

AIMS Mathematics, 7(8): 14154–14162. DOI: 10.3934/math.2022780 Received: 09 April 2022 Revised: 18 May 2022 Accepted: 25 May 2022 Published: 27 May 2022

http://www.aimspress.com/journal/Math

Research article

Almost primes in generalized Piatetski-Shapiro sequences

Jinyun Qi and Zhefeng Xu*

Research Center for Number Theory and Its Applications, Northwest University, Xi'an 710127, China

* Correspondence: Email: zfxu@mail.nwu.edu.cn.

Abstract: We consider a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences, which is of the form $(\lfloor \alpha n^c + \beta \rfloor)_{n=1}^{\infty}$ with real numbers $\alpha \ge 1, c > 1$ and β . In this paper, we prove that there are infinitely many *R*-almost primes in sequences $(\lfloor \alpha n^c + \beta \rfloor)_{n=1}^{\infty}$ if $c \in (1, c_R)$ and c_R is an explicit constant depending on *R*.

Keywords: Piatetski-Shapiro sequences; almost primes; exponent pair **Mathematics Subject Classification:** 11B83, 11L07

1. Introduction

For $1 < c \notin \mathbb{N}$, the Piatetski-Shapiro sequences are sequences of the form

$$\mathcal{N}^{(c)} \coloneqq (\lfloor n^c \rfloor)_{n=1}^{\infty} \qquad (c > 1, \ c \notin \mathbb{N}).$$

Such sequences have been named in honor of Piatetski-Shapiro [5], who published the first paper in this problem. He showed that the counting function

$$\left|\{\text{prime } p \leq x : p \in \mathcal{N}^{(c)}\}\right| \sim \frac{x^{\frac{1}{c}}}{\log x} \qquad \text{as } x \to \infty,$$

holds for $1 < c < \frac{12}{11}$. The range for *c* of the asymptotic formula of $\pi^{(c)}(x)$ has been extended many times over the years and is currently known for all $c \in (1, \frac{243}{205})$ thanks to Rivat and Wu [6]. It is conjectured that there are infinitely many Piatetski-Shapiro primes for $c \in (1, 2)$. However, we can see that the best known bound for *c* in [6] is still far from 2 and it has not been improved for almost 20 years.

Several mathematicians approached this problem in a different direction. For every $R \ge 1$, we say that a natural number is an *R*-almost prime if it has at most *R* prime factors, counted with multiplicity. The study of almost primes is an intermediate step to the investigation of primes.

Baker, Banks, Guo and Yeager [1] proved that for any fixed $c \in (1, \frac{67}{66})$ there are infinitely many primes of the form $p = \lfloor n^c \rfloor$, where *n* is a natural number with at most eight prime factors. More precisely,

$$|\{n \le x : n \text{ is an 8-almost prime and } \lfloor n^c \rfloor \text{ is prime}\}| \gg \frac{x}{\log^2 x}.$$

Provided that c_R is an explicit constant depending on R, for any fixed $c \in (1, c_R)$, Guo [4] proved that

$$|\{n \le x : \lfloor n^c \rfloor \text{ is an } R \text{-almost prime}\}| \gg \frac{x}{\log x}$$

holds for all sufficiently large x.

For fixed real numbers α and β , the associated non-homogeneous Beatty sequence is the sequence of integers defined by

$$\mathcal{B}_{\alpha,\beta} := \left(\lfloor \alpha n + \beta \rfloor \right)_{n=1}^{\infty},$$

where $\lfloor t \rfloor$ denotes the integral part of any $t \in \mathbb{R}$. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [9] that $\mathcal{B}_{\alpha\beta}$ contains infinitely many prime numbers; in fact, one has the asymptotic relation

#{prime
$$p \leq x : p \in \mathcal{B}_{\alpha,\beta}$$
} ~ $\alpha^{-1}\pi(x)$ $(x \to \infty)$,

where $\pi(x)$ is the prime counting function.

It is interesting to generalize the Piatetski-Shapiro sequences in the sense of Beatty sequences, since both Piatetski-Shapiro sequences and Beatty sequences produce infinitely many primes. Let $\alpha \ge 1$ and β be real numbers. We investigate the following generalized Piatetski-Shapiro sequences

$$\mathcal{N}_{\alpha,\beta}^{(c)} = \left(\lfloor \alpha n^c + \beta \rfloor\right)_{n=1}^{\infty}.$$

Note that the special case $\mathcal{N}_{1,0}^{(c)}$ is the normal Piatetski-Shapiro sequences. In this paper, we prove that there are infinitely many almost primes in generalized Piatetski-Shapiro sequences.

Theorem 1.1. For any fixed $c \in (1, c_R)$ we have

$$|\{n \le x : \lfloor \alpha n^c + \beta \rfloor \text{ is an } R \text{-almost prime}\}| \gg \frac{x}{\log x}$$

holds for all sufficiently large x. In particular, we have

$$c_3 := \frac{329}{249} = 1.3319..., \qquad c_4 := \frac{25882}{16071} = 1.6104...,$$

and

$$c_R := 3 - \frac{128}{3(8R - 1)}$$
 $(R \ge 5).$

AIMS Mathematics

2. Preliminaries

2.1. Notations

We denote by $\lfloor t \rfloor$ and $\{t\}$ the integer part and the fractional part of *t*, respectively. As is customary, we put $\mathbf{e}(t) := e^{2\pi i t}$. We make considerable use of the sawtooth function defined by

$$\psi(t) := t - \lfloor t \rfloor - \frac{1}{2} = \{t\} - \frac{1}{2} \qquad (t \in \mathbb{R}).$$

We use notation of the form $m \sim M$ as an abbreviation for $M < m \leq 2M$.

Throughout the paper, implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters α, ε but are absolute otherwise. For given functions F and G, the notations $F \ll G$, $G \gg F$ and F = O(G) are all equivalent to the statement that the inequality $|F| \le C|G|$ holds with some constant C > 0. $F \asymp G$ means that $F \ll G \ll F$.

2.2. Technical lemmas

As we have mentioned the following notion plays a crucial role in our arguments. We specify it to the form that is suited to our applications; it is based on a result of Greaves [2] that relates level of distribution to *R*-almost primality. More precisely, we say that an *N*-element set of integers \mathcal{A} has a level of distribution *D* if for a given multiplicative function f(d) we have

$$\sum_{d \le D} \max_{\gcd(s,d)=1} \left| \left| \{a \in \mathcal{A}, \ a \equiv s \mod d\} \right| - \frac{f(d)}{d} N \right| \le \frac{N}{\log^2 N}$$

As in [2, pp. 174–175] we define the constants

$$\delta_2 \coloneqq 0.044560, \qquad \delta_3 \coloneqq 0.074267, \qquad \delta_4 \coloneqq 0.103974$$

and

$$\delta_R \coloneqq 0.124820, \qquad R \ge 5.$$

We have the following result, which is [2, Chapter 5, Proposition 1].

Lemma 2.1. Suppose \mathcal{A} is an N-element set of positive integers with a level of distribution D and degree ρ in the sense that

$$a < D^{\rho} \qquad (a \in \mathcal{A})$$

holds with some real number $\rho < R - \delta_R$. Then

$$|\{a \in \mathcal{A} : a \text{ is an } R \text{-almost prime}\}| \gg_{\rho} \frac{N}{\log N}$$

Lemma 2.2. Let $M \ge 1$ and λ be positive real numbers and let H be a positive integer. If $f : [1, M] \rightarrow \mathbb{R}$ is a real valued function with three continuous derivatives, which satisfies

$$\lambda \leq |f^{(3)}(x)| \ll \lambda \quad for \ 1 \leq x \leq M,$$

AIMS Mathematics

then for the sum

$$S = \frac{1}{H} \sum_{h=H+1}^{2H} \bigg| \sum_{m=1}^{M_h} \mathbf{e}\bigg(\frac{h}{H} f(m)\bigg)\bigg|,$$

where the integer M_h satisfies $1 \le M_h \le M$ for each $h \in [H + 1, 2H]$, we have

$$S \ll M^{\varepsilon} \left(M \lambda^{1/6} H^{-1/9} + M \lambda^{1/5} + M^{3/4} \right) + \lambda^{-1/3}.$$

Proof. See [7, Theorem 1].

Lemma 2.3. For any $H \ge 1$ there are numbers a_h, b_h such that

$$\left|\psi(t)-\sum_{0<|h|\leqslant H}a_{h}\,\mathbf{e}(th)\right|\leqslant\sum_{|h|\leqslant H}b_{h}\,\mathbf{e}(th),$$

where

 $a_h \ll \frac{1}{|h|}, \qquad b_h \ll \frac{1}{H}.$

Proof. See [8].

We also need the method of exponent pair. A detailed definition of exponent pair can be found in [3, p. 31]. For an exponent pair (k, l), we denote

$$A(k, l) := \left(\frac{k}{2k+2}, \frac{k+l+1}{2k+2}\right)$$

and

$$B(k, l) := \left(l - \frac{1}{2}, k + \frac{1}{2}\right),$$

the A-process and B-process of the exponent pair, respectively.

3. Proof of Theorem 1.1

Now we prove our main results. The set we sieve is

$$\mathcal{A} := \{ m \leq x^c : m = \lfloor \alpha n^c + \beta \rfloor \text{ for integer } n \}.$$

For any $d \leq D$, where D is a fixed power of x, we estimate

$$\mathcal{A}_d := \{ m \in \mathcal{A} : d \mid m \}.$$

We know that $rd \in \mathcal{A}$ if and only if

$$rd \leq \alpha n^c + \beta < rd + 1$$
 and $rd \leq x^c$.

Within O(1) the cardinality of \mathcal{A}_d is equal to the number of integers $n \leq x$ for which the interval $((\alpha n^c + \beta - 1)d^{-1}, (\alpha n^c + \beta)d^{-1}]$ contains a natural number. Hence

$$|\mathcal{A}_d| = \sum_{n \leqslant x} \left(\left\lfloor (\alpha n^c + \beta) d^{-1} \right\rfloor - \left\lfloor (\alpha n^c + \beta - 1) d^{-1} \right\rfloor \right) + O(1)$$

AIMS Mathematics

Volume 7, Issue 8, 14154–14162.

$$= Xd^{-1} + \sum_{n \leq x} \left(\psi((\alpha n^{c} + \beta - 1)d^{-1}) - \psi((\alpha n^{c} + \beta)d^{-1}) \right) + O(1),$$

where

$$\mathcal{X} \coloneqq \sum_{n \leq x} 1 = x.$$

By Lemma 2.1 we need to show that for any sufficiently small $\varepsilon > 0$,

$$\sum_{d\leqslant D} \left| |\mathcal{A}_d| - \mathcal{X}d^{-1} \right| \leqslant \mathcal{X}x^{-\frac{\varepsilon}{3}} = x^{1-\frac{\varepsilon}{3}},$$

for sufficiently large x. Splitting the range of d into dyadic subintervals, it is sufficient to prove that

$$\sum_{d \sim D_1} \left| \sum_{N < n \le N_1} \left(\psi((\alpha n^c + \beta - 1)d^{-1}) - \psi((\alpha n^c + \beta)d^{-1}) \right) \right| \ll x^{1 - \frac{\varepsilon}{2}}, \tag{3.1}$$

holds uniformly for $D_1 \leq D, N \leq x, N_1 \sim N$. Our aim is to establish (3.1) with *D* as large as possible. We define

$$S := \sum_{N < n \le N_1} \left(\psi((\alpha n^c + \beta - 1)d^{-1}) - \psi((\alpha n^c + \beta)d^{-1}) \right).$$
(3.2)

By Lemma 2.3 and taking $H = Dx^{\varepsilon}$, we have

$$S = S_1 + O(S_2)$$

where

$$S_1 := \sum_{N < n \le N_1} \sum_{0 < |h| \le H} a_h \left(\mathbf{e}(h(\alpha n^c + \beta - 1)d^{-1}) - \mathbf{e}(h(\alpha n^c + \beta)d^{-1}) \right)$$

and

$$S_2 := \sum_{N < n \le N_1} \sum_{|h| \le H} b_h \left(\mathbf{e}(h(\alpha n^c + \beta - 1)d^{-1}) + \mathbf{e}(h(\alpha n^c + \beta)d^{-1}) \right)$$

We split S_1 into two parts

$$S_1 = S_1^{(1)} + S_1^{(2)}, (3.3)$$

where

$$S_1^{(1)} \coloneqq \sum_{N < n \leq N_1} \sum_{0 < |h| \leq H} a_h \left(\mathbf{e}(h(\alpha n^c + \beta - 1)d^{-1}) - \mathbf{e}(h\alpha n^c d^{-1}) \right)$$

and

$$S_1^{(2)} := \sum_{N < n \le N_1} \sum_{0 < |h| \le H} a_h \left(\mathbf{e}(h\alpha n^c d^{-1}) - \mathbf{e}(h(\alpha n^c + \beta) d^{-1}) \right).$$

We consider $S_1^{(1)}$. Writing that

$$\phi_h \coloneqq \mathbf{e}(h(\beta - 1)d^{-1}) - 1 \ll 1.$$

Using the exponent pair (k, l), we obtain that

$$S_1^{(1)} = \sum_{N < n \le N_1} \sum_{0 < |h| \le H} a_h \phi_h \mathbf{e}(h\alpha n^c d^{-1})$$

AIMS Mathematics

$$\ll \sum_{0 < h \leq H} h^{-1} |\sum_{N < n \leq N_{1}} \mathbf{e}(h\alpha n^{c} d^{-1})|$$

$$\ll \sum_{0 < h \leq H} h^{-1} \left((hd^{-1}N^{c-1})^{k} N^{l} + (hd^{-1})^{-1} N^{1-c} \right)$$

$$\ll H^{k} d^{-k} N^{kc-k+l} + H^{-1} dN^{1-c}.$$
 (3.4)

For $S_1^{(2)}$, by a similar argument with ϕ_h replaced by φ_h defined by

$$\varphi_h \coloneqq 1 - \mathbf{e}(h\beta d^{-1}) \ll 1.$$

One can derive that

$$S_1^{(2)} \ll H^k d^{-k} N^{kc-k+l} + H^{-1} dN^{1-c}.$$
(3.5)

Now we consider S_2 . The contribution of S_2 from h = 0 is

$$\sum_{N < n \le N_1} b_h \ll N H^{-1}. \tag{3.6}$$

By a simialar arguments of S_1 with a shift of *n*, the contribution of S_2 from $h \neq 0$ is

$$= \sum_{N < n \le N_{1}} \sum_{0 < |h| \le H} b_{h} \left(\mathbf{e}(h(\alpha n^{c} + \beta - 1)d^{-1}) + \mathbf{e}(h(\alpha n^{c} + \beta)d^{-1}) \right)$$

$$\ll \sum_{N < n \le N_{1}} \sum_{0 < |h| \le H} b_{h} \phi_{h} \mathbf{e}(h\alpha n^{c}d^{-1}) + \sum_{N < n \le N_{1}} \sum_{0 < |h| \le H} b_{h} \varphi_{h} \mathbf{e}(h\alpha n^{c}d^{-1})$$

$$\ll \sum_{0 < h \le H} H^{-1} \left| \sum_{N < n \le N_{1}} \mathbf{e}(h\alpha n^{c}d^{-1}) \right|$$

$$\ll \sum_{0 < h \le H} H^{-1}(h^{k}d^{-k}N^{kc-k+l} + h^{-1}dN^{1-c})$$

$$\ll H^{k}d^{-k}N^{kc-k+l} + H^{-1}dN^{1-c} \log H.$$
(3.7)

Substituting (3.4) and (3.5) to (3.3), and combining (3.6) and (3.7), the left hand side of (3.1) is

$$\ll \sum_{d \sim D_1} \left(H^k d^{-k} N^{kc-k+l} + H^{-1} dN^{1-c} + H^{-1} dN^{1-c} \log H + N H^{-1} \right) \ll D x^{kc-k+l+k\varepsilon} + D x^{1-c+\varepsilon}.$$

Therefore, to make (3.1) to be true, we need that

$$Dx^{kc-k+l+k\varepsilon} \ll x^{1-\frac{\varepsilon}{2}},\tag{3.8}$$

and

$$Dx^{1-c+\varepsilon} \ll x^{1-\frac{\varepsilon}{2}}.$$
(3.9)

Combining (3.8) and (3.9), we obtain that

$$D \ll \min\left(x^{c-\frac{3\varepsilon}{2}}, x^{1-kc+k-l-\varepsilon}\right).$$
(3.10)

AIMS Mathematics

3.1. Exponent pair estimation for R = 3

By Lemma 2.1, \mathcal{A} contains $\gg x/\log x R$ -almost primes. We apply the weighted sieve with the choice

$$R = 3$$
, $\delta_3 = 0.074267$

and choose

$$\Lambda_R = 3 - \frac{3}{40} = \frac{117}{40} < R - \delta_R$$

By (3.10) we require that

$$1 - kc + k - l > \frac{40}{117}$$
 and $c > \frac{40}{117}$, (3.11)

then

$$c < \frac{77 - 117l}{117k} + 1.$$

Taking the exponent pair

$$BAAAAAB(0,1) = \left(\frac{19}{42}, \frac{32}{63}\right),$$

we have

$$c < \frac{329}{247} = 1.3319\dots$$

3.2. Exponent pair estimation for R = 4

Similarly, we apply the weighted sieve with the choice

$$R = 4, \qquad \delta_4 = 0.103974$$

and choose

$$\Lambda_R = 4 - \frac{13}{125} = \frac{487}{125} < R - \delta_R.$$

By taking the exponent pair

$$BABABAABAAB(0,1) = \left(\frac{33}{128}, \frac{75}{128}\right),$$

we can get

$$c < \frac{362 - 487l}{487k} + 1 = \frac{25882}{16071} = 1.6104\dots$$

3.3. The bound of c for $R \ge 5$

For $R \ge 5$, we estimate (3.2) by Lemma 2.2. From (3.4) we have

$$S_1^{(1)} \ll \log H \max_{1 \ll T \ll H} S(T, N),$$

where

$$S(T,N) \coloneqq \frac{1}{T} \sum_{h \sim T} \sum_{n \sim N} \mathbf{e}(hd^{-1}n^c).$$

AIMS Mathematics

By Lemma 2.2 with $f(n) = Td^{-1}(n+N)^c$ and

$$\lambda = c(c-1)(c-2)Td^{-1}N^{c-3},$$

it follows that

$$\begin{split} S(T,N) \ll N^{1+\varepsilon} (Td^{-1}N^{c-3})^{\frac{1}{6}}T^{-\frac{1}{9}} + N^{1+\varepsilon} (Td^{-1}N^{c-3})^{\frac{1}{5}} \\ &+ N^{\frac{3}{4}+\varepsilon} + (Td^{-1}N^{c-3})^{-\frac{1}{3}} \\ \ll T^{\frac{1}{18}}d^{-\frac{1}{6}}N^{\frac{c}{6}+\frac{1}{2}+\varepsilon} + T^{\frac{1}{5}}d^{-\frac{1}{5}}N^{\frac{c}{5}+\frac{2}{5}+\varepsilon} \\ &+ N^{\frac{3}{4}+\varepsilon} + T^{-\frac{1}{3}}d^{\frac{1}{3}}N^{1-\frac{c}{3}}. \end{split}$$

Hence

$$S_1^{(1)} \ll H^{\frac{1}{18}} d^{-\frac{1}{6}} N^{\frac{c}{6} + \frac{1}{2} + \varepsilon} + H^{\frac{1}{5}} d^{-\frac{1}{5}} N^{\frac{c}{5} + \frac{2}{5} + \varepsilon} + N^{\frac{3}{4} + \varepsilon} + d^{\frac{1}{3}} N^{1 - \frac{c}{3}}.$$

Similarly, we can get the estimation of $S_1^{(2)}$. The contribution of S_2 from $h \neq 0$ can be estimated by the same method and achieve the same upper bound. Together with the contribution of S_2 from h = 0, by (3.6) we obtain that the left-hand side of (3.1) is

$$\begin{split} \sum_{d \sim D_1} |S| &\ll \sum_{d \sim D_1} \left| H^{\frac{1}{18}} d^{-\frac{1}{6}} N^{\frac{c}{6} + \frac{1}{2} + \varepsilon} + H^{\frac{1}{5}} d^{-\frac{1}{5}} N^{\frac{c}{5} + \frac{2}{5} + \varepsilon} + N^{\frac{3}{4} + \varepsilon} + d^{\frac{1}{3}} N^{1 - \frac{c}{3}} \right| \\ &\ll H^{\frac{1}{18}} D^{\frac{5}{6}} N^{\frac{c}{6} + \frac{1}{2} + \varepsilon} + H^{\frac{1}{5}} D^{\frac{4}{5}} N^{\frac{c}{5} + \frac{2}{5} + \varepsilon} + DN^{\frac{3}{4}} \log H + D^{\frac{4}{3}} N^{1 - \frac{c}{3}} \\ &\ll D^{\frac{8}{9}} x^{\frac{c}{6} + \frac{1}{2} + \frac{19\varepsilon}{18}} + Dx^{\frac{c}{5} + \frac{2}{5} + \frac{6\varepsilon}{5}} + Dx^{\frac{3}{4} + \varepsilon} + D^{\frac{4}{3}} x^{1 - \frac{c}{3}}. \end{split}$$

To ensure the left-hand side of (3.1) is $\ll x^{1-\varepsilon/2}$, we require that

$$D \ll \min\left(x^{\frac{9}{16} - \frac{3c}{16} - \varepsilon}, x^{\frac{3}{5} - \frac{c}{5} - \varepsilon}, x^{\frac{1}{4} - \varepsilon}, x^{\frac{c}{4} - \varepsilon}\right).$$
(3.12)

We apply the weighted sieve with the choice

$$\delta_R = 0.124820 \qquad (R \ge 5)$$

and choose

$$\Lambda_R = R - \frac{1}{8} < R - \delta_R$$

To apply Lemma 2.1, by (3.12) we need that

$$\min\left(\frac{9}{16} - \frac{3c}{16}, \frac{3}{5} - \frac{c}{5}, \frac{1}{4}, \frac{c}{4}\right) > \frac{1}{R - \frac{1}{8}},$$

which gives that

$$c < 3 - \frac{128}{3(8R - 1)}.$$

AIMS Mathematics

4. Conclusions

In this paper, we investigate the following generalized Piatetski-Shapiro sequences

$$\mathcal{N}_{\alpha,\beta}^{(c)} = (\lfloor \alpha n^c + \beta \rfloor)_{n=1}^{\infty}.$$

We prove that there are infinitely many *R*-almost primes in generalized Piatetski-Shapiro sequences by the Van der Corput's method of exponential sums and exponent pairs.

Acknowledgement

This work is supported by National Natural Science Foundation of China (11971381, 11701447, 11871317).

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

- 1. R. C. Baker, W. D. Banks, V. Z. Guo, A. M Yeager, Piatetski-Shapiro primes from almost primes, *Monatsh. Math.*, **174** (2014), 357–370. https://doi.org/10.1007/s00605-013-0552-8
- 2. G. Greaves, Sieves in number theory, Springer-Verlag, Berlin, 43 (2001).
- 3. S. W. Graham, G. Kolesnik, *Van der Corput's method of exponential sums*, Cambridge University Press, Cambridge, **126** (1991).
- 4. V. Z. Guo, Almost primes in Piatetski-Shapiro sequences, *AIMS Math.*, **6** (2021), 9536–9546. https://doi.org/10.3934/math.2021554
- 5. I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form $\lfloor f(n) \rfloor$, *Mat. Sb.*, **33** (1953), 559–566. https://doi.org/10.2307/2508708
- 6. J. Rivat, J. Wu, Prime numbers of the form [*n^c*], *Glasg. Math. J.*, **43** (2001), 237–254. https://doi.org/10.1017/S0017089501020080
- 7. O. Robert, P. Sargos, A third derivative test for mean values of exponential sums with application to lattice point problems, *Acta Arith.*, **106** (2003), 27–39. https://doi.org/10.4064/aa106-1-2
- 8. J. D. Vaaler, Some extremal problems in Fourier analysis. *Bull. Amer. Math. Soc.*, **12** (1985), 183–216. https://doi.org/10.1090/S0273-0979-1985-15349-2
- 9. I. M. Vinogradov, A new estimate of a certain sum containing primes (Russian), *Rec. Math.*, 2 (1937), 783–792.

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics