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Abstract: This article studies a class of variational inequality problems composed of non-divergence
type parabolic operators. In comparison with traditional differential equations, this study focuses on
overcoming inequality constraints to obtain Hölder and Schauder estimates for weak solutions. The
results indicate that the weak solution of the variational inequality possesses the Cα continuity and the
Schauder estimate on the W1,p space, where α ∈ (0, 1) and p ≥ 2.
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Schauder estimate
Mathematics Subject Classification: 35K99, 97M30

1. Introduction

Variational inequalities are often used in American-style option valuation analysis, and they provide
a good description of early exercise provisions in the presence of uncertain equities. As an application
of variational inequality, we investigate the pricing problem of American-style options on two risky
assets. Assuming the existence of two risky assets in the financial market, their prices follow:

dS i(t) = µiS i(t)dt + σiS i(t)dWi(t), i = 1, 2,

where µi represents the return rate of the i-th asset, andσi represents its volatility, i = 1, 2. {W1(t), t ≥ 0}
and {W2(t), t ≥ 0} are two standard 1-D Brownian motions used to describe the background noise of the
financial market. Investors who purchase American-style options have the right to choose between risk
assets {S 1(t), t ≥ 0} and {S 2(t), t ≥ 0} for holding, in terms of value, expected return rate, turnover rate,
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and asset volatility, with the aim of maximizing their gains while minimizing fluctuations. According
to the literature [1–3], the value v of American-style option is suitable for the following variational
inequality model: {

min{−Lv, v −max{S 1, S 2}} = 0,
v(S 1, S 2,T ) = max{S 1, S 2},

(1)

where r represents risk-free interest rate and

Lv = ∂tv +
1
2
σ2

1S 2
1∂S 1S 1v +

1
2
σ2

2S 2
2∂S 2S 2v + rS 1∂S 1v + rS 2∂S 2v − rv.

Many documents indicate that when there are costs in stock trading, sigma in Lv is often related to the
first spatial gradient of v. The famous Leland model can rewrite sigma as

σ2 = σ2
0(1 + Le · sign(div(|VS |

p−2VS )). (2)

In this equation, the variable σ2
0 denotes the initial volatility, while Le represents the Leland number.

The value of p is greater than or equal to 2.
Taking inspiration from Leland’s fee model for American-style options, this paper examines a

variational inequality initial-boundary value problem:

−Lu ≥ 0, (x, t) ∈ ΩT ,

u − u0 ≥ 0, (x, t) ∈ ΩT ,

Lu(u − u0) = 0, (x, t) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,
u(t, x) = ∂u

∂ν
= 0, (x, t) ∈ ∂Ω × (0,T ),

(3)

incorporating the non-divergence parabolic operator

Lu = ∂tu − u∆pu − γ|∇u|p, ∆pu= div(|∇u|p−2∇u), p > 2. (4)

Different from (1), we restrict Ω to be a bounded and open subset of RN , and ΩT = Ω× (0,T ). In terms
of the parameter γ, we continue to employ the hypothesis conditions from the study in reference [4,5]
to verify the presence of weak solutions, which is represented by γ ∈ (0, 1).

Theoretical research on variational inequalities has been extensively expanded in many aspects.
Some examples include the study of the existence and uniqueness of solutions for 2-D variational
inequalities in [4], and with fourth-order p(x)-Kirchhoff operators in [5]. The existence of solutions
in whole RN can be found in [6]. Furthermore, the existence and uniqueness of solutions for mixed
variational-hemivariational inequality were discovered in [7], without Lipschitz continuity in [8] and
with nonlocal fractional operators in [9]. Additionally, stability analysis for variational inequalities,
hemivariational inequalities and variational-hemivariational inequalities was analyzed in [10], as well
as in reflexive Banach spaces in [11]. Finally, the regularity of weak solutions to a class of fourth-order
parabolic variational inequalities was proved in [12].

Inspired by the literature [4–6], we studied the Hölder estimate and Schauder estimate for weak
solutions of variational inequalities formed by a class of non-divergence parabolic operators. On one
hand, starting from the weak solutions constructed in [4–6], we obtained several gradient estimates
using techniques such as Hölder and Young inequalities, and obtained the Hölder estimate results
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based on [13]. On the other hand, we constructed test functions for weak solutions using time and
space truncation factors, and obtained the Caccioppoli inequality that is suitable for the variational
inequality (3), which serves as the cornerstone for proving the Schauder estimate. By varying different
parameters in the Caccioppoli inequality, we obtained the Schauder estimate for weak solutions of the
variational inequality (3).

In summary, this section provides a definition of the weak solution for the variational inequality
based on references [4–6], along with a set of maximal monotone maps specified in [1–3,5,6]:

G = {u|u(x) = 0, x > 0; u(x) ∈ [−M0, 0], x = 0}. (5)

Here M0 is a positive constant.

Definition 1.1. A pair (u, ξ) is said to be a generalized solution of variation-inequality (1), if (u, ξ)
satisfies u ∈ L∞(0,T,W1,p(Ω)), ∂tu ∈ L∞(0,T, L2(Ω)) and ξ ∈ G for any (x, t) ∈ ΩT ,
(a) u(x, t) ≥ u0(x), u(x, 0) = u0(x) for any (x, t) ∈ ΩT ,
(b) for every test-function φ ∈ C∞0 (ΩT ) and t ∈ (0,T ], there admits the equality∫ ∫

Ωt

∂tu · φ + u|∇u|p−2∇u∇φdxdt + (1 − γ)
∫ ∫

Ωt

|∇u|pφdxdt =
∫ ∫

Ωt

ξ · φdxdt. (6)

It should be noted by the reader that the above formula implies∫ ∫
Ωt

∂tu · φ + u∆pu · φdxdt − γ
∫ ∫

Ωt

|∇u|pφdxdt =
∫ ∫

Ωt

ξ · φdxdt. (7)

Note that u0 ≥ 0 in ΩT . Then, using the second condition of inequality (3) and with ease, we can see
that u ≥ 0 in ΩT.

2. Hölder estimates of solution

This section considers the Hölder estimate of weak solutions, and first provides several gradient
energy estimates for weak solutions. For any t ∈ (0,T ], define Ωt = Ω × (0, t). By choosing u as the
test function in (6), we can obtain∫ ∫

Ωt

∂tu · φ + u|∇u|p−2∇u∇φdxdt + (1 − γ)
∫ ∫

Ωt

|∇u|pφdxdt =
∫ ∫

Ωt

ξ · φdxdt.

After simplification, the equation can be written as follows:

1
2

∫ ∫
Ωt

∂tu2dxdt + (2 − γ)
∫ ∫

Ωt

|∇u|pudxdt =
∫ ∫

Ωt

ξ · udxdt. (8)

Now using the Hölder and Young inequalities to analyze
∫ ∫
Ωt
ξ · udxdt, we have∫ ∫

Ωt

ξ · udxdt ≤ M2
0T +

1
4

∫ ∫
Ωt

u2dxdt (9)

AIMS Mathematics Volume 8, Issue 8, 18995–19003.



18998

from (5). Thus, substituting (9) into (8) and integrating with respect to
∫ ∫
Ωt
∂tu2dxdt, it is not difficult

to obtain
1
2

∫
Ω

u2dx + (2 − γ)
∫ ∫

Ωt

|∇u|pudxdt ≤ M2
0T +

1
4

∫ ∫
Ωt

u2dxdt +
1
2

∫
Ω

u2
0dx. (10)

On the one hand, it should be noted that 2 − γ > 0. By removing the non-positive
term (2 − γ)

∫ ∫
Ωt
|∇u|pudxdt, we obtain∫

Ω

u2dx − 2
∫ t

0

∫
Ωt

u2dxdt ≤ 2M2
0T +

∫
Ω

u2
0dx.

Using Gronwall’s inequality, ∫
Ω

u2dx ≤
(
2M2

0T +
∫
Ω

u2
0dx

)
exp{2T }. (11)

On the other hand, by removing the non-negative term 1
2

∫
Ω

u2dx in (10), it is easy to obtain

(2 − γ)
∫ ∫

Ωt

|∇u|pudxdt ≤ M2
0T +

1
4

∫ ∫
Ωt

u2dxdt +
1
2

∫
Ω

u2
0dx. (12)

Combining (11) and (12), it is easy to see that∫ ∫
Ωt

|∇u|pudxdt ≤ C(γ,M0,T ) +C(γ,M0,T )
∫
Ω

u2
0dx. (13)

It is worth noting that using integration by parts yields,
∫ ∫
Ωt

u∆pudxdt = −
∫ ∫
Ωt
|∆u|pdxdt, and

thus (13) can also be used to obtain u|∆pu| ∈ L∞(0,T ; L2(Ω)).We will now prove
u|∆pu| ∈ L∞(0,T ; L2(Ω)). Assuming φ = u∆pu in (7), it is easy to see that∫ ∫

Ωt
∂tu · u∆pudxdt +

∫ ∫
Ωt

u2|∆pu|2dxdt − γ
∫ ∫
Ωt
|∇u|pu∆pudxdt

=
∫ ∫
Ωt
ξ · u∆pudxdt.

(14)

Here, we attempt to estimate
∫ ∫
Ωt

u2|∆pu|2dxdt in (14). With the help of the Hölder and Young
inequalities, it is easy to discover that∣∣∣∣∣∣

∫ ∫
Ωt

∂tu · u∆pudxdt

∣∣∣∣∣∣ ≤
∫ ∫

Ωt

|∂tu|2dxdt +
1
4

∫ ∫
Ωt

|u∆pu|2dxdt. (15)

Combining with (5), we obtain∣∣∣∣∣∣
∫ ∫

Ωt

ξ · u∆pudxdt

∣∣∣∣∣∣ ≤ C(T, |Ω|,M0) +
1
4

∫ ∫
Ωt

|u∆pu|2dxdt. (16)

From (9) we know that u ∈ L∞(0,T ; W1,p(Ω)), such that we use Poincaré insert theory [14, P15] to
arrive at sup

Ωt

u ≤ ||u||L∞(0,T ;W1,p(Ω)), such that Using the multivariate mean value theorem and integrating

by part gives ∣∣∣∣∫ ∫
Ωt
|∇u|pu∆pudxdt

∣∣∣∣
≤ C(p, ||u||W1,p(Ω))

∣∣∣∣∫ ∫
Ωt

u∆pudxdt
∣∣∣∣ = C(p, ||u||W1,p(Ω))

∫ ∫
Ωt
|∇u|pdxdt

≤ C(p, ||u||W1,p(Ω))||u||W1,p(Ω) = C(p,T, ||u||L∞(0,T ;W1,p(Ω))).

(17)
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Substituting (15)–(17) into (14), we obtain

1
2

∫ ∫
Ωt

u2|∆pu|2dxdt ≤
∫ ∫

Ωt

|∂tu|2dxdt +C(γ, p,T, |Ω|,M0, ||u||L∞(0,T ;W1(Ω))). (18)

From reference [13], we have the following result established by Eqs (13) and (18):

Theorem 2.1. For any (x1, t1), (x2, t2) ∈ ΩT and any α ∈ (0, 1), there exists

|u(x1, t1) − u(x2, t2)| ≤ C(|t1 − t2|
α/4 + |x1 − x2|

α).

3. Schauder estimate of solution

This section considers the Schauder estimate of weak solutions. For any (x0, t0) ∈ ΩT , define

BR = BR(x0) = {x||x − x0| < R},

Iρ = Iρ(t0) = (t0 − ρ
2, t0 + ρ

2),Qρ = BR × Iρ,

where R and ρ are given positive numbers.

Lemma 3.1. (Caccioppoli Type Inequality) If (u, ξ) is a weak solution to the variational inequality
problem (3), then for any BR ⊂ ΩT and λ ∈ R, there holds the following estimate:

sup
t∈Iρ

∫
Bρ

(u − λ)2dx +
1
p

∫ ∫
Qρ
|∇u|pdxdt ≤

C
(R − ρ)4p +

C
(R − ρ)2

∫
QR

(u − λ)pdxdt.

Proof. For spatial variables, use the tangent function η on BR relative to Bρ, that is

η ∈ C∞0 (BR), 0 ≤ η ≤ 1, η = 1 in Bρ, |∇η| ≤
C

(R − ρ)2 .

For a time variable, let κ ∈ C∞0 (R) be defined such that 0 ≤ κ ≤ 1. If t ≤ t0 − R2, we have κ = 0, and if
t ≥ t0 − ρ

2, we have κ = 1. Moreover, 0 ≤ κ′(t) ≤ C
(R−ρ)2 in [0, T ].

Defining Qs
R as

BR × (t0 − R2, s), s ∈ IR

and selecting test function ϕ as η2κ2(u − λ), it is easy to obtain∫ ∫
Qs

R
∂tu · η2κ2(u − λ)dxdt +

∫ ∫
Qs

R
u|∇u|p−2∇u · ∇[η2κ2(u − λ)]dxdt

≤ (γ − 1)
∫ ∫

Qs
R
|∇u|p · η2κ2(u − λ)dxdt +

∫ ∫
Qs

R
ξ · η2κ2(u − λ)dxdt.

(19)

Note that u(t, x) = ∂u
∂ν
= 0 for any (x, t) ∈ ∂Ω × (0,T ). Thus, by applying integration by part on∫ ∫

Qs
R
∂t[η2κ2(u − λ)2]dxdt and

∫ ∫
Qs

R
u|∇u|p−2∇u · ∇[η2κ2(u − λ)]dxdt, we obtain∫ ∫

Qs
R

∂t[η2κ2(u − λ)2]dxdt =
∫ ∫

Qs
R

∂tu · η2κ2(u − λ)dxdt + 2
∫ ∫

Qs
R

η2κκ′(u − λ)2dxdt, (20)
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Qs

R
u|∇u|p−2∇u · ∇[η2κ2(u − λ)]dxdt

=
∫ ∫

Qs
R
η2κ2u|∇u|pdxdt + 2

∫ ∫
Qs

R
κ2η∇ηu|∇u|p−2∇u(u − λ)dxdt.

(21)

Substituting (20) and (21) into (19), we can obtain∫ ∫
Qs

R
∂t[η2κ2(u − λ)2]dxdt − 2

∫ ∫
Qs

R
η2κκ′(u − λ)2dxdt

+
∫ ∫

Qs
R
η2κ2u|∇u|pdxdt + 2

∫ ∫
Qs

R
κ2η∇η · u|∇u|p−2∇u · (u − λ)dxdt

≤ (γ − 1)
∫ ∫

Qs
R
|∇u|p · η2κ2(u − λ)dxdt +

∫ ∫
Qs

R
ξ · η2κ2(u − λ)dxdt

which means ∫ ∫
Qs

R
∂t[η2κ2(u − λ)2]dxdt +

∫ ∫
Qs

R
η2κ2u|∇u|pdxdt

≤ (γ − 1)
∫ ∫

Qs
R
|∇u|p · η2κ2(u − λ)dxdt + 2

∫ ∫
Qs

R
η2κκ′(u − λ)2dxdt

−2
∫ ∫

Qs
R
κ2η∇η · u|∇u|p−2∇u · (u − λ)dxdt +

∫ ∫
Qs

R
ξ · η2κ2(u − λ)dxdt.

(22)

Using the Hölder and Young inequalities, and applying |∇η| ≤ C
(R−ρ)2 , we have∫ ∫

Qs
R

|∇u|p · η2κ2(u − λ)dxdt ≤
C

(R − ρ)4p +
1
2

∫ ∫
Qs

R

η2κ2(u − λ)2dxdt, (23)

2
∫ ∫

Qs
R
κ2η∇η · u|∇u|p−2∇u · (u − λ)dxdt

≤
p−1

p

∫ ∫
Qs

R
κ2η2|∇u|pdxdt + 1

p

∫ ∫
Qs

R
κ2|∇η|2 · (u − λ)pdxdt.

(24)

Substituting (23) and (24) into (22), we have that∫ ∫
Qs

R
∂t[η2κ2(u − λ)2]dxdt +

∫ ∫
Qs

R
η2κ2u|∇u|pdxdt

≤ C
(R−ρ)4p +

1
2

∫ ∫
Qs

R
η2κ2(u − λ)2dxdt + 2

∫ ∫
Qs

R
η2κκ′(u − λ)2dxdt

+
p−1

p

∫ ∫
Qs

R
κ2η2|∇u|pdxdt + 1

p

∫ ∫
Qs

R
κ2|∇η|2 · (u − λ)pdxdt.

Rearranging the above inequality yields∫
BR
η2κ2(u − λ)2dx|t=s +

1
p

∫ ∫
Qs

R
η2κ2u|∇u|pdxdt

≤ C
(R−ρ)4p +

1
2

∫ ∫
Qs

R
η2κ2(u − λ)2dxdt + 2

∫ ∫
Qs

R
η2κκ′(u − λ)2dxdt

+ 1
p

∫ ∫
Qs

R
κ2|∇η|2 · (u − λ)pdxdt +

∫ ∫
Qs

R
ξ · η2κ2(u − λ)dxdt.

(25)

Since 0 ≤ ξ ≤ M0, using the Hölder inequality to
∫ ∫

Qs
R
η2κ2(u − λ)2dxdt,

∫ ∫
Qs

R
η2κκ′(u − λ)2dxdt and∫ ∫

Qs
R
ξ · η2κ2(u − λ)dxdt, we have∫

BR
η2κ2(u − λ)2dx|t=s +

1
p

∫ ∫
Qs

R
η2κ2|∇u|pdxdt

≤ C
(R−ρ)4p +

C
(R−ρ)2

∫ ∫
Qs

R
(u − λ)pdxdt.

(26)

Removing the non-negative terms 1
p

∫ ∫
Qs

R
η2κ2|∇u|pdxdt from which implies that for any s ∈ Iρ,∫

BR
η2κ2(u − λ)2dx|t=s ≤

∫
BR
η2κ2(u − λ)2dx|t=s

≤ C
(R−ρ)4p +

C
(R−ρ)2

∫ ∫
Qs

R
(u − λ)pdxdt

≤ C
(R−ρ)4p +

C
(R−ρ)2

∫ ∫
QR

(u − λ)pdxdt.
(27)
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On the other hand, by removing the non-negative term
∫

BR
η2κ2(u − λ)2dx|t=s in (26), we can easily

obtain∫ ∫
Qρ
|∇u|pdxdt ≤

∫ ∫
QR

η2κ2|∇u|pdxdt ≤
C

(R − ρ)4p +
C

(R − ρ)2

∫ ∫
QR

(u − λ)pdxdt. (28)

Combining (27) and (28), the desired conclusion follows and the proof is completed. □
Now, we analyze the Schauder estimates for weak solutions of the variational inequality (3). On

the one hand, choosing ρ and R to be 1
2R and 3

4R, respectively, in the Lemma 4.1 and setting λ = 0, we
obtain

sup
t∈I 1

2 R

∫
B 1

2 R

u2dx +
1
p

∫ ∫
Q 1

2 R

|∇u|pdxdt ≤
C
R2

∫ ∫
Q 3

4 R

u2dxdt +
C

R4p . (29)

On the other hand, in Lemma 4.1, we choose ρ = 3
4R and R, respectively, and set λ = 0,∫ ∫

Q 3
4 R

|∇u|2dxdt ≤
C
R2

∫ ∫
QR

u2dxdt +
C

R4p . (30)

Combining (29) and (30), we can obtain the following Schauder estimates.

Theorem 3.2. Let (u, ξ) be a weak solution of variational inequality (3), then

sup
t∈I 1

2 R

∫
B 1

2 R

u2dx +
1
p

∫ ∫
Q 1

2 R

|∇u|pdxdt ≤
C
R2

∫ ∫
QR

u2dxdt +
C

R4p .

4. Conclusions

This paper studies the variational inequality problem associated with non-divergence type parabolic
operators as follows:

Lu = ∂tu − u∆pu − γ|∇u|p, ∆pu= div(|∇u|p−2∇u), p > 2.

First, the Hölder estimate for the weak solution of the variational inequality (3) was analyzed. By using
the maximal operator G to overcome the inequality constraints in model (1), combined with the Hölder
inequality, Young’s inequality, Gronwall’s inequality, etc., the energy estimates for the spatial gradient
and spatial second-order gradient of the weak solution of the variational inequality (3) were obtained,
thus obtaining the Hölder estimate for the weak solution of the variational inequality (3).

Second, the Shauder estimate problem for weak solutions of the variational inequality (3) was
studied. By utilizing weak solutions constructed with maximal operators, and combining spatial
cutoff factors and time cutoff factors, the Caccioppoli inequality for the variational inequality (3) was
obtained. Based on this, the Shauder estimate for the weak solutions of the variational inequality (3)
was obtained by selecting different parameters.

There are still some areas for improvement in the current paper. The non-linear structure∆pu present
in Lu ( see (4), for details) restricts the possibility of obtaining higher-order Hölder and Schauder
estimates through spatial partial derivatives. In addition, the inequality constraints in model (3) make it
impossible to obtain higher-order Hölder and Schauder estimates through partial derivative operations.
We will attempt to overcome these limitations in future research.
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