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Abstract: We consider a generalization of Piatetski-Shapiro sequences in the sense of Beatty
sequences, which is of the form (bαnc + βc)∞n=1 with real numbers α > 1, c > 1 and β. In this paper, we
prove that there are infinitely many R-almost primes in sequences (bαnc + βc)∞n=1 if c ∈ (1, cR) and cR is
an explicit constant depending on R.
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1. Introduction

For 1 < c < N, the Piatetski-Shapiro sequences are sequences of the form

N (c) ..= (bncc)∞n=1 (c > 1, c < N).

Such sequences have been named in honor of Piatetski-Shapiro [5], who published the first paper in
this problem. He showed that the counting function

∣∣∣{prime p 6 x : p ∈ N (c)}∣∣∣ ∼ x
1
c

log x
as x→ ∞,

holds for 1 < c < 12
11 . The range for c of the asymptotic formula of π(c)(x) has been extended many times

over the years and is currently known for all c ∈ (1, 243
205 ) thanks to Rivat and Wu [6]. It is conjectured

that there are infinitely many Piatetski-Shapiro primes for c ∈ (1, 2). However, we can see that the best
known bound for c in [6] is still far from 2 and it has not been improved for almost 20 years.

Several mathematicians approached this problem in a different direction. For every R > 1, we say
that a natural number is an R-almost prime if it has at most R prime factors, counted with multiplicity.
The study of almost primes is an intermediate step to the investigation of primes.
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Baker, Banks, Guo and Yeager [1] proved that for any fixed c ∈ (1, 67
66 ) there are infinitely many

primes of the form p = bncc, where n is a natural number with at most eight prime factors. More
precisely,

|{n 6 x : n is an 8-almost prime and bncc is prime}| �
x

log2 x
.

Provided that cR is an explicit constant depending on R, for any fixed c ∈ (1, cR), Guo [4] proved that∣∣∣{n 6 x : bncc is an R-almost prime}
∣∣∣ � x

log x

holds for all sufficiently large x.
For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence

of integers defined by

Bα,β :=
(
bαn + βc

)∞
n=1,

where btc denotes the integral part of any t ∈ R. Such sequences are also called generalized arithmetic
progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [9]
that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic relation

#
{
prime p 6 x : p ∈ Bα,β

}
∼ α−1π(x) (x→ ∞),

where π(x) is the prime counting function.
It is interesting to generalize the Piatetski-Shapiro sequences in the sense of Beatty sequences, since

both Piatetski-Shapiro sequences and Beatty sequences produce infinitely many primes. Let α > 1 and
β be real numbers. We investigate the following generalized Piatetski-Shapiro sequences

N
(c)
α,β = (bαnc + βc)∞n=1 .

Note that the special case N (c)
1,0 is the normal Piatetski-Shapiro sequences. In this paper, we prove that

there are infinitely many almost primes in generalized Piatetski-Shapiro sequences.

Theorem 1.1. For any fixed c ∈ (1, cR) we have∣∣∣{n 6 x : bαnc + βc is an R-almost prime}
∣∣∣ � x

log x

holds for all sufficiently large x. In particular, we have

c3
..=

329
249

= 1.3319 . . . , c4
..=

25882
16071

= 1.6104 . . . ,

and

cR
..= 3 −

128
3(8R − 1)

(R > 5).
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2. Preliminaries

2.1. Notations

We denote by btc and {t} the integer part and the fractional part of t, respectively. As is customary,
we put e(t) ..= e2πit. We make considerable use of the sawtooth function defined by

ψ(t) ..= t − btc −
1
2

= {t} −
1
2

(t ∈ R).

We use notation of the form m ∼ M as an abbreviation for M < m 6 2M.
Throughout the paper, implied constants in symbols O, � and � may depend (where obvious) on

the parameters α, ε but are absolute otherwise. For given functions F and G, the notations F � G,
G � F and F = O(G) are all equivalent to the statement that the inequality |F| 6 C|G| holds with some
constant C > 0. F � G means that F � G � F.

2.2. Technical lemmas

As we have mentioned the following notion plays a crucial role in our arguments. We specify it
to the form that is suited to our applications; it is based on a result of Greaves [2] that relates level of
distribution to R-almost primality. More precisely, we say that an N-element set of integers A has a
level of distribution D if for a given multiplicative function f (d) we have∑

d6D

max
gcd(s,d)=1

∣∣∣∣∣∣∣∣{a ∈ A, a ≡ s mod d}
∣∣∣ − f (d)

d
N
∣∣∣∣∣ 6 N

log2 N
.

As in [2, pp. 174–175] we define the constants

δ2
..= 0.044560, δ3

..= 0.074267, δ4
..= 0.103974

and
δR

..= 0.124820, R > 5.

We have the following result, which is [2, Chapter 5, Proposition 1].

Lemma 2.1. Suppose A is an N-element set of positive integers with a level of distribution D and
degree ρ in the sense that

a < Dρ (a ∈ A)

holds with some real number ρ < R − δR. Then∣∣∣{a ∈ A : a is an R-almost prime}
∣∣∣ �ρ

N
log N

.

Lemma 2.2. Let M > 1 and λ be positive real numbers and let H be a positive integer. If f : [1,M]→
R is a real valued function with three continuous derivatives, which satisfies

λ 6 | f (3)(x)| � λ for 1 6 x 6 M,
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then for the sum

S =
1
H

2H∑
h=H+1

∣∣∣∣∣ Mh∑
m=1

e
(

h
H

f (m)
) ∣∣∣∣∣,

where the integer Mh satisfies 1 6 Mh 6 M for each h ∈ [H + 1, 2H], we have

S � Mε
(
Mλ1/6H−1/9 + Mλ1/5 + M3/4

)
+ λ−1/3.

Proof. See [7, Theorem 1]. �

Lemma 2.3. For any H > 1 there are numbers ah, bh such that∣∣∣∣∣ψ(t) −
∑

0<|h|6H

ah e(th)
∣∣∣∣∣ 6 ∑

|h|6H

bh e(th),

where
ah �

1
|h|
, bh �

1
H
.

Proof. See [8]. �

We also need the method of exponent pair. A detailed definition of exponent pair can be found
in [3, p. 31]. For an exponent pair (k, l), we denote

A(k, l) ..=

(
k

2k + 2
,

k + l + 1
2k + 2

)
and

B(k, l) ..=

(
l −

1
2
, k +

1
2

)
,

the A-process and B-process of the exponent pair, respectively.

3. Proof of Theorem 1.1

Now we prove our main results. The set we sieve is

A ..= {m 6 xc : m = bαnc + βc for integer n}.

For any d 6 D, where D is a fixed power of x, we estimate

Ad
..= {m ∈ A : d |m}.

We know that rd ∈ A if and only if

rd 6 αnc + β < rd + 1 and rd 6 xc.

Within O(1) the cardinality of Ad is equal to the number of integers n 6 x for which the interval(
(αnc + β − 1)d−1, (αnc + β)d−1] contains a natural number. Hence

|Ad| =
∑
n6x

(⌊
(αnc + β)d−1

⌋
−

⌊
(αnc + β − 1)d−1

⌋)
+ O(1)
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= Xd−1 +
∑
n6x

(
ψ((αnc + β − 1)d−1) − ψ((αnc + β)d−1)

)
+ O(1),

where
X ..=

∑
n6x

1 = x.

By Lemma 2.1 we need to show that for any sufficiently small ε > 0,∑
d6D

∣∣∣|Ad| − Xd−1
∣∣∣ 6 Xx−

ε
3 = x1− ε3 ,

for sufficiently large x. Splitting the range of d into dyadic subintervals, it is sufficient to prove that∑
d∼D1

∣∣∣∣ ∑
N<n6N1

(
ψ((αnc + β − 1)d−1) − ψ((αnc + β)d−1)

) ∣∣∣∣ � x1− ε2 , (3.1)

holds uniformly for D1 6 D,N 6 x,N1 ∼ N. Our aim is to establish (3.1) with D as large as possible.
We define

S ..=
∑

N<n6N1

(
ψ((αnc + β − 1)d−1) − ψ((αnc + β)d−1)

)
. (3.2)

By Lemma 2.3 and taking H = Dxε, we have

S = S 1 + O(S 2),

where
S 1

..=
∑

N<n6N1

∑
0<|h|6H

ah

(
e(h(αnc + β − 1)d−1) − e(h(αnc + β)d−1)

)
and

S 2
..=

∑
N<n6N1

∑
|h|6H

bh

(
e(h(αnc + β − 1)d−1) + e(h(αnc + β)d−1)

)
.

We split S 1 into two parts
S 1 = S (1)

1 + S (2)
1 , (3.3)

where
S (1)

1
..=

∑
N<n6N1

∑
0<|h|6H

ah

(
e(h(αnc + β − 1)d−1) − e(hαncd−1)

)
,

and
S (2)

1
..=

∑
N<n6N1

∑
0<|h|6H

ah

(
e(hαncd−1) − e(h(αnc + β)d−1)

)
.

We consider S (1)
1 . Writing that

φh
..= e(h(β − 1)d−1) − 1 � 1.

Using the exponent pair (k, l), we obtain that

S (1)
1 =

∑
N<n6N1

∑
0<|h|6H

ahφhe(hαncd−1)
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�
∑

0<h6H

h−1|
∑

N<n6N1

e(hαncd−1)|

�
∑

0<h6H

h−1
(
(hd−1Nc−1)kN l + (hd−1)−1N1−c

)
� Hkd−kNkc−k+l + H−1dN1−c. (3.4)

For S (2)
1 , by a similar argument with φh replaced by ϕh defined by

ϕh
..= 1 − e(hβd−1) � 1.

One can derive that

S (2)
1 � Hkd−kNkc−k+l + H−1dN1−c. (3.5)

Now we consider S 2. The contribution of S 2 from h = 0 is∑
N<n6N1

bh � NH−1. (3.6)

By a simialar arguments of S 1 with a shift of n, the contribution of S 2 from h , 0 is

=
∑

N<n6N1

∑
0<|h|6H

bh

(
e(h(αnc + β − 1)d−1) + e(h(αnc + β)d−1)

)
�

∑
N<n6N1

∑
0<|h|6H

bhφhe(hαncd−1) +
∑

N<n6N1

∑
0<|h|6H

bhϕhe(hαncd−1)

�
∑

0<h6H

H−1
∣∣∣∣ ∑

N<n6N1

e(hαncd−1)
∣∣∣∣

�
∑

0<h6H

H−1(hkd−kNkc−k+l + h−1dN1−c)

� Hkd−kNkc−k+l + H−1dN1−c log H. (3.7)

Substituting (3.4) and (3.5) to (3.3), and combining (3.6) and (3.7), the left hand side of (3.1) is

�
∑
d∼D1

(
Hkd−kNkc−k+l + H−1dN1−c

+ H−1dN1−c log H + NH−1) � Dxkc−k+l+kε + Dx1−c+ε.

Therefore, to make (3.1) to be true, we need that

Dxkc−k+l+kε � x1− ε2 , (3.8)

and
Dx1−c+ε � x1− ε2 . (3.9)

Combining (3.8) and (3.9), we obtain that

D � min
(
xc− 3ε

2 , x1−kc+k−l−ε
)
. (3.10)
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3.1. Exponent pair estimation for R = 3

By Lemma 2.1, A contains � x/ log x R-almost primes. We apply the weighted sieve with the
choice

R = 3, δ3 = 0.074267

and choose
ΛR = 3 −

3
40

=
117
40

< R − δR.

By (3.10) we require that

1 − kc + k − l >
40

117
and c >

40
117

, (3.11)

then
c <

77 − 117l
117k

+ 1.

Taking the exponent pair

BAAAAAB(0, 1) =

(
19
42
,

32
63

)
,

we have
c <

329
247

= 1.3319 . . . .

3.2. Exponent pair estimation for R = 4

Similarly, we apply the weighted sieve with the choice

R = 4, δ4 = 0.103974

and choose
ΛR = 4 −

13
125

=
487
125

< R − δR.

By taking the exponent pair

BABABAABAAB(0, 1) =

(
33

128
,

75
128

)
,

we can get

c <
362 − 487l

487k
+ 1 =

25882
16071

= 1.6104 . . . .

3.3. The bound of c for R > 5

For R > 5, we estimate (3.2) by Lemma 2.2. From (3.4) we have

S (1)
1 � log H max

1�T�H
S (T,N),

where
S (T,N) ..=

1
T

∑
h∼T

∑
n∼N

e(hd−1nc).
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By Lemma 2.2 with f (n) = Td−1(n + N)c and

λ = c(c − 1)(c − 2)Td−1Nc−3,

it follows that

S (T,N) � N1+ε(Td−1Nc−3)
1
6 T−

1
9 + N1+ε(Td−1Nc−3)

1
5

+ N
3
4 +ε + (Td−1Nc−3)−

1
3

� T
1
18 d−

1
6 N

c
6 + 1

2 +ε + T
1
5 d−

1
5 N

c
5 + 2

5 +ε

+ N
3
4 +ε + T−

1
3 d

1
3 N1− c

3 .

Hence

S (1)
1 � H

1
18 d−

1
6 N

c
6 + 1

2 +ε + H
1
5 d−

1
5 N

c
5 + 2

5 +ε + N
3
4 +ε + d

1
3 N1− c

3 .

Similarly, we can get the estimation of S (2)
1 . The contribution of S 2 from h , 0 can be estimated by

the same method and achieve the same upper bound. Together with the contribution of S 2 from h = 0,
by (3.6) we obtain that the left-hand side of (3.1) is∑

d∼D1

|S | �
∑
d∼D1

∣∣∣H 1
18 d−

1
6 N

c
6 + 1

2 +ε + H
1
5 d−

1
5 N

c
5 + 2

5 +ε + N
3
4 +ε + d

1
3 N1− c

3
∣∣∣

� H
1
18 D

5
6 N

c
6 + 1

2 +ε + H
1
5 D

4
5 N

c
5 + 2

5 +ε + DN
3
4 log H + D

4
3 N1− c

3

� D
8
9 x

c
6 + 1

2 + 19ε
18 + Dx

c
5 + 2

5 + 6ε
5 + Dx

3
4 +ε + D

4
3 x1− c

3 .

To ensure the left-hand side of (3.1) is� x1−ε/2, we require that

D � min
(
x

9
16−

3c
16−ε, x

3
5−

c
5−ε, x

1
4−ε, x

c
4−ε

)
. (3.12)

We apply the weighted sieve with the choice

δR = 0.124820 (R > 5)

and choose

ΛR = R −
1
8
< R − δR.

To apply Lemma 2.1, by (3.12) we need that

min
(

9
16
−

3c
16
,

3
5
−

c
5
,

1
4
,

c
4

)
>

1
R − 1

8

,

which gives that

c < 3 −
128

3(8R − 1)
.
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4. Conclusions

In this paper, we investigate the following generalized Piatetski-Shapiro sequences

N
(c)
α,β = (bαnc + βc)∞n=1 .

We prove that there are infinitely many R-almost primes in generalized Piatetski-Shapiro sequences by
the Van der Corput’s method of exponential sums and exponent pairs.
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