This article studies a class of variational inequality problems composed of non-divergence type parabolic operators. In comparison with traditional differential equations, this study focuses on overcoming inequality constraints to obtain Hölder and Schauder estimates for weak solutions. The results indicate that the weak solution of the variational inequality possesses the $ C^ \alpha $ continuity and the Schauder estimate on the $ W^{1, p} $ space, where $ \alpha \in (0, 1) $ and $ p\geq 2 $.
Citation: Yudong Sun, Tao Wu. Hölder and Schauder estimates for weak solutions of a certain class of non-divergent variation inequality problems in finance[J]. AIMS Mathematics, 2023, 8(8): 18995-19003. doi: 10.3934/math.2023968
This article studies a class of variational inequality problems composed of non-divergence type parabolic operators. In comparison with traditional differential equations, this study focuses on overcoming inequality constraints to obtain Hölder and Schauder estimates for weak solutions. The results indicate that the weak solution of the variational inequality possesses the $ C^ \alpha $ continuity and the Schauder estimate on the $ W^{1, p} $ space, where $ \alpha \in (0, 1) $ and $ p\geq 2 $.
[1] | S. Hussain, H. Arif, M. Noorullah, A. Athanasios, Pantelous, pricing American options under Azzalini Ito-McKean skew Brownian motions, Appl. Math. Comput., 451 (2023), 128040. https://doi.org/10.1016/j.amc.2023.128040 doi: 10.1016/j.amc.2023.128040 |
[2] | M. Shirzadi, M. Rostami, M. Dehghan, X. Li, American options pricing under regime-switching jump-diffusion models with meshfree finite point method, Chaos Solitons Fract., 166 (2023), 112919. https://doi.org/10.1016/j.chaos.2022.112919 doi: 10.1016/j.chaos.2022.112919 |
[3] | H. Song, J. Xu, J. Yang, Y. Li, Projection and contraction method for the valuation of American options under regime switching, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), 106332. https://doi.org/10.1016/j.cnsns.2022.106332 doi: 10.1016/j.cnsns.2022.106332 |
[4] | J. Li, C. Bi, Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems, AIMS Math., 7 (2022), 19758–19769. https://doi.org/10.3934/math.20221083 doi: 10.3934/math.20221083 |
[5] | T. Wu, Some results for a variation-inequality problem with fourth order p(x)-Kirchhoff operator arising from options on fresh agricultural products, AIMS Math., 8 (2023), 6749–6762. https://doi.org/10.3934/math.2023343 doi: 10.3934/math.2023343 |
[6] | C. O. Alves, L. M. Barros, C. E. T. Ledesma, Existence of solution for a class of variational inequality in whole RN with critical growth, J. Math. Anal. Appl., 494 (2021), 124672. https://doi.org/10.1016/j.jmaa.2020.124672 doi: 10.1016/j.jmaa.2020.124672 |
[7] | Y. Bai, S. Migorski, S. Zeng, A class of generalized mixed variational-hemivariational inequalities Ⅰ: Existence and uniqueness results, Comput. Math. Appl., 79 (2020), 2897–2911. https://doi.org/10.1016/j.camwa.2019.12.025 doi: 10.1016/j.camwa.2019.12.025 |
[8] | Y. Wang, C. Zhang, Existence results of partial differential mixed variational inequalities without Lipschitz continuity, J. Math. Anal. Appl., 484 (2020), 123710. https://doi.org/10.1016/j.jmaa.2019.123710 doi: 10.1016/j.jmaa.2019.123710 |
[9] | M. T. O. Pimenta, R. Servadei, Some existence results for variational inequalities with nonlocal fractional operators, Nonlinear Anal., 189 (2019), 111561. https://doi.org/10.1016/j.na.2019.06.020 doi: 10.1016/j.na.2019.06.020 |
[10] | W. Han, Y. Li, Stability analysis of stationary variational and hemivariational inequalities with applications, Nonlinear Anal. Real World Appl., 50 (2019), 171–191. https://doi.org/10.1016/j.nonrwa.2019.04.009 doi: 10.1016/j.nonrwa.2019.04.009 |
[11] | J. Fan, R. Zhong, Stability analysis for variational inequality in reflexive Banach spaces, Nonlinear Anal. Theor., 69 (2008), 2566–2574. https://doi.org/10.1016/j.na.2007.08.031 doi: 10.1016/j.na.2007.08.031 |
[12] | Y. Feng, Regularity of weak solutions to a class of fourth order parabolic variational inequality problems arising from swap option pricing, AIMS Math., 8 (2023), 13889–13897. https://doi.org/10.3934/math.2023710 doi: 10.3934/math.2023710 |
[13] | M. Sofiani, On parabolic partial differential equations with Hölder continuous diffusion coefficients, J. Math. Anal. Appl., 526 (2023), 127224. https://doi.org/10.1016/j.jmaa.2023.127224 doi: 10.1016/j.jmaa.2023.127224 |
[14] | Z. Wu, J. Yin, C. Wang, Elliptic & Parabolic Equations, Singapore: World Scientific Publishing, 2006. |