Research article

Properties of solutions for fractional-order linear system with differential equations

  • Received: 22 April 2022 Revised: 09 June 2022 Accepted: 15 June 2022 Published: 24 June 2022
  • MSC : 39A70, 45P05

  • In this paper, we study the analytical solutions of two-dimensional fractional-order linear system $ \mathcal{D}^{\alpha}_{t}X(t) = AX(t) $ described by fractional differential equations, where $ \mathcal{D} $ is the fractional derivative in the Caputo-Fabrizio sense and $ A = (a_{ij})_{2\times2} $ is nonsingular coefficient matrix with $ a_{ij}\in\mathbb{R} $. The analytical solutions of fractional-order linear system will be compared to the solution of classical linear system. Examples are provided to characterize the behavior of the solutions for fractional-order linear system.

    Citation: Shuo Wang, Juan Liu, Xindong Zhang. Properties of solutions for fractional-order linear system with differential equations[J]. AIMS Mathematics, 2022, 7(8): 15704-15713. doi: 10.3934/math.2022860

    Related Papers:

  • In this paper, we study the analytical solutions of two-dimensional fractional-order linear system $ \mathcal{D}^{\alpha}_{t}X(t) = AX(t) $ described by fractional differential equations, where $ \mathcal{D} $ is the fractional derivative in the Caputo-Fabrizio sense and $ A = (a_{ij})_{2\times2} $ is nonsingular coefficient matrix with $ a_{ij}\in\mathbb{R} $. The analytical solutions of fractional-order linear system will be compared to the solution of classical linear system. Examples are provided to characterize the behavior of the solutions for fractional-order linear system.



    加载中


    [1] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [2] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [3] P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), 1760–1781. https://doi.org/10.1137/080730597 doi: 10.1137/080730597
    [4] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92.
    [5] M. Fardi, Y. Khan, A novel finite difference-spectral method for fractal mobile/immobiletransport model based on Caputo-Fabrizio derivative, Chaos Solitons Fract., 143 (2021), 110573. https://doi.org/10.1016/j.chaos.2020.110573 doi: 10.1016/j.chaos.2020.110573
    [6] J. J. Nieto, Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett., 123 (2022), 107568. https://doi.org/10.1016/j.aml.2021.107568 doi: 10.1016/j.aml.2021.107568
    [7] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [8] O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fract., 89 (2016), 552–559. https://doi.org/10.1016/j.chaos.2016.03.026 doi: 10.1016/j.chaos.2016.03.026
    [9] T. Akman, B. Yıldız, D. Baleanu, New discretization of Caputo-Fabrizio derivative, Comput. Appl. Math., 37 (2018), 3307–3333. https://doi.org/10.1007/s40314-017-0514-1 doi: 10.1007/s40314-017-0514-1
    [10] D. Baleanu, H. Mohammadi, S. Rezapour, A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative, Adv. Differ. Equ., 2020 (2020), 299. https://doi.org/10.1186/s13662-020-02762-2 doi: 10.1186/s13662-020-02762-2
    [11] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos. Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [12] S. M. Aydogan, D. Baleanu, H. Mohammadi, S. Rezapour, On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative, Adv. Differ. Equ., 2020 (2020), 382. https://doi.org/10.1186/s13662-020-02798-4 doi: 10.1186/s13662-020-02798-4
    [13] M. Z. Xu, Y. J. Jian, Unsteady rotating electroosmotic flow with time-fractional Caputo-Fabrizio derivative, Appl. Math. Lett., 100 (2020), 106015. https://doi.org/10.1016/j.aml.2019.106015 doi: 10.1016/j.aml.2019.106015
    [14] M. Caputo, M. Fabrizio, On the singular kernels for fractional derivatives. Some applications to partial differential equations, Prog. Fract. Differ. Appl., 7 (2021), 79–82. https://doi.org/10.18576/pfda/070201 doi: 10.18576/pfda/070201
    [15] J. Losada, J. J. Nieto, Fractional integral associated to fractional derivatives with nonsingular kernels, Prog. Fract. Differ. Appl., 7 (2021), 137–143.
    [16] F. Haq, I. Mahariq, T. Abdeljawad, N. Maliki, A new approach for the qualitative study of vector born disease using Caputo-Fabrizio derivative, Numer. Methods Part. Differ. Equ., 37 (2021), 1809–1818. https://doi.org/10.1002/num.22728 doi: 10.1002/num.22728
    [17] N. Harrouche, S. Momani, S. Hasan, M. Al-Smadi, Computational algorithm for solving drug pharmacokinetic model under uncertainty with nonsingular kernel type Caputo-Fabrizio fractional derivative, Alex. Eng. J., 60 (2021), 4347–4362. https://doi.org/10.1016/j.aej.2021.03.016 doi: 10.1016/j.aej.2021.03.016
    [18] T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [19] W. Walter, Ordinary differential equations, New York: Springer-verlag, 1998.
    [20] S. P. Bhaty, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358
    [21] R. P. Agarwal, D. O'Regan, An introduction to ordinary differential equations, Springer Science Business Media LLC, 2008.
    [22] J. C. Cortés, A. Navarro-Quiles, J. V. Romero, M. D. Roselló, Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems, Appl. Math. Lett., 68 (2017), 150–156. https://doi.org/10.1016/j.aml.2016.12.015 doi: 10.1016/j.aml.2016.12.015
    [23] W. M. Ahmad, W. M. Harb, On nonlinear control design for autonomous chaotic systems of integer and fractional orders, Chaos Solitons Fract., 18 (2003), 693–701. https://doi.org/10.1016/S0960-0779(02)00644-6 doi: 10.1016/S0960-0779(02)00644-6
    [24] C. G. Li, G. R. Chen, Chaos in the fractional order Chen system and its control, Chaos Solitons Fract., 22 (2004), 549–554. https://doi.org/10.1016/j.chaos.2004.02.035 doi: 10.1016/j.chaos.2004.02.035
    [25] S. T. Kingni, V. T. Pham, S. Jafari, G. R. Kol, P. Woafo, Three-dimensional chaotic autonomous system with a circular equilibrium: Analysis, circuit implementation and its fractional-order form, Circuits Syst. Signal Process., 35 (2016), 1933–1948. https://doi.org/10.1007/s00034-016-0259-x doi: 10.1007/s00034-016-0259-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1062) PDF downloads(67) Cited by(1)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog