1,pi
0 (Ω)), as ε→ 0,
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such that for some subsequence of (u1ε, u2ε), denoted again by (u1ε, u2ε),

uiε → ui, f (x, t, u1ε, u2ε)→ f (x, t, u1, u2) a.e. in QT , (4.1)

∇uiε
w
→∇ui in Lpi(QT ), (4.2)∣∣∣∇uiε

∣∣∣pi−2
∇uiε

w
→wi in L

pi
pi−1 (QT ), forsome wi, (4.3)

∂tuiε
w
→ ∂tui in L2(QT ), (4.4)

where
w
→ stands for weak convergence, i = 1, 2.

Lemma 4.1. For any (x, t) ∈ ΩT , wi = |∇ui|
pi−2∇ui,i = 1, 2.

Proof. Applying triangle inequality |a + b| ≤ |a| + |b|, (a, b ∈ R), it is easy to see that∫ ∫
QT

∣∣∣|∇uiε|
pi−2∇uiε − |∇ui|

pi−2∇ui

∣∣∣ dxdt
≤

∫ ∫
QT

∣∣∣|∇uiε|
pi−2 − |∇ui|

pi−2
∣∣∣ · |∇uiε|dxdt +

∫ ∫
QT
|∇ui|

pi−2 ·
∣∣∣∇uiε − ∇ui

∣∣∣ dxdt
= I1 + I2,

where

I1 =

∫ ∫
QT

∣∣∣|∇uiε|
pi−2 − |∇ui|

pi−2
∣∣∣ · |∇uiε|dxdt, I2 =

∫ ∫
QT

|∇ui|
pi−2 ·

∣∣∣∇uiε − ∇ui

∣∣∣ dxdt.

By mean of the inequality |ar − br| ≤ |a − b|r, (r ∈ [0, 1], a, b > 0), we have

I1 =

∫ ∫
QT

∣∣∣∣∣(|∇uiε|
pi)

pi−2
pi − (|∇ui|

pi)
pi−2

pi

∣∣∣∣∣ · |∇uiε|dxdt ≤
∫ ∫

QT

∣∣∣|∇uiε|
pi − |∇ui|

pi
∣∣∣ pi−2

pi · |∇uiε|dxdt.

Applying Holder inequality and (4.2), we have

I1 ≤

(∫ ∫
QT

∣∣∣|∇uiε|
pi − |∇ui|

pi
∣∣∣ dxdt

) pi−2
pi

·

(∫ ∫
QT

|∇uiε|
pi
2 dxdt

) 2
pi

→ 0 (ε→ 0).

Now we pay our attention to I2. From (4.2), we know that ∇ui ∈ Lpi(QT1). By (4.1), we may conclude
that

∇uiε → ∇ui a.e. in QT .

If not, there exists a measurable domain OT satisfying∫ ∫
OT

∣∣∣∇uiε → ∇ui

∣∣∣ dxdt > 0.

Then, we obtain a contradiction with (4.2). Applying Holder inequality, we have

I2 =

(∫ ∫
QT

|∇ui|
pidxdt

) pi−2
pi

·

(∫ ∫
QT

∣∣∣∇uiε − ∇ui

∣∣∣ pi
2 dxdt

) 2
pi

→ 0 (ε→ 0).

Hence Lemma 4.1 is proved.�
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This proves that any weak convergence subsequence of |∇uiε|
pi−2∂xluiε will have ∂xlwi as its weak

limit and hence by a standard argument, and we have that as k → ∞,∣∣∣∇uiε

∣∣∣ ∂xluiε
w
→|∇ui|

pi−2∂xlui in L
pi

pi−1 (QT ). (4.5)

Combining the above results, we have, in fact, proved that u = (u1, u2) is a generalized solution
of (1.1).
Lemma 4.2. For any (x, t) ∈ ΩT , it hold that

βε(uε − u0)→ ξ ∈ G(u − u0) as ε→ 0. (4.6)

Proof. Using (3.8) and the definition of βε, we have

βε(uε − u0)→ ξasε→ 0.

Now, we prove ξ ∈ G(u − u0). According to the definition of G(·), we only need to prove that if
u(x0, t0) > u0(x0),

ξ(x0, t0) = 0.

In fact, if u(x0, t0) > u0(x0), there are a constant λ > 0 and a δ-neighborhood Bδ(x0, t0) such that if ε is
small enough, we have

uε(x, t) ≥ u0(x) + λ,∀(x, t) ∈ Bδ(x0, t0).

Thus, if ε is small enough, we have

0 ≥ βε(uε − u0) ≥ βε(λ) = 0,∀(x, t) ∈ Bδ(x0, t0).

Furthermore, it follows by ε→ 0 that

ξ(x, t) = 0,∀(x, t) ∈ Bδ(x0, t0).

Hence, (4.6) holds, and the proof of Lemma 4.3 completes.�
The proof of Theorem 2.1. Applying (3.8), (3.9), and Lemma 4.3, it is clear that

u(x, t) ≤ u0(x), in ΩT , u(x, 0) = u0(x), in Ω, ξ ∈ G(u − u0),

thus (a), (b), and (c) of Definition 1.1 hold. The rest arguments of existence part are the same as those
of Theorem 2.1 in [8] by a standard limiting process. Thus, we omit the details.
The proof of Theorem 2.2. The following is the uniqueness result to the solution of the system. Assume
that {(u1, ξ1), (u2, ξ2)} and {(v1, ζ1), (v2, ζ2)} are two solutions of (1.1). Let ϕi = ui − vi in Definition 2.1,
i = 1, 2 , then by (2.3),∫ t

0

∫
Ω
−ui∂tϕi + |∇ui|

pi−2∇ui∇ϕidxdt +
∫

Ω
ui(x, t)ϕi(x, t)dx −

∫
Ω

ui(x, 0)ϕi(x, 0)dx
=

∫ t

0

∫
Ω

fi(x, t, u1, u2)ϕidxdt +
∫ t

0

∫
Ω
ξi · ϕidxdt, a.e. t ∈ (0,T ),∫ t

0

∫
Ω
−vi∂tϕi + |∇vi|

pi−2∇vi∇ϕidxdt +
∫

Ω
vi(x, t)ϕi(x, t)dx −

∫
Ω

vi(x, 0)ϕi(x, 0)dx
=

∫ t

0

∫
Ω

fi(x, t, v1, v2)ϕidxdt +
∫ t

0

∫
Ω
ζi · ϕidxdt, a.e. t ∈ (0,T ),
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i = 1, 2. Subtracting the 2 equations, we get

1
2

∫
Ω
ϕi

2dx =
∫ t

0

∫
Ω

(|∇ui|
pi−2∇ui − |∇vi|

pi−2∇vi) · ∇ϕidxdt
+

∫ t

0

∫
Ω

( fi(x, t, u1, u2) − fi(x, t, v1, v2)) · ϕidxdt
−

∫ t

0

∫
Ω

(ξi − ζi) · ϕidxdt.

Now we prove

(ξi − ζi) · ϕi ≤ 0, |(ξi − ζi) · ϕi| ≤ ϕi. (4.7)

On one hand, if ui(x, t) > vi(x, t) , then using Lemma2.1 yields

ui(x, t) > ui0(x).

From (2.1) and above inequality, it is easy to see that

ξi = 0 ≤ ζi. (4.8)

Combining (2.1) and (4.8),

(ξi − ζi) · ϕi = (ξi − ζi) · (ui − vi) ≤ 0, (ξi − ζi) · ϕi ≥ −ϕi. (4.9)

On the other hand, if ui(x, t) < vi(x, t), it is easy to have thatξi ≥ 0 = ζi.In this case,

(ξi − ζi) · ϕi = (ξi − ζi) · (ui − vi) ≤ 0, (ξi − ζi) · ϕi ≥ ϕi. (4.10)

Combining (4.9) and (4.10), (4.7) still holds.
Using the previous inequality and the Lipschitz condition, a simple calculation shows that∫

Ω
|u1 − v1|

2+|u2 − v2|
2dx

≤ 2K
∫ t

0

∫
Ω

(|u1 − v1|+|u2 − v2|)2dxdt +
∫ t

0

∫
Ω
|u1 − v1|+|u2 − v2|dxdt.

Furthermore, it follows by (a + b)2
≤ 2(a2 + b2) and Holder inequalities that∫

Ω

|u1 − v1|
2+|u2 − v2|

2dx ≤ (2K +
1
2

T |Ω|)
∫ t

0

∫
Ω

|u1 − v1|
2+|u2 − v2|

2dxdt.

Setting F(t) =
∫ t

0

∫
Ω
|u1 − v1|

2+|u2 − v2|
2dxdt, then the above inequality can be written as

d
dt

F(t) ≤ (2K +
1
2

T |Ω|) · F(t).

A standard argument show that F(t) = 0 since F(0) = 0, and hence ui = vi, i = 1, 2. The proof is
complete.
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5. Conclusions

In this paper, we study variational inequality systems with quasilinear degenerate parabolic
operators in a bounded domain

min{Liui − fi(x, t, u1, u2), ui − ui,0} = 0, (x, t) ∈ QT ,

ui(0, x) = ui0(x), x ∈ Ω,

ui(t, x) = 0, (x, t) ∈ ∂Ω × (0,T ),

with quasilinear degenerate parabolic inequalities, where

Liui =
∂ui

∂t
− div(|∇ui|

pi−2∇ui), i = 1, 2.

The existence and uniqueness of the solutions in the weak sense are proved by using the penalty
method and the reduction method with assumptions that p1 and p2 are constants satisfying pi > 2.
However, there are some problems that have not been solved: when 1 < pi < 2, pi > 2 or pi is x-
functions, i = 1, 2 , we cannot use Lemmas 3.1 and 3.2 to prove Lemmas 3.3–3.5. We will continue to
study this problem in future.
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