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Abstract: We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for
solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method
transforms the IHOC: into finite-horizon optimal control problems in their integral forms by means of
certain parametric mappings, which are then approximated by finite-dimensional nonlinear
programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and
Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the
parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points
and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the
construction of the rational interpolation weights and the GGR-based integration and differentiation
matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and
convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant
for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of
computational algorithms for computing the barycentric-trigonometric rational weights are described.
Three illustrative test examples are presented to support the theoretical results. We show that the
proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially
to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that
typical direct spectral/PS and IPS methods based on classical Jacobi polynomials and certain
parametric maps usually diverge as the number of collocation points grow large if the computations
are carried out using floating-point arithmetic and the discretizations use a single mesh grid,
regardless of whether they are of Gauss/Gauss-Radau type or equally spaced.
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1. Introduction

Arguably, one of the most impactful numerical methods for solving continuous-time optimal
control problems (CTOCPs) in the 20th century has been direct pseudospectral (PS) methods, which
can accurately reduce CTOCPs into optimization problems of standard forms that can be easily
treated by using typical optimization methods. The key success of these methods lies in their ability
to converge to sufficiently smooth solutions with exponential rates by using relatively coarse mesh
grids. PS methods are considered to be “one of the biggest technologies for solving PDEs” that were
largely developed about a half century ago since the pioneering works of Orszag [1] and Patterson Jr
and Orszag [2]. They have been continuously refined and extended in later decades to solve many
problems in various scientific areas that were only tractable by these techniques. Perhaps, one of the
brightest moments in the course of their development appeared on March 3, 2007, when the
International Space Station completed a 180-degree maneuver without using any propellant by
tracking an attitude trajectory developed with PS optimal control theory, saving NASA one million
USD [3]. The development of PS methods continues to be very active, and the progress in this
research area has been remarkable in recent years; see the works in [4-6], for a few references on the
solution of optimal control problems using various schemes of PS methods.

PS methods are closely related to the popular class of spectral methods, but they expand the
solutions in terms of their grid point values by means of interpolation in lieu of global and, usually,
orthogonal basis polynomials. Such a nodal representation is extremely useful in the sense that the
solution values are immediately available at the collocation points once the full discretization is
implemented, as the the governing equations are satisfied pointwise in the physical space, whereas
modal representations require a further step of computing the modal approximation after calculating
the coeflicients of the basis function expansions [7]. This places PS methods at the front of highly
accurate methods that are particularly easy to apply to equations with variable coefficients and
nonlinearities [8]. Clear expositions of spectral and PS methods exhibiting a wide range of outlooks
on the subject include, to mention a few, the books [9-11].

Two of the most common alternatives to direct spectral and PS methods are indirect methods and
parameterization methods, which include control parameterization and state and control
parameterization. As their names suggest, only the control variable is parameterized in a control
parameterization method, and the differential equations are solved via numerical integration, while
both state and control variables are parameterized in state and control parameterization methods, and
the differential equations are converted into algebraic constraints. Typical examples of control
parameterization methods include shooting methods and multiple shooting methods. On the other
hand, an indirect method requires first the derivation of the often complicated first-order necessary
optimality conditions, which include the adjoint equations, the control equations and the
transversality conditions, before carrying out the numerical discretization. In fact, direct PS methods

AIMS Mathematics Volume 8, Issue 2, 3561-3605.



3563

often present more computational efficiency and robustness over these classical methods on solving
optimal control problems due to many reasons; to mention a few, (i) multiple shooting methods do not
handle problems with singular arcs appropriately without a priori information on the structure of the
trajectories [12]; (i1) direct shooting methods are often intensive computationally and associated with
sensitivity issues; in particular, the ability to successfully use a direct shooting method declines as the
number of variables grows large [13]; (iii) the boundary value problem resulting from the necessary
conditions of optimality are extremely sensitive to initial guesses in indirect methods [14]; (iv) in
contrast to indirect methods and direct shooting methods, direct PS methods do not require a priori
knowledge of the active and inactive arcs for problems with inequality path constraints [15]; (v) the
user does not have to be concerned with the adjoint variables or the switching structures to determine
the optimal control in direct PS methods [16]; (vi) direct PS methods show much bigger convergence
radii than either the indirect methods or direct shooting methods, as they are much less sensitive to the
initial guesses [17]; (vii) direct PS methods are often memory minimizing when performed using
orthogonal collocation approximations, as they result in finite-dimensional nonlinear programming
problems (NLPs) with considerably lower dimensions compared to other competitive methods in the
literature [18]; (viii) direct PS methods perform numerical differentiation through constant operators
that can be stored for certain sets of collocation points, and invoked later when implementing the
computational algorithms; and (ix) there is no need for the Lyapunov function to construct the
asymptotically stabilizing control [6]. The reader may consult [19] for a further review on spectral
and PS methods and their advantages against other classical methods.

A robust variant of PS methods is the class of integral PS (IPS) methods (that is, PS integration
methods), which is closely related to PS methods, but it requires an initial step of reformulating the
dynamical system equations in their integral form first before the collocation phase starts; thus, it
avoids the degradation of precision that is often caused by numerical differentiation processes [20,21].
The integral reformulation can be performed by either a direct integration of the dynamical system
equations if they have constant coefficients, or by approximating the solution’s highest-order derivative
involved in the problem by using a nodal finite series in terms of its grid point values and then solving
for those grid point values before successively integrating back in a stable manner to obtain the sought
solution grid point values. It has been shown in recent decades through a large number of publications
that IPS methods often exhibit faster convergence rates, produce higher accuracy and are much less
sensitive to the types of collocation points used than the usual PS methods; see [22-24] to mention
a few. Historically, the spectral approximation of the integral form of differential equations was put
forward in the 1960s by Clenshaw and Curtis [25] in the spectral space, and by El-Gendi [26] in the
physical space.

Among the many classes of CTOCPs, infinite-horizon optimal control problems (IHOCs) and
optimal control problems defined on sufficiently large intervals have attracted a lot of research interest
due to the extent of their applications in economics, engineering, computer science, business and
management science, bio-medicine, aerospace, energy, etc.; see [27-29] to mention a few. Some
classical results on the existence of solutions for IHOCs can be found in [30-33]. One of the most
general and well-known results on the existence of solutions to IHOCs was proved by Balder [34]
using the notion of uniform integrability. Sufficient conditions for the existence of a finitely optimal
solution for a class of nonlinear IHOCs were derived by Carlson [35] under minimal convexity and
seminormality conditions. An existence and uniqueness theorem for a class of IHOCs was proved by
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Wang [36] under certain conditions. Existence and uniqueness results for a class of linear-quadratic,
convex IHOC:s in weighted Sobolev spaces for the state and weighted Lebesgue spaces for the control
were obtained by Pickenhain [37]. A recent extension to the existence results of Balder [34] to the
case in which the integral functional is understood as an improper integral was proved by Besov [38]
using the notion of uniform boundedness of pieces of the objective functional that was proposed
earlier by Dmitruk and Kuz’kina [39]. Aseev [40] derived some sufficient conditions for the existence
and boundedness of optimal controls for a class of generally nonlinear IHOCs without necessarily
having a bounded set of control constraints. Basco and Frankowska [41] obtained some existence and
uniqueness results for weak solutions of the nonautonomous Hamilton—Jacobi-Bellman equation
associated with a class of IHOCs for the class of lower semicontinuous functions vanishing at infinity
and under certain conditions of controllability. The most important and well-known necessary
conditions of optimality were first derived by Halkin [42]; see also [33, Theorem 2.3].

While many direct PS methods appeared in the literature for solving finite-horizon optimal control
problems (FHOCs), we could only find a few works on deterministic IHOCs governed by
integer-order differential equations using this class of methods. In particular, we recognize the
Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) PS methods in [43-45], the flipped
Legendre-Gauss-Radau PS method (FRPM) in [46] and the transformed Legendre spectral method
in [47]. Although Legendre polynomials are commonly used in PS methods designed to solve IHOCs,
we shall explore in our work the possibility of whether we could achieve better accuracy and
convergence rates using Gegenbauer polynomials (that is, ultraspherical polynomials). There are a
number of reasons that prompt us to consider this family of polynomials as a viable alternative to
perform discretizations of IHOCs. (i) First, observe that Gegenbauer polynomials include both
Chebyshev and Legendre polynomials as part of its bigger family, so all theoretical and experimental
results on Gegenbauer polynomials directly apply to Chebyshev and Legendre polynomials by
definition. (ii) Being a part of Gegenbauer polynomials allows us to apply any of the Chebyshev and
Legendre polynomials with a single selection of the Gegenbauer parameter (index) a, as one can
simply set @ = 0 or 1/2 in your code, thus giving us more flexibility. (iii) Gegenbauer polynomials are
very useful in eliminating the Gibbs phenomenon and recovering the spectral accuracy up to the
discontinuity points [48—50]. (iv) One measure for assessing the quality of spectral and PS methods in
numerical discretizations is concerned with how large is the number of terms that are required in a
spectral/PS expansion to achieve a certain level of accuracy. Of course, the smaller the number of
terms, the more efficient the method is in terms of speed and computational complexity. In
applications like CTOCPs, this property leads to optimization problems on the small scale, which can
be solved very quickly with reduced computational work at a concrete level by using modern
optimization software [18, 21, 23]. Now, with this being mentioned, it is important to realize that
Chebyshev and Legendre polynomials are usually optimal for large spectral/PS expansions under the
Chebyshev and Euclidean norms, respectively, but they are not necessarily optimal for a
small/medium range; this is an observation that was proven numerically in a number of papers for
certain polynomial and rational interpolations and collocations; see [8,20,51] to mention a few, which
give us another reason to apply Gegenbauer polynomials as proper basis polynomials that may
provide faster convergence rates. (v) A stability analysis conducted in [24] and grounded in the
Lebesgue constant for polynomial interpolations in Lagrange-basis form based on flipped
Gegenbauer-Gauss-Radau (FGGR) points showed that the Lebesgue constant is not minimal for
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Chebyshev polynomials, but, rather, was minimal for Gegenbauer polynomials associated with
negative a values. This analysis proved, with no doubt, that some Gegenbauer polynomials with
negative « values could be more plausible for employment in basis-form polynomial
interpolation/collocation for short-medium-range mesh grid sizes. This observation is consistent with
the earlier work of Light [52], who proved in the late 1970’s that the Chebyshev and Legendre
projection operators cannot be minimal as the norms of Gegenbauer projection operators increase
monotonically with a for small expansions.

In light of the above arguments, we were motivated in this work to develop a novel direct IPS
method for solving IHOCs using Gegenbauer polynomials, and to study its convergence. To this end,
we derive some accurate and numerically stable Gegenbauer-Gauss-Radau (GGR)-based rational
interpolation formulas and describe two useful computational algorithms for constructing their
barycentric weights. We also show how to derive the associated quadrature formulas required for
numerical integration in time. We shall then use these numerical instruments to approximate the
optimal state and control variables after transforming the IHOC into an FHOC in integral form
(FHOCI) by means of certain parametric maps and rational collocation. During the course of our
paper presentation, we shall also try to investigate a number of interesting relevant questions to our
work. For instance, which parametric map is more suitable for GGR-based rational collocations?
How should we choose the Gegenbauer parameter values to carry out collocations in practice? A
“poor” choice of @ can largely ruin the accuracy of the numerical scheme, while a “good” choice can,
in many cases, furnish superb approximations with higher accuracy than those enjoyed by Chebyshev
and Legendre polynomials for sufficiently smooth functions by using relatively coarse mesh grids. Do
PS and IPS methods based on Chebyshev, Legendre and Gegenbauer polynomials generally converge
to the solutions of IHOCs for large mesh sizes? If they do not, then what are the causes? Through
rigorous stability, error and convergence analyses, we shall prove that such methods often converge at
an exponential rate to near exact solutions by using relatively small mesh grids, but they usually
diverge for fine meshes under certain parametric maps.

The proposed method inherits all of the merits of the direct IPS method stated above; in addition,
the current paper presents the following novel contributions to the literature of IHOCPs: (i) For a
coarse collocation mesh grid size under certain parametric maps, we show that direct IPS methods
often converge exponentially to near-optimal solutions of IHOCs when leveraged with a fast and
accurate NLP solver. (ii) Despite the exceedingly accurate approximations achieved at coarse meshes,
we prove that direct IPS methods based on Gegenbauer polynomials and certain parametric maps
usually diverge as the number of collocation points grow large if the computations are carried out
using floating-point arithmetic and the discretizations use a single mesh grid, regardless of whether
they are of Gauss/Gauss-Radau (GR) type or equally spaced, which is a result that can be readily
extended to include classical Jacobi polynomials in general. (iii) We derive some novel formulas for
the construction of GGR-based rational interpolation weights, leading to a more numerically stable
interpolation procedure, which we prefer to call “the switched rational (SR) interpolation,” due to the
switching nature of the novel algorithm we developed to accurately calculate the barycentric weights.
(iv) More novel formulas for the construction of GGR-based integration and differentiation matrices
in barycentric-trigonometric forms are derived. (v) We show that Legendre polynomials are (near)
optimal basis polynomials for GGR-based SR collocations over coarse meshes. (vi) We show that
Gegenbauer polynomials associated with certain nonnegative index values are more apt for

AIMS Mathematics Volume 8, Issue 2, 3561-3605.



3566

GGR-based SR interpolations over fine meshes. (vii) We prove that parametric logarithmic maps are
more apt for the domain transformation of IHOCs than parametric algebraic maps for GGR-based SR
collocations. (viii) To the best of our knowledge, this paper introduces the first direct IPS method for
solving IHOC:s using Gegenbauer polynomials and algebraic-logarithmic parametric maps.

The rest of the article is organized as follows. Sections 2 and 3 describe the IHOC under study and
its transformation into an FHOCI via various parametric maps. Section 4 presents the discretization
scheme of the FHOCI passing through the construction of the needed barycentric rational interpolants
and their quadratures, and it closes with a setup of the IPS rational collocation at the GGR points and
the optimality necessary conditions of the obtained NLP in Sections 4.1-4.3. Section 4.1 includes an
analysis of the stability and sensitivity of the GGR-based rational interpolation/collocation developed
in this paper. Rigorous error and convergence analyses are conducted in Section 5. Some divergence
results of typical IPS collocation schemes of the FHOCI for fine meshes of the Gauss type using
certain parametric maps are derived in Section 5. Simulation results are shown in Section 6, followed
by some conclusions and future works in Section 7. The derivation of the barycentric rational formulas
necessary for constructing the GGR-based differentiation matrix is shown in Appendix A. Two easy-
to-implement pseudocodes of computational algorithms for computing the barycentric weights of our
new SR interpolation method are described in Appendix B.

2. Problem statement

Consider the following nonlinear, autonomous control system of ordinary differential equations:
x(0) = f(x(@®),u®), 1€][0,00), (2.1)
which is subject to the following system of initial conditions:
x(0) = xo, (2.2)

where x(f) = [x(0),%0),....x,. 0] € R™u@) = [uy@),u(0),...,u, (D]" € R, xy =
[X1.05 X200« -+ s X, 0] € R 1S a constant specified vector, and
[ i R"XR" - R™: f=1[fi,f..., fn,]". The problem is to find the optimal control u(¢) and the
corresponding state trajectory x(#) on the semi-infinite-domain [0, co) that satisfy Eqs (2.1) and (2.2)
while minimizing the functional

J = f"o g(x(t),u(r))dt, (2.3)
0

where g : R™ x R™ — R. We assume that f and g are generally nonlinear, continuously differentiable
functions with respect to their arguments, and that the nonlinear IHOC (2.1)—(2.3) has a unique
solution. In the rest of the article, for any row/column vector y = (¥;)i<i<, With y; € RVYi and
real-valued function 2 : @ C R — R, the notation A(y) stands for a vector of the same size and
structure of y such that h(y;) is the ith element of h(y). Moreover, by h(y), we mean
[m(y),...,h,(y)]" for any m-dimensional column vector function k, with the realization that the
definition of each array /;(y) follows the former notation rule for each i.
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3. Transformation of the IHOC into an FHOC

Given a differentiable, strictly monotonic mapping 7" : [0, 00) — [—1, 1) defined by T(7) = ¢, one
can transform the IHOC (2.1)—(2.3) into the following FHOC:

1
minJ = f T'(1)g (X(1), (7)) dT, (3.1a)
-1
subject to
(1) =T (0)f(x(),a(r), Te[-1,1), (3.1b)
x(-1) = xo, (3.1¢c)

where f (X(7), (7)) = [fi (R(1),@(7)),..., fy, (J?(T),ft(‘r))]T and 7(t) = n(T(1)) Vi € {x,u}. To take
advantage later of the well-conditioning of numerical integration operators during the collocation
phase, we rewrite Eq (3.1b) in its integral formulation, as follows:

X(1) = f T'(Q)f (%(2),4(z))dz + x9, Te€[-1,1). (3.1d)

-1
We refer to the FHOC described by Eqs (3.1a), (3.1¢) and (3.1d) by the FHOCI. A wide variety of
defining formulas exist for the mapping 7. Five common defining formulas of such a mapping that
occurred in the literature are as follows:

L(1
Tia(r) = (1 O (53] (3.22)
-7
Tz,L(T) = Lln(1 i ), ([54D (3.2b)
1
eu®) = 1 T (155) (3.20)
-7
2
op(T) = ln(l ),
-7
([12]) (3.24)
= In[———

where L € R is a scaling parameter that can stretch the image of the interval [—1, 1] in the codomain
[0, o0) as desired. An “optimal” choice of L value can significantly improve the quality of the discrete
approximations, as we shall demonstrate later in Section 6. We refer to L as “the map scaling
parameter.” The parametric maps 7;,,i = 1,2 are often referred to as “algebraic” and “logarithmic”
maps in the literature, respectively. Notice that the maps defined by Eqs (3.2c) and (3.2d) are special
cases of the parametric maps 7,7 = 1,2; in particular, Ty = ¢4, T21 = ¢ and T, = ¢.. Since the
value of either parametric map varies when a varies for arguments of type GGR points, it is more
convenient in this work to denote them by Tl.(fi), i = 1,2 to emphasize this fact. In particular, we prefer
to generalize Eqs (3.2a) and (3.2b) to implicitly allow for maps of a wide spectrum of a values, as
follows:
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L1 +71)

T = ——— (3.3a)
Ty)(r) = Lln (1 ~ T) . (3.3b)

Mesh-like surfaces of both parametric mappings are shown in Figures 1 and 2 for several values of
n, L and @. Both figures show that the parametric mappings (i) increase monotonically for decreasing
values of @ while holding n and L fixed, (ii) increase monotonically for increasing values of L while
holding n and « fixed and (iii) increase monotonically for increasing values of n while holding L and «
fixed. Moreover, near T = 1, the rate of increase of Tf“L) with respect to any of the arguments n, L and «
while holding the others fixed is much larger than that of Téf’L), which grows very slowly. Loosely put,

the stretching of the mesh grid near 7 = 1 is stronger for 7\°) than 7.

n =10 n =30 n =50
[ Ja=-04 [ Ja=-04 [ Ja=04
e =00 , o =00 - e =0.0
=05 %10 =05 . Elc =05
| =10 =10 =10

9000 _ 8
8000 __ .

7000 _
|

6000 _|

T(7)
7% (7)

Figure 1. Mesh-like surfaces of the parametric mapping Ti“L) on the discrete rectangular
domain Q, = {(r;, L) : L =0.5(0.5)10,i = 0,...,n} for n = 10(20)50 and @ = —0.4,0,0.5, 1.
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e =05 . =05
=10 =10 100

90 _|

80 _

70 _|

60 __

(r)

50 _|

(a)
L

T,

40 _|

30 _

20 _|

Figure 2. Mesh-like surfaces of the parametric mapping Té“L) on the discrete rectangular
domain Q, = {(r;, L) : L = 0.5(0.5)10,i =0,...,n} forn = 10(20)50 and a = -0.4,0,0.5, 1.

4. Numerical discretization of the FHOCI

In this section, we provide a description of the proposed numerical discretization of the FHOCI
using an IPS method based on Gegenbauer polynomials and GGR points.

4.1. Barycentric rational interpolation at the GGR points

Let Z* be the set of positive integers, G (1) be the nth-degree Gegenbauer polynomial with
« > -1/2 ad GP(1) = 1, Vn e Z¢ = Z' U {0}, and
S, = {Tk : gil‘fr)l (r)=0fork=0,...,n,and -1 =79<71 <... <T,,} be the set of GGR nodes,

where gfjfl () = GP() + fofl (7). The orthonormal Gegenbauer basis polynomials are defined by

¢§.“)(T) = GE.“)(T) / yJ4;, where
2271 iM% (e + 3)

.= . j = O, RIS 4’1
T GrarGeay TR D
They satisfy the discrete orthonormality relation
D @ 0@ = 6 sk =0, (4.2)
=0
where w;, j = 0,1,...,n, are the corresponding Christoffel numbers of the GGR quadrature formula
on the interval [—1, 1] defined by
1
woy = (a + 5) Jo, (4.3a)

AIMS Mathematics Volume 8, Issue 2, 3561-3605.



3570

w

=0, j=12...n (4.3b)

with
FZ(Q + %) n!

(n+a/+%)l“(n+2a/+1)

9, = 22! (1-7)(6@)) ", j=0.1,....n. (4.30)

Given a set of n + 1 data points {(1;, fi)}i,. the Gegenbauer polynomial interpolant P, f in Lagrange
form is defined by

Puf(@) = )" iLui(®), (4.4)
i=0
where £, ; are the Lagrange polynomials given by
[Tizi (T — 70) .
Ly(1) = ————, Vi (4.5)
[Tewi (7i = 70)

P, f can be evaluated fast and more stably by evaluating Lagrange polynomials through the “true”
barycentric formula

nilt) = I 4.6
Luim = = Z — (4.6)
which brings into play the barycentric weights &;,i =0, ..., n, given by
1
= ———, Vi 4.7)
[T (TJ Ti)

An interpolation in Lagrange form with Lagrange polynomials defined by Eq (4.6) is often referred
to as “a barycentric rational interpolation.” The barycentric weights associated with the GGR points
can be expressed explicitly in terms of the corresponding Christoffel numbers through the following
theorem.

Theorem 4.1. The barycentric weights for the GGR points are given by

éo = —VQa + Dwy, (4.82)
&E=CDT"VA - @, i=1,2,...,n. (4.8b)

Proof. Let PP (1) be the Jacobi polynomial of degree n and associated with the parameters a,8 > —1,
as normalized by Szegd [56]. Through [56, Eq (4.5.4)] and [18, Eq (A.1)], we have

(L+ Pt PeD() = o |+ o+ 1/2) PO7V202(3) 1 (n 4 1) PO 27D

B 2 (n+a+1/2)F(n+a+1/2)G(a)( )+(n+1)F(n+a+3/2) (a)()
T i+ 2a+1 (e +1/2) O T DIT@ + 1/2) O

_Tn+a+1/2)
~ n!T(a+1/2) G (©- (4.9)

Therefore, (1 + 7,)P /%212y = gfffl(r,-) Yi, and Eqgs (4.8a) and (4.8b) can be derived from [57,

n+l

Theorem 3.6] by replacing both « and g with @ — 1/2. O
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Recall that the GGR points cluster near +1 as n — oo, so Eq (4.8b) may suffer from cancellation
errors for values of 7; sufficiently close to 1. The following theorem provides two alternative
trigonometric forms of Eq (4.8b).

Theorem 4.2. The barycentric weights corresponding to the interior GGR points are given by

. 1
& =D sin(i cos™ Ti) V2@, i=1,2,....n, (4.10a)
= (-1 sin(cos™" 73) 1?%, i=1.2.....n (4.10b)

Proof. Through the change of variables T = cos 8 and the double-angle rule for the cosine function, we
find that

1 1
V1—1:= 1 -cos, = 2sin2(§0i): \/isin(icos_lri), i=1,2,....n, (4.11)

from which Eq (4.10a) is derived. Equation (4.10b) is established by realizing that

: -1
] -2 sin (cos T,')

Ji-1 = L= , i=1,2,....n, 4.12
1+7; VI+1; (+12)

which completes the proof. O

We refer to Eqs (4.10a) and (4.10b) by the trigonometric-barycentric weights. Equation (4.8b) is
faster to compute and requires a smaller number of arithmetic operations compared with Eqs (4.10a)
and (4.10b), but the latter two formulas may possibly produce smaller errors near 7 = 1, as we observed
through numerical experiments. This suggests that it is better to perform Eq (4.8b) for all values of 7,
except when 7 is sufficiently close to 1, where we switch to the other trigonometric forms. To this end,
we introduce “a switching parameter,” 0 < &£ < 1, at which the interchange of formulas is performed.
The crossover value of &, where it becomes more accurate to use the trigonometric form, will depend
on the implementation; a prescription of this strategy is outlined in Algorithms B.1 and B.2. We refer
to the explicit formulas used in Algorithms B.1 and B.2 to compute the barycentric weights by the
“first and second switching formulas” of the barycentric weights for the GGR points, respectively.
We also denote the errors in computing the barycentric weights using Eq (4.8b), Algorithm B.1 and
Algorithm B.2, by EE,(Z)’ for i = 1,2 and 3, respectively. Figures 3 and 4 show comparisons between
the three strategies, in terms of error, for certain value ranges of &, n and @. While Algorithm B.1 does
not look promising against the usual Eq (4.8b) relative to the given input data, as clearly shown in
Figure 3, Figure 4 manifests that Algorithm B.2 is more numerically stable near € = 0.1 and provides
better approximations. We shall therefore use the latter algorithm with & = 0.1 for the computation
of the barycentric weights, and we refer to the rational interpolation with barycentric weights obtained
through the second switching formulas as the “SR interpolation.”

Remark 4.1. The near optimal value € = 0.1 is based on extensive numerical experiments for
candidate € values between 0 and 1 with no theoretical evidence.
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Figure 3. First row: the color maps corresponding to the switching parameter values &€ =
0.13,0.1,0.07,0.04 and 0.01. Each color map shows areas delineated by red, green and
blue colors. Each color specifies whether Ei“rz is smaller/larger/equal than/to E;“yf forn =
10(10)100 and @ = —0.49, —0.4(0.1)2. The second row shows the percentage frequency that
Eﬁo‘rz occurs as smaller/larger/equal than/to E;"‘rz in each color map. All computations were
carried out using MATLAB in double-precision floating-point arithmetic.
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Figure 4. First row: the color maps corresponding to the switching parameter values € =
0.13,0.1,0.07,0.04 and 0.01. Each color map shows areas delineated by blue, cyan and
yellow colors. Each color specifies whether Eg“rz is smaller/larger/equal than/to Eg"‘rz forn =
10(10)100 and @ = —0.49, —0.4(0.1)2. The second row shows the percentage frequency that
Eﬁ“j occurs as smaller/larger/equal than/to E;“yf in each color map. All computations were

carried out using MATLAB in double-precision floating-point arithmetic.
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Stability and sensitivity analyses of GGR-based SR interpolation/collocation

A valuable device for measuring the quality and numerical stability of polynomial interpolations
is the Lebesgue constant, as it provides a measure of how close the interpolant of a function is to the
best polynomial approximant of the function. The Lebesgue constant is also very useful in assessing
the quality of approximate solutions obtained through collocation (that is, the collocated solutions), as
their accuracy is related to the rate at which the Lebesgue constant increases.

Let [|flls = sup {|f(x)| : x € S} be the uniform norm (or supremum norm) of a real-valued, bounded
function f defined on a set S € R. Suppose that y;,i = 0,...,n and y.,(7) denote the exact solution
values at the GGR points 7;,i = 0,...,n, and the corresponding collocated solution, respectively. Let
p,y and p,y be the best polynomial approximation to the exact solution y on [-1, 1) and the Lagrange
interpolating polynomial of degree at most n that interpolate the data set {(7;,y;)}i,, respectively.
Through the uniqueness of Lagrange interpolation, one can easily show that

n

Py @ = py(@] = | [Py = yi] L) < ALY

i=0

= pyll (4.13)
where AEIQ) = MaX_j<y<| Q, |Ln,,-(7')| denotes the Lebesgue constant associated with GGR-based SR
i=0

interpolation. Therefore,

1y = el = I = Py + P2y = Py + pay = yeul
S ||y = Padllii gy tHPRY = Pay |[—1,1) FYen = PudllZy
< (l + AE,“)) ||y -py Cipn t ||6yc,n L1y 4.14)

where 0y.,(7) is the difference between the Lagrange interpolating polynomial and the collocated
solution. When ||6yc,n ~ 0, Aﬁf’) roughly bounds the collocation error, that is, it nearly quantifies

[-1,1)
how much larger the collocation error ||y = Yeall_y1)
||y - Dy 11y in the worst case. In this case, it is obvious from Eq (4.14) that, the smaller the
Lebesgue constant, the better is the predicted collocated solution in the uniform norm. In other words,
the collocation error is about at most a factor 1 + A worse than the best possible polynomial
approximation. One can also clearly see that AW depends on the location of the collocation points
7;, 1 = 0,...,n, but not on the solution values y;, i = 0,...,n. Since the positions of the GGR points
change as « and n vary, we are interested in learning the apt choices of @ that makes A as small as
possible while holding n fixed. This can provide some useful insight into how we should select the
candidate range of the @ values often used for collocations based on GGR points. In [24], our findings
uncovered that A for FGGR-based polynomial interpolation in Lagrange basis form blows up as
a — —0.5 and monotonically increases for increasing positive values of a; see [24, Eqs (3.7) and
(3.8)]. Moreover, it was noticed that A does not decrease monotonically for increasing negative
values of «, indicating that Aﬁf') is not minimal for Chebyshev polynomials, but, rather, attains its
smallest value for the Gegenbauer polynomials associated with some negative values of «;
see [24, Figures 1 and 3]. It was roughly estimated in many earlier works through theoretical and
numerical evidence that reasonably good « values for polynomial interpolation in basis form typically
belong to the Gegenbauer collocation interval of choice, I defined by

E,\r?

is compared to the smallest possible error,
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Igr ={a|-1/2+6<a<r0<d<x1,re[l,2]} for reasons pertaining to the stability and accuracy
of numerical schemes employing Gegenbauer polynomials as basis polynomials; see [7,20,21,24,58]
and the references therein.

On the other hand, it was discovered in a number of works that Lebesgue constants for rational
interpolation at equally spaced nodes are much smaller than those associated with classical
polynomial interpolation [59-63]. Moreover, the Lebesgue constant of Berrut’s rational
interpolation [64] at equidistant nodes is smaller than the Lebesgue constant for polynomial
interpolation at Chebyshev nodes [65]. Figure 5 shows the surface of the Lebesgue constant for
GGR-based rational interpolation characterized by Eqs (4.4) and (4.6) with barycentric weights
obtained through the second switching formulas. The surface was constructed through least-squares
approximation, and it is shown together with some of its cross sections with the vertical planes
a = —0.49,-0.2,-0.1,0,0.5,1, 1.5. A number of remarks deserve to be made at this point. (i) First,
notice the small size of the Lebesgue constant values for GGR-based rational interpolation compared
with its values for the FGGR-based polynomial interpolation in basis form; see [24, Figures 1]. (ii)
Aﬁf” does not blow up as @ — —0.5, but, rather, remains bounded. (iii) The associated Lebesgue
constant grows logarithmically in the number of collocation nodes. (iv) It is also interesting to see
how the Lebesgue constant drops monotonically as « increases while holding n fixed. This suggests
that Legendre polynomials are generally more suited for GGR-based SR interpolations than
Chebyshev polynomials. In fact, we can also observe from Figure 5 that Gegenbauer polynomials
with increasing « values are associated with smaller Lebesgue constant values. This suggests that
Gegenbauer polynomials with @ > 1/2 may also be more plausible to employ in SR interpolation for
short/medium ranges of n values. However, the work of Elgindy and Smith-Miles [20] manifests that
Gegenbauer quadratures “may become sensitive to round-off errors for positive and large values of the
parameter @ due to the narrowing effect of the Gegenbauer weight function,” which drives the
quadratures to become more extrapolatory with greater uncertainty in integral approximations; thus,
the collocation is subject to a higher risk of producing meaningless results. i)
may become large and the collocation error grows accordingly. It was also observed in [20] that the
weight function ceases to exist near the boundaries 7 = +1, and that its support is nonzero only on a
subinterval centered at T = 0 for increasing values of @ > 1. If we refer to GGR-based collocations
employing SR interpolations by the “SR collocations,” then this analysis suggests that, for a relatively
large collocation mesh size, SR collocations are expected to produce higher-order approximations for
nonnegative « values with apparently optimal « values within/near the “Gegenbauer SR collocation
interval of choice (SRCIC)” ‘I‘g_ o = e, )] 1 a; = 1/2,1/2 < af < 1; in addition, Gegenbauer
polynomials with positive and lca’rcge a values are generally not apt for SR interpolation/collocation.
For small mesh sizes, however, there is no rule of thumb as to how should we select «, since all
Lebesgue constant curves converge to the same limit as n — 1. The analysis in this section requires
the assumption that the problem under study is well-conditioned. For sensitive problems, the interval
of choice TG, o+ Y change depending on the sources of sensitivity. In Section 5, we shall show that
proper collocatlons of the FHOCI using any of the maps described by Eqs (3.3a) and (3.3b) entail
shifting the right boundary, o, of ‘Y’S_ .+ rghtward as the mesh size grows large to reduce the

C’
c Y

divergence rate of the collocated solutions from the exact solutions.
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Figure 5. Left: the surface of the Lebesgue constant for GGR-based SR interpolation on
the discrete rectangular domain {(n,@) : n = 2(1)120,a = [-0.499, -0.49, -0.4(0.1)1.5]}.
The surface was constructed through least-squares approximation using curves of the
form c¢; + c;Inn for some real parameters c; and ¢, with the logarithmic scale on the
z axis. The right plot shows the cross sections of the surface with the vertical planes
a=-049,-0.2,-0.1,0,0.5,1, 1.5.

From another perspective, it is interesting to mention that the Lebesgue constant is also a useful
instrument in observing how the collocated solutions change as the input data are varied. By closely
following the convention in [24], suppose that y;,i = O,...,n, and y.,(7) are the perturbed solution
values due to round-off or input data errors and the perturbed collocated solution, respectively.
Moreover, assume that p,y(r) is the Lagrange interpolating polynomial of degree at most n that
interpolates the data set {(7;, y;)}i—,- Then, we have

|yc,n - yc,n [-1,1) :| Pny - 6y€,n - ﬁny + 65}0,71 [-1,1) S ||pl’ly - ﬁny”[—l,l) + ||5yC,n - 6}76’," [-1,1)
= —rlnsé)él ZO (yi - )’z) -[«n,i(T) + ||6yc,n - 6yc,n [-1,1)
SA;(I) max |)’z _571'| + ”5)’” _657c'n > (4153)
0<i<n ’ ST
(@) ~ ~
<A = 3l + (16 = 6Feall - (4.15b)

where 6Y.,(7) is the difference between the perturbed Lagrange interpolating polynomial and the
perturbed collocated solution. When ||(5yc,n — 0V 11) is relatively small, A'” nearly quantifies the

larger size of the perturbation error of the collocated solution, |[y., — Ven L1y compared to the
maximum possible perturbation error of the solution at the collocation points, {)nax ly; — ¥i], or to the
<i<n

maximum solution perturbation error, |y — ¥||_; ;), in the worst case.

4.2. Barycentric GGR-based integration matrix (GRIM) and quadratures

Consider a real-valued function f defined on the interval [—-1,1] and its GGR-Based SR
interpolation given by Eqs (4.4) and (4.6) and the second switching formulas of the barycentric
weights. Following the work in [66], the formulas needed to construct the nonzero rows of the
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barycentric GRIM can be derived by integrating Eq (4.4) on the successive intervals
[—I,T‘,] ,j=1,...,n,to obtain

ij P.f(t)dt = Zﬁij L.(n)dr, j=1,...,n, (4.16)
-1 i=0 -1

where f; = f(1;) Vi. With the change of variable

1
T= 5[(Tj+1)t+fj—1], 4.17)
we can rewrite Eq (4.16) as
T T+ 1 & ! .
P.f(r)dr = Zfi Lt =1, tpde, j=1,2,...,n, (4.18)
-1 2 i=0 -1

where
(Tj+ 1)t+Tj—1

2

%@iﬂzm( ),wz (4.19)
Since the polynomials £,,; (t; —1,Tj),i = 0,...,n, are of degree n, the integrals f_ll L,i(t; =1, 7))dt
can be computed exactly using an N = [(n + 1)/27-point LG quadrature, where [.] denotes the ceiling
function. Let {74, z'vk}kN: o be the set of LG quadrature nodes and weights, respectively, where

2
Wy = , k=0,...,N, (4.20)

(1-2)(Ly,, @)

and L}, , denotes the derivative of the (N + 1)st-degree Legendre polynomial Ly, ;. Then,

1 N
[ Lute-topd= Y, oLt @21)
-1 k=0
Hence, Eqgs (4.18) and (4.21) yield the GGR-SR quadrature rule
f'f(r)dmzq,,,-f,-:Qf, j=0,....n, 4.22)
-1 i=0

where f = [fo, fi,..., f2]" and q;;,i, j = 0,...,n, are the elements of the first-order barycentric GRIM
Q given by
0, j=0,i=0,...,n,
qji=37;+1
2

(4.23)

N
Y oLuEs-LT), j=12...,ni=0,...n
k=0

We denote the jth row of Q by Q; V. The derivation of the formulas required to construct the GGR-
based differentiation matrix (GRDM) in barycentric form is described in Appendix A.
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4.3. IPS rational collocation of the FHOC at the GGR points

Let Tp = [TO’Tla" "Tn]Twi:i = i(Ti)aﬁi = a(Ti)’ﬁ = f(iiaﬁi),ﬁ,j = ﬁ(ij,ﬁj)VZ,], and

T0 Tn
I, = [f T' () f(%(1), 4(1)) dT,...,f T' () f(%(1),u(1)) dr]. (4.24)
-1 -1
Then, collocating Eq (3.1d) at the GGR nodes yields
F (1) = vec (J,) + %0 ® Lut ~ M+ x0® L1, (4.25)
where
M=vec(M): M=Q(Fo|T"(r)&l]|), (4.26)
F = [Fium....F 0] .Fin = [fios-..»finl" Vi, 1, is the all-ones column vector of size n and
[.,.], “vec”, o and ® denote the horizontal matrix concatenation, the vectorization of a matrix, the
Hadamard product, and the Kronecker product, respectively. Let 7,,y = 1 and define
Quit = (@ue1)ocicn © Gnei = Zszo @ Ly (T) Vi; then, the discrete cost functional J can be
approximated numerically using the LG quadrature, as follows:
J~J, = Qn+1(TI (Tn) © g), (427)

where g = [go,. .. ,g,,]T : g = g(X;,@;) Vi. Hence, the FHOCI (3.1a), (3.1c) and (3.1d) can now be
converted into a NLP in which the goal is to minimize the discrete cost functional given by Eq (4.27),
as subject to the nonlinear system of equations given by Eq (4.25). If we define the image of the

collocation points set S, under the transformation 7" by SZ ={t:t, =T (1), Kk =0,...,n}, and
denote x(t;) and u(t;) by x; and u; Vi, respectively, then the NLP can be solved using well-developed
optimization software for the unknowns %; = x;,i = 1,...,n, and #4; = u;, j = 0,...,n. The

approximate optimal state and control variables can then be calculated at any point ¢ € [0, co) through
the PS expansions

x(t) = x(¢)) L,(0), (4.28a)

u(t) =u(t,) L), (4.28b)
where t, = [to,t1,...,t,]" and L,(t) = [Lno(@), L1 (D), ..., Loa(®)]" . In the special case, when T =
Tff’L), one can easily show that the NLP can be written as follows:

min Jn = 2LQn+l[g © (1n+l - Tn)Z] ’ (4293)

subject to

(1) ~2LM, + x0 ® 1,51, (4.29b)

where @ denotes the Hadamard division, (v), =vovo...ov, for any vector v, and
———

r times
M, =vec(M)): M =Q(Fo | -T.)e1 ). (4.30)
Furthermore, when T = T'®_ the NLP can be formulated as follows:

2,L°

min J, = LQn+l[g @y — Tn)]’ (4.31a)

AIMS Mathematics Volume 8, Issue 2, 3561-3605.



3578

subject to
()~ LM, +x,®1,.1, (4.31b)

where
M, =vec(My): My=Q(Fo|Um-t)el] ). (4.32)

We refer to the NLPs described by Eqs (4.29a), (4.29b), (4.31a) and (4.31b) by NLP1 and NLP2,
respectively. We also refer to the present collocation method as the “GGR-IPS” method; the acronyms
“GGR-IPS1” and “GGR-IPS2” stand for the GGR-IPS method performed using the parametric maps
T(“) and T;“L), respectively, while “GGR-IPS12” stands for the GGR-IPS method performed using either
maps T(“) and T(“) Notice that the Lagrangian associated with the NLP described by Eqgs (4.25) and
4.27) 1s deﬁned by

€=Qui(T,0g)+1 (M+x®1, — (1)), (4.33)

where T, = T’ (t,) and 7 = [Fio. s PlnseeesFn0s-- - r,,xn]T is the vector of Lagrange multipliers.
Therefore, the Karush—Kuhn—Tucker necessary conditions of optimality are given by

ve=Q,.. [(T,; ®1],)oV g] . [(I ®[Qo ()" ®1,.)])VF -1, E] 0, (4.34)
vE=Qu [(T,; &1 1) 0V g] o [(Inx @[Qo (T, ®1,)])v ] (4.35)

where the operators V = 0 0 0 _|2 0 0 0 I
P £ 0% 0%y, 0%, 0% | a  |0i Oy, Oy Oy, | "

is the identity matrix of size nF = vec (F),E = [0;1,] and [.;.] denotes the vertical matrix

concatenation.
S. Error and convergence analyses

In this section, we derive the truncation error bounds for Egs (4.25) and (4.27) and their convergence
rates.

Theorem 5.1. Let f € C"'[~1, 1) be approximated by a Gegenbauer interpolant P, f based upon the
GGR points set S,, as defined by Eq (4.4). Then, there exist some numbers &; € (-1,1),i = 0,...,n,
such that the truncation error of the GGR-SR quadrature rule of Eq (4.22) is given by

(n+1)
f&m@—f %LfgﬁmeL (5.1)

n+1

'+ a)l'QRa+1)
here K@ = 2n1 ,n=0,1,...
wnere T+ 20l@+1) "

Proof. By definition, we can write
F@) = D fi L@ + fE,(1,8), Yrel-11), (5.2)
k=0
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for some ¢ € (-1, 1), where ¢E, is the interpolation truncation error at the GGR points given by

S @
E,(1,6) = — - Ti) . 53
rEn (8 = T g(r 7) (5.3)
The proof is established by realizing that g;“jl (r) = Kr(;j—)l [Tico (t — 7%) and integrating Eq (5.2) on
[-1,7) Vi. ]

The following result is a direct corollary of Theorem 5.1 by letting  : [-1,1) — R and ¢y :
[-1,1) = R such that n(t) = T'(1)g(¥(7), @(7)) and Y (1) = T’ (1) f (X(7), @t(7)) foreach k = 1,...,n,.

Corollary 5.1. The truncation errors of Eq (4.27) and each approximate equation of System (4.25),

Xi(t)) = f ' Ui(T) dt + Xp 0, 5.4
-1
of the Integral Constraints System (3.1d) at each point T; € S, are given by
(n+1) 1
") f (@
E =" d .
nEn () DK ) G, (0dt (5.5)
and
ZHD ( fj) -
_ (@) _ s _
wEn(1/.6) = FERTT L GO @dr, k=1,...,n, j=0,....n, (5.6)

respectively, where {,&; € (—1,1)V].

The following upper bounds on the truncation errors of Eqs (4.25) and (4.27) can be deduced
from [24, Theorem 5.1].

Theorem 5.2. Let g € C"*'[=1, 1) and |ly;""|| _

on n and k. Then, there exist some positive constants B(l") and C ga) dependent on « and independent of
n such that the truncation errors of System (4.25) at each point T; € S, are bounded by the following
inequalities:

= Ay,n € R"Vk for some constant Ay, , dependent

Ay l'(n+2a+ D'(a + 1) (Tj + 1)
P T DI T a s DG+ 1) |
where &; € (—=1,1)Vj and

T Dp(nxl -
) )
|g;(f?1||[—1,1): \/EF(OH'”H) 2+l g 2 ©-5)

I“(a/+%)( n(2@+n)+n)l“(§) n+1

(@)

n+1

wEn (16 < k=1,....n. j=0.....n (57

[-L1

-1
eZ*/\7<a<0.

2VAT (2 +a+1) T2
Moreover, .
(@ e\ 1 + T
l//kEn (Tj,nfj)‘ < Bl (5) E, Ya > 0, (59)
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and

n]l + 1.
E) YoV -1)2<a<0, (5.10)

zpkEn (Tj’gj)'fcia)(z 3

as n — oo, where < means “less than or asymptotically equal to.”

Theorem 5.3. Let 7 € C"*'[-1,1) and |

n. Then, there exist some positive constants B(za) and Cg“) dependent on « and independent of n such
that the truncation error of Eq (4.27) is bounded by the following inequality:

nth ||[_1 1 = Apn € R for some constant Ay, dependent on

A T(n+2a + D@ + 1)

E, ()| < (@) , 5.11
|" (§)| 2l n+ DIT'(n+ a + DI'Qa + 1)| g”“”[‘“) ( )
where { € (-1, 1). Moreover,
wfe) 1
| Ex Q)] < BS 5) o Ve20, (5.12)
n}’l j—(l

and -

| En ()] <C§‘”(§) —, V-1/2<a<0, (5.13)

~ nn 5

asn — oo,

Divergence of typical IPS collocation schemes of the FHOCI at any large mesh grid of Gauss type
when T = Ti“L) orT = Té“L)

In this section, we derive some striking results regarding the convergence of typical collocation
schemes of the FHOCI described by Eqs (3.1a), (3.1c) and (3.1d) when T € {T|"), T} and the mesh
grid is large and of Gauss type. While the proof pertains to the FHOCI and employs the GGR points
as the collocation points, it can be generalized to the usual form of the FHOC described by Eqs (3.1a)—
(3.1c) and any large collocation points of Gauss type, causing it to become of considerably greater

interest. We derive these interesting divergence results in the following two corollaries.
Corollary 5.2. Let T € {T\), Ty}, and suppose that 3k € {1,...,n sy € C'[=1, 1, 0 < || £ _, , <

1L

d’

o fi < oo Vj=1,...,n+ 1; then, the upper truncation error bounds of the
[-1,1)

Approximated System (4.25) diverge at each collocation point as n — oo for any map scaling parameter
value L.

oo and 0 <

Proof. By the general Leibniz rule, the (n + 1)st derivative of ¢; is given by

n+l .
n n+1\_ o n, . d o
'70,(; +1)(T) = ; ( ] )T( +2 ])(T)ﬁf}( (x(T)’ u(T)) , (514)
with
n+l A
ol S (P e @
Hwk ‘[—1,1) N Z ( j ) ”T ”[_1,1) defk (5.15)
J=0 [-1.D)
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2L(m)!
LetT = Tf"L), and notice that (T(")) (1) = T (m) -Vm € Z*, which is a monotonically increasing
function for increasing values of 7 as can be clearly seen in Figure 6. Therefore,

B

Ao = 0(|(72)"

dependent on @ and independent on n such that

‘[ 11)). From Theorem 5.2, there exist some positive constants E(]") and CA‘E")

wEn (7€) < LB (n + 2)! (%) i”’ la-o"= . vezo0. (5.162)
and
o (r,.,gj)‘ <LC(n +2)! (g) “Ha- 0|, V-12<a<0, (5.16b)

from which we realize that the upper bound of |¢,2En

. diverges as n —

co. Consider now the case when T = Té"L) By a similar argument, notice first that (Téf‘L))(m) (r) =
L(m—1)!
(1—-1)m
in Figure 6. Therefore, Ay, , = O(H

¥Ym € Z" is also a monotonically increasing function for increasing values of 7, as shown

(a/) (n+2)

‘[ | 1)). From Theorem 5.2, there exist some positive

constant B(2 * and C; & dependent on « and 1ndependent on n such that

A s
wEn (71:6)| < LB G+ 11 (5) nnj;i||(1 —0" 7, Y20, (5.172)
and
WEn(716)| < LES @ + 1)) (g)l Z?H(l —02 e Y -12<a <0, (5.17b)
n

from which we observe that the upper bound of |l//,;En at each collocation point 7; diverges as n —
00, O
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Figure 6. mth-order derivatives of T(“) and T(“) versus 7 in log-lin scale for several values of
L and m. The superscript of T(“) i= 1 2 has been omitted in the plots.
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Theorem 5.2 and Corollary 5.2 reveal an interesting fact. Under their assumptions, the proposed
method is expected to converge with an exponential rate to near-optimal solutions for increasing n
values within a relatively small n value range, as indicated by inequality (5.7), but, as n grows large,
the constant A, , grows exponentially fast and ultimately dominates the error bounds when n — oo,
as implied by the inequalities (5.16a)—(5.17b), regardless of how well we choose the map scaling
parameter value L. In fact, the asymptotic results of Corollary 5.2 manifest that, for increasing large n
values, reducing the L value abates the divergence of the approximations at the outset, but, as n grows
larger, this approach fails to cope with the soaring values of n powers of the factors 1/(1 — 7;) at the
mesh points 7; for sufficiently close mesh points values to 7 = 1; thus, divergence is inevitable.

While the above forward error analysis may be too pessimistic and may reject solutions that are
sufficiently accurate, another concern arises when we analyze the sensitivity of NLP1 and NLP2
associated with the maps TfaL) and T;“L) to input data errors. Observe that both problems require the
computations of the maps 77 ; and T, ;, which are ill-conditioned for arguments near 1. In particular,
suppose that 7 ~ 1 with a small perturbation % to 7. Then, the absolute errors in computing 7}, () and
T, (1) are given by

, , 4L |h|
T ,(x+h)=T] (D] ~ T (5.18a)
/ , Lih|
T2,L(T + h) - TZ,L(T)| X m; (5.18b)
2|h h
hence, the relative errors are i and ll | , respectively, which blow up as 7 — 1. Recall that GGR
-7 -7

points cluster near =1 as n — oo, so the sensitivity of the problem of calculating the maps’ derivative
functions 77, and T, at arguments near | increases for increasing values of n. For example, let 7 =
0.9999999999999 be an exact argument value and consider its approximation 7 = 0.9999999999998
with a small perturbation of about 9.99 x 10™'* to 7. Then, the relative error in the input value is
about 107''%. However, the relative errors in computing 77 (1) and T, (1) are nearly 75% and 50%.
Hence, the relative changes in evaluating T) (1) and T;,(7) are about 7.5 and 5 trillion times larger
than the relative change in the input value in respective order. This example shows that increasing
the mesh size shifts the positive collocation points closer and closer toward 7 = 1, and that wild ill-
conditioning ultimately occurs, as the sensitivity of NLP2 progressively stiffens for arguments near
1. Therefore, one should keep in mind that reducing L may still improve the approximations for a
certain range of n values; nonetheless, this strategy is not prone to producing accurate approximations
for relatively large values of n, in general, since both NLP1 and NLP2 are ill-conditioned near 7 = 1.
It is noteworthy to mention here that this sensitivity of NLP1 and NLP2 near v = 1 is foreseen to
relax or disappear if g and f; Yk decay exponentially fast such that lim,_,; 7’(7)g (¥(7), @(7)) = 0 and
lim,,; T’(7) f(%(7),@(7)) = 0. Under a similar proof to that of Corollary 5.2, one can derive the
following second divergence result.

d’
Corollary 5.3. Let T € {T\%, T\")}, n € C"[-1,1), 0 < |igll,_,.;, < 0 and 0 < -8 <ooVj =
’ ' ’ T
1D
1,...,n + 1; then, the upper truncation error bound of Eq (4.27) diverges as n — oo for any map

scaling parameter value L.

The present analysis begs another interesting question: Which map should we use if we desire to
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implement the proposed method? For small/medium ranges of n values, the answer is a bit elusive;
however, for large values, it seems that we have a crystal clear answer, as shown by the following
corollary.

@)

Corollary 5.4. A Gegenbauer-Gauss collocation of the FHOCI using the map T1(, 1 generally diverges
faster than that achieved by applying the method lumped with the map T;"L) when n — oo.

;“L) compared with T;")

Proof. The faster divergence exhibited using the map 7' 1 asn — oo can be easily
justified by using the inequalities (5.16a)—(5.17b). Moreover, since T (7) grows faster than Ti 1 (T) by
a factor of 2/(1 — 1), which blows up as 7 — 1, the ill-conditioning of T{’ ; 1s clearly more severe than

that of Ti ; for values of 7 ~ 1. m]

Corollary 5.4 manifests that the map Té“L) is more likely a better choice than T{“L) for large n values.

We end this section by drawing the attention of the reader to the fact that integral reformulations of
various mathematical models have received considerable attention in the literature because they often
produce well-conditioned linear systems. While numerical quadratures and integration matrices are
generally more stable than numerical differentiation operators and matrices, there is no strong reason
to expect that standard PS collocations of the FHOC in its strong differential form, as obtained by
using a single mesh grid of Gauss type and maps like Tf"L) and Té"L), would exhibit any merits over the
current method, and they would ultimately diverge for a large mesh grid size. These considerations
lead naturally to the following interesting conjecture.

Conjecture 5.1. Classical Jacobi polynomial collocations of the FHOC in differentialfintegral form
obtained through maps like T{“L) and Té“L) will likely diverge as the mesh size grows large if the
computations are carried out using floating-point arithmetic and the discretizations use a single mesh
grid, regardless of whether they are of Gauss/GR type or equally spaced. The former divergence case
is a direct result of the present divergence analysis, while the latter case is due to Runge’s
phenomenon and the ill-conditioning of polynomial interpolation at equally spaced nodes as the

degree of the polynomial grows.
6. Numerical experiments

This section presents the results of some numerical experiments on three test examples, which
demonstrate the accuracy and efficiency of the proposed GGR-IPS12 methods for
small-medium-range mesh grid sizes and verifies the inevitable divergence as the mesh size grows
large. All numerical experiments were carried out using MATLAB R2022a software installed on a
personal laptop equipped with a 2.9 GHz AMD Ryzen 7 4800H CPU and 16 GB memory running on
a 64-bit Windows 11 operating system. The NLPs obtained through the GGR-IPS12 methods were
solved using either (i) MATLAB fmincon solver with the interior-point algorithm (fmincon-int) and
sqp algorithm (fmincon-sqp), or (ii) the augmented Lagrange multiplier method [67, 68] integrated
with a modified Broyden—Fletcher—Goldfarb—Shanno method and a Chebyshev PS line search
method [69], which is henceforth referred to as the “EALMM.” It should be clearly understood by the
reader when we coin the name of the current collocation method with any NLP solver that we are
implementing them both to solve the FHOCI. For example, the acronym GGR-IPS12-EALMM stands
for the GGR-IPS12 methods combined with the EALMM. In all numerical tests, the exact optimal
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state and control variables were calculated using MATLAB with 30 digits of precision maintained in
internal computations. The fmincon solver was carried out using the stopping criteria TolFun = TolX
=1072,10715,1071 for Examples 1-3, respectively. The augmented Lagrange multiplier method was
terminated when the lower bound on the change in the augmented Lagrangian function value during a
step does not exceed 107!2.  All experiments were conducted using the parameters values
L € {0.25(0.25)10} and @ € {—0.4(0.1)2}. Most of the numerical simulations were performed using
two sets of initial guesses: Q = (X, @p) : X = I1,,490 = 1,} and
Q, = {(Xo,89) : Xo = 0.51,,, @y = 0.51,,}; henceforth, ; U £, is denoted by . Furthermore, by AE)
and MAE,,, we mean the absolute error in the objective function value and the maximum absolute
error of the state and control variables in respective order.

Example 1. Consider the IHOC (2.1)—(2.3) with g (x(?),u(t)) = (ln2 x(1) + uz(t)) /2, f(x(0),u(t)) =
x(1) In x(¢) + x(1)u(t), and xy = 2. The exact state and control variables are

x'(t) = exp (" (1)), (6.1a)
w(®) = - (1+ V2)y" (1), (6.1b)

where
Y'(®) = (In2) exp (- V21); (6.1¢)

see [44]. The exact cost function J* = (In2)? (\/§ + 1) /2 = 0.5799580911421756 was rounded to 16
significant digits. Through the change of variables

(1) = Inx(v), (6.2)

the THOC described by Egs (2.1)—(2.3) can be rewritten as an equivalent infinite-horizon
linear-quadratic optimal control problem with
gz(H),ut)) = (zz(t) + uz(t)) /2, f(z(t),u(t)) = z(¢t) + u(t) and zo = In2. We refer to the former and
latter forms of the IHOC as Forms A and B, respectively. Form A of the example was previously
solved in [44] by using LG- and LGR-PS methods and the three maps given by (3.2¢) and (3.2d); the
obtained NLPs were solved using the Sparse Nonlinear Optimizer (SNOPT) method [70, 71]. The
problem was solved later in [46] by using the FRPM [46] and the mapping {:

4
{(7) =1In (m), (6.3)
which maps the scaled left half-open interval (-1, 1] to the descending time interval (co,0]. The
obtained NLP was also solved using SNOPT. Table 1 shows a comparison between the LGR- and
LG-PS methods, the FRPM and the GGR-IPS12-EALMM. The LGR- and LG-PS methods and the
GGR-IPS12-EALMM were performed using the same initial guesses X(r) = 2 and
i(t) = vVt € [-1,1]. Notice how the GGR-IPS2-EALMM generally enjoy superior stability
properties and achieve higher-order approximations in this example for n = 5(5)30 compared with the
other approaches, except for the LG-PS method, where they both achieve the same order of accuracy
at n = 30. It is interesting here to recognize how the GGR-IPS2-EALMM defeats the LG-PS method
for n = 5(5)25, although the latter employs a Gauss quadrature that is more accurate than the GR
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quadrature used by the former. One may connect the success of the GGR-IPS2-EALMM here to
many reasons, namely, (i) the clever change of variables given by Eq (6.2) that converts the NLP into
a linear-quadratic optimal control problem which can be collocated more accurately; (ii) the integral
form of the system dynamics allows for gaining more digits of accuracy via numerical quadratures,
which are well known for their numerical stability; (iii) the application of the highly accurate built-in
Algorithm B.2 to the current methods, as it applies the latest technology of SR interpolation; (iv) the
parametric logarithmic map Té“L) that is favored over TY’L) for its slower growth and less sensitivity near
7 = 1; and (v) the map scaling’parameter L, which perfnits faster convergence rates when “optimally”
chosen. On the other hand, we observe that the errors of GGR-IPS12-EALMM generally decline
gradually as the mesh grid size initially grow up to a certain limit, yet they bounce back beyond that
limit as the mesh grid size continues to grow large, in agreement with the theoretical results of Section
5. It is interesting to see similar phenomena as in the control error profiles in [44] in the sense that (1)
the control error plot of the LG-PS method does not appear as a (near) straight line in the shown
log-scaled chart, but, rather, a convex-shaped curve, as it curves outward ( [44, Figure 1(b)]), and (i)
the control error plot of the LGR-PS method suddenly increases at n = 30 much earlier before
reaching the round-off plateau ( [44, Figure 2(b)]). A closely related behavior to these observations
can be found in [46], where we noticed that the control error history is also not linear in the shown
log-scaled chart, but, rather, oscillate up and down at different levels again much earlier before
reaching the round-off plateau ( [46, Figure 5]). Another interesting remark lies in the smallest errors
of the current methods; they were all recorded at/near @ = 0.5 with @ € Tgs,o.ﬁ’ while several optimal
values of L were detected. Table 1 also shows the corresponding elapsed time (ET) to perform the
GGR-IPS12-EALMM. The calculated execution times were measured multiple times and the shown
data are the medians of the time measurements in seconds (s). Figures 7 and 8 show the plots of the
exact state and control variables, in addition to their collocated solutions and absolute errors obtained
by the GGR-IPS12 methods integrated with three NLP solvers using the same initial guesses set and
several values of n,L and a@. We can observe from the shown graphical data that the
GGR-IPS2-EALMM generally achieves better accuracy and stability properties compared with the
other methods.

Table 1. Uncertainty intervals of the smallest MAE,, obtained by the LGR- and LG-PS
methods in [44] and the FRPM [46] at the collocation points, and the corresponding smallest
MAE,, obtained by the GGR-IPS12-EALMM using the initial guesses X(7) = 2 and #i(7) =
V71 € [-1,1]. The ET values are also shown for the GGR-IPS12-EALMM. The errors and
the ET values were rounded to five significant digits and three decimal digits, respectively.

Example 1
LGR-PS [44] LG-PS [44] FRPM [46] GGR-IPS1-EALMM GGR-IPS2-EALMM
Form A Form B
n MAE, , uncertainty interval MAE,,/a/L/ET MAE, ,/a/L/ET
5 (1e-03, 1e-02) (le-04, 1e-03) - 5.3830e-03/0.6/2.25/0.379  4.2453e-05/0.5/3.5/0.237

10 (le-06, 1le-05) (le-06, 1le-05) (le-05, le-04) 7.0615e-05/0.5/5.75/0.343  1.8735e-09/0.5/4.25/0.494
15 (1e-07, 1e-06) (le-07, 1le-06) (le-07, le-06) 6.0288e-07/0.5/9.25/0.451 1.9736e-09/0.5/5/0.529
20 (1e-08, 1e-07) (1e-08, 1e-07) (le-08, 1e-07) 1.3181e-08/0.5/8.5/0.585  2.0583e-09/0.5/2.5/0.888
25 (1e-08, 1e-07) (1e-08, 1e-07) (le-08, 1e-07) 2.4368e-08/0.5/2.25/1.160  1.6175e-09/0.5/3/1.066
30 (1e-08, 1e-07) (le-09, 1e-08) (1e-08, 1e-07) 2.7958e-08/0.5/2.75/0.911  3.6927e-09/0.5/2/1.356

AIMS Mathematics Volume 8, Issue 2, 3561-3605.



3586

Figure 7. First column: the plots of the exact optimal state and control variables of Example
1 and the collocated solutions obtained by using the GGR-IPS1 method integrated with three
distinct NLP solvers at the collocation points using n = 5 and the same initial guesses X(7) =
2 and ii(t) = V7 € [-1, 1]. The exact optimal state and control plots were generated using
101 linearly spaced nodes from O to 50. The middle and last columns show the corresponding
plots of the absolute errors of the state and control variables in log-log scale using n = 5, 10

[G(r),u(r)) = (2,7) V¥ € [-L,1]]

n=>5

o (t) — 2(0)]

Y

t G
GGR-IPS1-finincy
+ - GGR-IPS1-EALM)

GR-IPS1-fn

' (f)
A GGR-IPSI-fmincon-int

GGR-IPS1-fmincon-sqp

u GGR-IPS1-EALMM

fo (1) — 2()]

and the (L, @) ordered pairs as shown in Table 1.

Figure 8. First column: the plots of the exact optimal state and control variables of Example
1 and the collocated solutions obtained by using the GGR-IPS2 method integrated with three
distinct NLP solvers at the collocation points using n = 5 and the same initial guesses X(7) =
2 and ii(t) = 7V71 € [-1, 1]. The exact optimal state and control plots were generated using
101 linearly spaced nodes from O to 50. The middle and last columns show the corresponding
plots of the absolute errors of the state and control variables in log-log scale using n = 5, 10

[G(r), u(r)) = 2,7) ¥re[-1,1]

e n=5

fu (8) — u(t)]

-fmincon-int

finincon-sqp

ST

and the (L, @) ordered pairs as shown in Table 1.
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Figures 9 and 10 show the MAE , of the GGR-IPS1-EALMM obtained by using n = 10(10)50, o =
-0.4(0.1)2,L = 1(1)4 and (%, @) € €. It is interesting to observe here by visual inspection that,
when holding L fixed, the global minima of the error mesh surface plots occur near @ = 0.5 and the
mesh surfaces rise up gradually as we move away, except when a € {-0.4, —0.3}, where sharp peaks
may emerge suddenly for growing values of n. This suggests that Legendre polynomials seem to be
an optimal choice among Gegenbauer basis polynomials when holding L fixed, while Gegenbauer
polynomials associated with a values near —0.5 may cause numerical instability as n grows large.
However, a different story emerges when the GGR-IPS2-EALMM is performed instead, as can be seen
in Figures 11 and 12. Notice now that the errors appear to be monotonically decreasing for decreasing
values of @ when holding L fixed at 1 and 2, and that the error surface shoots up as n and « increases.
Therefore, Gegenbauer polynomials with some negative « values seem optimal for relatively small
values of L. Notice also that the sudden peaks observed before with the GGR-IPS1-EALMM in Figures
9 and 10 for @ € {-0.4, —0.3} and large n values disappear. A further array of error mesh surface plots
of the GGR-IPS1-EALMM are shown in Figures 13 and 14 for n = 10(10)50,a = -0.2,0,0.5,1,L =
0.5(0.5)6 and (X, @1() € €. While holding « fixed, there seems to be no general rule of thumb that can
be drawn from the shown data. On the other hand, Figures 15 and 16 show the corresponding plots
associated with the GGR-IPS2-EALMM, where the errors are very similar and can be clearly seen to
surge as L — 0, especially when a = 1, but remain relatively small for L = 2(0.5)6.

(@0, @) € 1

MAE, ,
MAE,. .,

Figure 9. MAE, , of the GGR-IPS1-EALMM at 101 linearly spaced nodes between 0 and
10, as obtained by using n = 10(10)50, @ = —0.4(0.1)2, L = 1(1)4 and (X, &ty) € Q.
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(2o, o) € D2

MAE,,,
MAE, ,
MAE,,,

Figure 12. MAE, , of the GGR-IPS2-EALMM at 101 linearly spaced nodes between 0 and
10, as obtained by using n = 10(10)50, @ = —0.4(0.1)2, L = 1(1)4 and (X, &ty) € Q.

a=-0.2 a=0.0 a=1.0

MAE,,

MAE,,
MAE, ,
MAE,,

Figure 13. MAE, , of the GGR-IPSI-EALMM at 101 linearly spaced nodes between 0 and
10, as obtained by using n = 10(10)50, @ = -0.2,0,0.5, 1, L = 0.5(0.5)6 and (X, @iy) € €;.
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MAE,,,

MAE, ,

(&0, o) € Qa2

a=0.0

MAE,

Figure 14. MAE, , of the GGR-IPSI-EALMM at 101 linearly spaced nodes between 0 and
10, as obtained by using n = 10(10)50, @ = -0.2,0,0.5, 1, L = 0.5(0.5)6 and (X, @iy) € €.

a=1.0

Figure 15. MAE, , of the GGR-IPS2-EALMM at 101 linearly spaced nodes between 0 and
10, as obtained by using n = 10(10)50, @ = -0.2,0,0.5, 1, L = 0.5(0.5)6.5 and (X, @) € ;.
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a=-0.2 a=0.0 o =0.5 a=1.0
o L]

MAE,,,

M:\E

MAE

MAE,,
g

Figure 16. MAE, , of the GGR-IPS2-EALMM at 101 linearly spaced nodes between 0 and
10, as obtained by using n = 10(10)50,a@ = -0.2,0,0.5, 1, L = 0.5(0.5)6.5 and (X, @) € €.

Figures 17 and 18 show comparisons of the number of iterations required by the GGR-IPS12
methods when combined with three distinct NLP solvers using (¥y,#%,) € € and several L and «
values. Clearly, the integration of the GGR-IPS12 methods with the EALMM leads to a drastic
reduction in the number of iterations in all cases. In fact, while the GGR-IPS12-EALMM often
converged in only four/five iterations, other methods usually require many more iterations to
converge; for example, the GGR-IPS12 methods combined with fmincon-int and fmincon-sqp took
more than 200 iterations to converge to the solutions of the problem when (n, L, @) = (48, 1, -0.2) and
starting with any initial guess (X, i) € €.

a=-02and L =1 a=0.0 and L =2 a=0.5and L =3 a=1.0 and L =4
T T T T 20 T T T T 20 T T T T 20 T T T T

200 4 200 . 4 200 | I 4 200 I i

100 d 100} 100
507 n | Sni n Sni n ﬂ
o n n n n o n n n n o n n n n
6 P 6 2 24 48 6 2 24 48
n n n

Number of iterations
Number of iteratif)ns
Nunjber of iterat[ons
Number of iteratif)ns

8

n
B CCR-IPSI-fr int [ GGR-IPS1-finincon-sqp [ GGR-TPS2-fimincon-int t [EZ]CGR-IPS2-fimincon-sqp [ GGR-IPS1-EALMM []GGR-IPS2-EALMM

Figure 17. Number of iterations required by the GGR-IPS12 methods performed with three
distinct NLP solvers versus n for (a, L) = (-0.2, 1), (0, 2),(0.5,3),(1,4) and (X, @iy) € €.
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(iu, ﬂn) € Qs

a=02,L=1 a=0.0, L =2 a=0.5, L =3 a =10, L=4

250 250 250 250

150 |

100 |

all ol ull o

Number of iterations
Number of iterations
Number of iterations
Number of iterations

I
24 48 48 24 48 24 48

n
I CGR-PS1-fimincon-int, [l GGR-IPS1-fmincon-sqp [ GGR-IPS2-fmincon-int [0] GGR-IPS2-fmincon-sqp [ GGR-IPS1-EALMM [JGGR-IPS2-EALMM

Figure 18. Number of iterations required by the GGR-IPS12 methods performed with three
distinct NLP solvers versus n for (a, L) = (-0.2, 1), (0, 2), (0.5, 3), (1,4) and (X, @ty) € €,.

Table 2 shows the approximate cost function values obtained by the GGR-IPS2-EALMM for several
parameter values. The fastest convergence was recorded at « = 0.5 in all cases with J ~ Jig =
0.579958091127, which is in agreement with J to 10 significant digits. It is interesting to see through
the tabulated data how the Gegenbauer polynomials with @ € {-0.4,0.25} exhibit faster convergence
rates than the Chebyshev polynomials (when @ = 0), capturing four correct significant digits as early as
n = 12, whereas the Chebyshev polynomials are still lagging behind by one digit even when n increases
by two units. Gegenbauer polynomials with @ = —0.2 also performed better than the Chebyshev
polynomials for n € {14, 16}, while the poorest stability was that of Gegenbauer polynomials with & =
2, scoring only one correct significant digit in all cases. Table 3 shows the smallest MAE, , obtained
by the GGR-IPS12-EALMM among the recorded errors for the parameter values n = 10(10)80, @ =
-0.4(0.1)2, L = 0.25(0.25)10 and (X¢,#19) € . The table shows the capacity of the GGR-IPS12-
EALMM to achieve improved near-optimal solutions for increasing values of n within a small/medium
range of mesh grid size; however, the accuracy deteriorates beyond a certain limit as the mesh grid size
grows larger, in agreement with the theoretical results proven in Section 5. The GGR-IPS2-EALMM is
clearly superior to the GGR-IPSI-EALMM in terms of accuracy in all cases, and it is interesting here
to see how the GGR-IPS1-EALMM diverges faster than the GGR-IPS2-EALMM for growing mesh
sizes, as indicated earlier by the divergence analysis presented in Section 5. The best approximations
obtained experimentally by the GGR-IPS2-EALMM were recorded at/near @ = 0.5 with a € ‘Y'g 406"
The smallest errors of the GGR-IPS1-EALMM were also recorded at/near @ = 0.5 for n = 5(5)55
with @ € T¢,  _; however, the algorithm tends to favor larger positive a values beyond n = 55, where

0.4,0.6°
we noticed the travel of the right boundary, o, of T¢, , rightward from o} = 0.6 into & = 1.8

0.4,ar
as n reaches 80. This is no surprise. In fact, recall that Tf“L) increases monotonically for decreasing
values of @ while holding »n and L fixed, and we can observe from Figure 1 that the mapping escalates
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wildly as we continue decreasing the « values. The byproduct of this behavior is that increasing the a
values moves the collocation points associated with large values of 7 leftward, relocating them closer to
regions where the solution changes rapidly. This graphical interpretation is consistent with the fact that
the interior GGR points move monotonically toward the center of the interval (-1, 1) as the parameter
« increases [51,56]. From another perspective, the leftward movement of the collocation points near
the right boundary 7 = 1 mitigates the effect of the ill-conditioning of T'{; for arguments near 1, as
T, is evaluated at mesh points that are gradually departing the vicinity of 7 = 1. This argument adds
more tenability to the cause of using Gegenbauer polynomials as a basis polynomials for numerical
collocations of FHOCIs obtained from IHOCs via Tf“L) or Té“L) in the sense that, while Chebyshev and
Legendre polynomials cease to downgrade the errors as the mesh grid size grows large, Gegenbauer
polynomials have the additional advantage of being able to alleviate the growth rates of both Tf“L) and
Té“L) by increasing the o value whenever we wish, while sustaining the luxury of being able to apply
either Chebyshev or Legendre polynomials. If we now turn our attention to the recorded L values in the
table, we can quickly spot that the smallest computed errors initially span a wide range of numerically
optimal L values; however, the solvers ultimately have a bias toward smaller values of L in an attempt
to damp the error in agreement with the forward error analysis presented in Section 5. Notice that
the numerically optimal L value for the GGR-IPS2-EALMM stays at 0.75 for n = 55(5)80, while the
corresponding values for the GGR-IPS1-EALMM occur at the smallest feasible L value among the
input range of experimental data. One may attribute this peculiar behavior of the solvers to the fact
that the logarithmic map Té“L) increases at a much slower rate than that of the algebraic map TffVL); see

Figures 1 and 2.

Table 2. Approximate cost function values obtained by the GGR-IPS2-EALMM for
(n,L) = (6,1),(8,2),(10,3),(12,4),(14,5),(16,6) and @ = —-0.4,-0.2,0,0.25,0.5,1,2. All
approximations were rounded to 12 significant digits.

Example 1

a=-04

a=-02

a=0

a =025

a=0.5

a=1

a=2

A R W N =N

0.579809073360
0.579848669619
0.579893894832
0.579918900010
0.579933051361
0.579941397724

0.579627701619
0.579713782304
0.579797498143
0.579850348844
0.579883424648
0.579904638260

0.579622685738
0.579730070685
0.579802788432
0.579850444796
0.579881314693
0.579901719586

0.579789248084
0.579859689930
0.579889201985
0.579908959905
0.579922126600
0.579931066922

0.579949642114
0.579958090977
0.579958091142
0.579958091143
0.579958091151
0.579958091127

0.577727846201
0.578484510558
0.578845602933
0.579089227180
0.579263254798
0.579391311257

0.503481602677
0.522640769897
0.530047022566
0.534636030121
0.538003914873
0.540689754740
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Table 3. MAE,, of the GGR-IPS12-EALMM obtained by using n = 5(5)80 and (X, #y) €
Q. All approximations were rounded to five significant digits.

Example 1
GGR-IPS1-EALMM GGR-IPS2-EALMM
(Fo, flp) € (%o, fly) € 2y (%o, flg) € (Fo, flg) €

n L MAE,, a L MAE,, 1% L MAE,, a L MAE,,

5 0.6 2.25 5.3830e-03 0.6 2.25 5.3830e-03 0.5 3.5 4.2456e-05 0.5 35 4.2458e-05
10 0.5 5.75 6.9439¢-05 0.5 5.75 7.0620e-05 0.5 5.25 8.6420e-09 0.5 4.75 9.8263e-09
15 05 7 6.3879¢e-07 0.5 7 6.7410e-07 0.5 4 6.1199¢e-09 0.5 3.25 5.7262e-09
20 0.5 10 2.3194e-07 0.5 9 1.4376e-07 0.5 2.25 6.7398e-09 0.5 2.5 8.6293e-09
25 0.5 9 1.7060e-07 0.5 5.75 1.5636e-07 0.5 2.25 4.4629¢-08 0.5 5.75 3.7128e-08
30 0.5 2 49161e-07 0.5 3.25 2.9685e-07 0.5 1.75 6.4234e-08 0.5 1.75 9.7104e-08
35 05 0.75 2.6309e-06 0.5 0.5 5.3234e-06 0.5 1.75 1.0386e-07 0.5 1.75 9.4232e-08
40 0.5 0.25 6.7082e-05 0.5 0.25 1.8574e-05 0.5 1.5 4.7475e-07 0.5 2 2.6221e-07
45 0.5 1 7.2641e-05 0.5 4.25 1.3092e-04 0.5 1.25 5.1101e-07 0.5 1.75 2.4520e-07
50 04 1.5 9.7024e-04 0.4 3.25 1.0915e-03 0.5 1 8.6070e-06 0.5 1.25 6.6680e-06
55 0.6 4.75 1.1300e-03 0.6 7.25 1.1785e-03 0.5 0.75 1.8330e-05 0.5 0.75 1.8329e-05
60 1 0.5 1.9681e-02 0.7 0.25 1.6967¢-02 0.5 0.75 7.0032e-05 0.5 0.75 1.4334e-04
65 1.2 0.25 2.2391e-02 1.2 0.25 2.2419¢-02 0.5 0.75 3.1392¢-04 0.5 0.75 2.1468e-04
70 14 0.25 5.8462e-02 1.3 0.25 7.7659-02 0.5 0.75 1.0067e-03 0.4 0.75 8.0880e-04
75 14 0.25 1.5099¢-01 1.4 0.25 1.5681e-01 0.6 0.75 8.6516e-04 0.5 0.75 8.9362e-04
80 1.8 0.25 3.2058e-01 1.8 0.25 2.7602¢-01 0.4 0.5 8.3497e-04 0.4 0.75 6.7363e-04

Example 2. Consider the IHOC given by  Eqgs (2.1)-(2.3)  with

g (x(0), u(®) = x7(1) + 5(0)/2 + () /4, f (x(0),u(0) = [x2(8), 2x1(1) — %2(t) + u(t)]" and xo = [-4,4]".
The exact state and control variables are

x*(t) = exp (Mr) x(0), (6.4a)
u*(t) = —Kx*(1), (6.4b)
where
M= 0 1 (6.40)
| —2.82842712474619 —3.557647291327851 |’ e
K =[4.828427124746193;2.557647291327851] ; (6.4d)

see [45,55,72]. This example is a linear-quadratic regulator problem with an optimal cost functional
value J* = 19.85335656362790, rounded to 16 significant digits, as obtained in MATLAB by using
the Symbolic Math Toolbox. Figure 19 shows the plots of the exact optimal state and control variables
and their approximations obtained through GGR-IPS2-EALMM using some parameter values. Table 4
shows the MAE, , of the LGR-PS method in [45] and the smallest corresponding MAE, , and AE; pairs
of the GGR-IPS2-EALMM at the collocation points, as obtained by using (¥, #,) € € and several
values of n. The table also shows the corresponding ET taken to perform the GGR-IPS2-EALMM.
The GGR-IPS2-EALMM proves again to be superior in terms of accuracy for a small range of mesh
sizes, as it converges rapidly to near-optimal solutions at a much higher rate than that in [45]. However,
the superb accuracy of the method starts to decline when n grows larger, as anticipated earlier. Notice
again here that the best accuracy in all cases was recorded at @ = 0.5 with SRCIC Tgs,()j ={0.5}.
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Table 4. Uncertainty intervals of the smallest MAE, , obtained by employing the method
in [45] at the collocation points and the corresponding smallest MAE,, and AE; pairs
obtained by using the GGR-IPS2-EALMM with n = 4(5)34 and (X, @) € Q. The ET values
are also shown for the GGR-IPS2-EALMM. The errors and the ET values were rounded to
five significant digits and three decimal digits, respectively.

Example 2
Method of Garg et al. [45] GGR-IPS2-EALMM
(%o, f1o) € (%o, ft9) € 2y
n+1 MAE,, uncertainty interval MAE, ,JAE,;/a/L/ET MAE, ,/AE;|/a/L/ET

5 (1e-01,1) 1.6959e-03/1.7032e-05/0.5/1.75/0.422  1.6959e-03/1.7032e-05/0.5/1.75/1.988
10 (1e-02,1e-01) 9.4155e-08/1.7870e-12/0.5/2.5/3.532  8.5595e-07/9.6705e-12/0.5/3.25/3.452
15 (1e-04, 1e-02) 2.0165e-08/4.9489¢-12/0.5/5.5/1.447  1.2501e-08/2.1316e-13/0.5/2.5/1.631
20 (1e-04, 1e-03) 8.2183e-09/1.6485e-12/0.5/3.5/1.866  6.2243e-09/1.0040e-11/0.5/2.5/3.695
25 (1e-05, 1e-04) 1.7564e-07/3.6451e-12/0.5/3.5/1.103 8.4676e-08/1.7483e-11/0.5/3/1.231
30 (1e-06, 1e-05) 1.1714e-06/3.1175e-11/0.5/1.75/6.212  2.4535e-06/4.9347e-12/0.5/1.75/4.942
35 (1e-06, 1e-05) 6.9522e-06/9.9437e-11/0.5/1.5/7.971  4.5463e-06/1.0522e-10/0.5/1.5/1.592

Figure 19. Exact optimal states and control of Example 2, as well as their collocated
approximations obtained by applying GGR-IPS2-EALMM on the interval [0, 10] using
n=9a=0.5L=25and (X, € Q. All figures were generated using 101 linearly
spaced nodes from O to 10.

Another comparison between GGR-IPS2-fmincon-int, GGR-IPS2-fmincon-sqp and the
transformed LGR method in [47] is shown in Table 5. We can clearly see that the former two methods
generally yield smaller AE, values. The rise and fall of accuracy as the mesh size grows is again
peculiar in the observed approximations, which is in agreement with the presented divergence
analysis in Section 5. Remarkably, a match with the exact J* to full machine precision was recorded
as early as n = 20, indicating an exceedingly accurate numerical scheme with exponential
convergence for coarse meshes. All of the smallest errors reported by the current methods occurred at
a = 0.5, except for n € {90, 100}, where collocations at @ = 0 and 0.8 furnished higher accuracy. On
the other hand, the rounded errors in [47] decay to 1.35 x 107 as soon as n = 30 when using the
algebraic map, but they cease to vary any further for n = 40(10)100.

Table 6 shows a third comparison between GGR-IPS2-fmincon-int, GGR-IPS2-fmincon-sqp and
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the recent method of Mamehrashi and Nemati [73], which uses Laguerre functions and the Ritz spectral
method. All errors produced by the current methods were smaller than those obtained in [73] under
the condition of using the same number of approximation terms; notably, a large difference of nine and
ten orders of magnitude was observed in favor of the current methods using as small as n = 10.

Table 5. AE, of the method in [47] and the smallest AE; obtained by GGR-IPS2-fmincon-int
and GGR-IPS2-fmincon-sqp using (X, ity) € €. The ET values are also shown for the latter
two methods. The errors and the ET values were rounded to five significant digits and three
decimal digits, respectively.

Example 2
Method of Shahini and Mehrpouya [47] GGR-IPS2
Algebraic map T;"L) Logarithmic map T;'L) fmincon-int fmincon-sqp
(%o, ) € (%o, ) € Q; (%o, o) € Q) (X0, ) € Q)

n AE, AE;/a/L/ET AE;/a/L/ET AE;/a/L/ET AE;/a/L/ET

10 4.82e-05 3.92e-05 5.3291e-14/0.5/2.5/0.169  5.3291e-14/0.5/2.5/0.137  1.0658e-14/0.5/4.25/0.075  7.1054e-15/0.5/2.5/0.076
20 4.88e-09 1.76e-06 0/0.5/6/0.513 0/0.5/5.25/0.488 0/0.5/5.75/0.340 0/0.5/5.75/0.364

30 1.35e-09 2.73e-07 7.1054e-15/0.5/3/1.109  1.4211e-14/0.5/5.25/1.055 1.0658e-14/0.5/2.5/0.971  1.7764e-14/0.5/5.5/0.895
40 1.35e-09 7.24e-08 1.0658e-14/0.5/5.75/2.201  3.1974e-14/0.5/5.25/2.136 1.0303e-13/0.5/6/1.8 1.2079e-13/0.5/5/1.752
50 1.35e-09 2.63e-08 8.8818e-14/0.5/10/3.748  1.1013e-13/0.5/2.5/3.852 5.1514e-13/0.5/5/2.737 5.9686e-13/0.5/5/2.645
60 1.35e-09 1.19e-08 1.7053e-13/0.5/2.5/5.711  4.0146e-13/0.5/10/5.485  8.3844e-13/0.5/5.5/3.758  1.0409e-12/0.5/5.75/3.702
70 1.35e-09 6.45e-09 2.7001e-13/0.5/5/8.123 4.0501e-13/0.5/10/7.857 1.2967e-12/0.5/10/5.457 1.7337e-12/0.5/5/5.229
80 1.35e-09 4.06e-09 8.2423e-13/0.5/5.5/10.965  8.3134e-13/0.5/5.5/10.923  1.7977e-12/0.5/10/6.952  2.7676e-12/0.5/2.5/6.863
90 1.35e-09 2.90e-09 1.1072e-10/0/5.25/11.269  2.1283e-09/0/2.5/11.371 1.4021e-09/0/3.5/7.975 1.4747e-10/0/2.5/7.933
100 1.35e-09 2.29e-09 9.5391e-08/0.8/4/12.601  1.9779e-07/0.8/3.5/12.499  5.3783e-08/0.8/4/7.671 1.6219e-07/0.8/3.75/7.887

Table 6. AE of the method in [73] and the smallest AE; obtained by GGR-IPS2-fmincon-int
and GGR-IPS2-fmincon-sqp using (¥, %) € €. The ET values are also shown for the latter
two methods. The errors and the ET values were rounded to five significant digits and three
decimal digits, respectively.

Example 2
Method of Mamehrashi and Nemati [73] GGR-IPS2
fmincon-int fmincon-sqp

(Fo, flp) € 2, (%o, flg) € 2y (%o, fly) € (%o, ftp) € Q)
n AE, AE;|a/L/ET AE;/a/L/ET AE;/a/L/ET AE;/a/L/ET
1 8.0868e-02 3.5950e-03/1.6/3.75/0.032  3.5950e-03/1.6/3.75/0.031  3.5950e-03/1.6/3.75/0.009  3.5950e-03/1.6/3.75/0.008
3 2.5290e-02 1.3845e-04/0.5/3/0.035 1.3845e-04/0.5/3/0.035 1.3845e-04/0.5/3/0.015 1.3845e-04/0.5/3/0.014
10 9.5436e-05 5.3291e-14/0.5/2.5/0.169  5.3291e-14/0.5/2.5/0.137  1.0658e-14/0.5/4.25/0.075  7.1054e-15/0.5/2.5/0.076

Example 3. Consider the IHOC given by (2.1)—(2.3) with

1
g (x(0),u() = 3 [xT()Qx(1) + u (H)Ru(?)], (6.5)
1 0 —3@) + X2 10

OO I S B h e F e 20 ©6)

and xo = [0,0.8]7, where Q = R = I,. This problem was solved earlier in [74] by using a piecewise
Adomian decomposition method, and again recently in [73] by using Laguerre functions and the Ritz
spectral method. Table 7 shows comparisons between these two methods and the GGR-IPS2-EALMM
with @ = 0.5,L = 1 and n = 1(1)10. Because of the agreement of the approximations obtained by the
GGR-IPS2-EALMM for n = 9 and 10, we could reasonably expect the value of J;, to be accurate to the
places listed. It is remarkable here to notice that J; agrees with Jj to three significant digits under the
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condition of using as little as two collocation nodes, which reflects the swift convergence rate achieved
by the current method for coarse meshes. Notice also that the obtained Js value is smaller than the
corresponding approximate optimal cost function values obtained using both rival methods. The state
and control numerical solutions obtained by the GGR-IPS2-EALMM are shown in Figure 20.

Table 7. Comparisons of the approximate optimal cost function values. The approximations
obtained using the GGR-IPS2-EALMM were rounded to seven decimal digits. The rounded
ET values to three decimal digits are also shown for the GGR-IPS2-EALMM.

Example 3
Method of Mamehrashi and Nemati [73]
Method of Nik et al. [74] n=1 n=2 n=4 n=>5
Approximate 0.5350 031129 021346 02109608 0.2109407

optimal J

GGR-IPS2-EALMM using a = 0.5, L = 1, (¥, 1p) € 2,

n=1 n=2 n=3 n=4 n=>5 n=6 n=17 n=38 n=9 n=10
Aggfi"m":’;‘e 02142078 02103731  0.2109176 0.2109341 02109368 0.2109375 0.2109379 0.2109380 0.2109381 0.2109381
ET 0346 0.778 1262 1.108 1.415 1.085 1510 2.053 2.371 1.848

-0.1 : -0.8

Figure 20. Collocated state and control solutions of Example 3 on the interval [0, 10]; the
plots were obtained by employing the GGR-IPS2-EALMM withn = 5, = 0.5,L = 1 and
(Xo,@p) € Q.

7. Conclusions and future work

Direct IPS methods for solving IHOCS using the logarithmic mapping Té“L) and the developed SR
interpolation and quadrature formulas can produce excellent approximations’to the optimal state and
control variables for relatively small/medium mesh grids. However, this class of methods often suffer
from numerical instability for fine meshes when endowed with any of the parametric maps T[.(Z), i=1,2;
therefore, as the mesh size grows, they are not as useful as one might hope for computing the optimal
state and control trajectories to within high precision. In fact, it has been shown in the current paper
that two sources of difficulty arise in handling the horizon in IHOCs using a domain transformation

that maps the infinite horizon to the finite horizon [—1, 1) through the algebraic and logarithmic maps
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Tf’i), i = 1,2: (1) the exponential growth of the mappings surface slopes near the right boundary 7 = 1,
which increases the truncation errors produced in the FHOCI discretization without bounds as 7 — 1;
and (i1) despite the fact that both mappings Tl.(fz),i = 1,2 have a singularity at 7 = 1 and we actually
never evaluate them at the singularity, since the GGR collocation points are strictly less than 1, their
derivatives are sensitive to input data errors for arguments near 7 = 1; thus, both NLP1 and NLP2
are ill-conditioned for 7 = 1. These theoretical facts, as well as the observed empirical data, are
considerable reasons to say that typical direct spectral/PS and IPS methods based on classical Jacobi
polynomials and the parametric maps Ti‘,?,i = 1,2 are foreseen to diverge as the mesh size grows
large if the computations are carried out using floating-point arithmetic and the discretizations use a
single mesh grid, regardless of whether they are of Gauss type or equally spaced, which is a result that
contradicts the convergence claim of such methods using Legendre polynomials made in [44].

While Gegenbauer polynomials associated with certain nonpositive @ values are well suited for
FGGR-based polynomial interpolations in Lagrange basis form over fine meshes, as shown in [24];
this paper asserts that Gegenbauer polynomials associated with certain nonnegative a values are more
apt for GGR-based SR interpolations over fine meshes. Moreover, for coarse mesh grids, Legendre
polynomials are particularly (near) optimal basis polynomials for GGR-based SR collocations of
FHOCTS, as argued in Section 4.1 and sustained through numerical simulations. On the other hand,
Gegenbauer polynomials associated with certain positive values of @ € (1/2,2] are optimal for [HOCI
collocations over fine mesh grids, as they can largely slow down the exponential growth of both
parametric maps Tl.(fz),i = 1,2, and their associated GGR collocation points are less dense near 7 = 1;

thus, the sensitivity of computing 7;,,i = 1,2 at arguments near 7 = 1 is significantly attenuated. The

(@)
1L
(o]

the family {(Ti“L))m}:zo grows faster than {(Téf?)m}m:
domain transformation of IHOCs than T](C"L) for collocation points of Gauss/GR type.

It is worthy to mention that direct IPS methods based on the proposed Gegenbauer SR collocation
can exhibit faster convergence rates for coarse meshes by regulating the map scaling parameter L and
the Gegenbauer parameter . In light of the stability analysis conducted in Section 4.1, GGR-based SR
collocations of well-conditioned problems are generally endorsed for a values within/near the SRCIC
T?/Z,l; the current study also supports this rule of thumb for IHOCs that are converted into FHOCIs
through the use of parametric maps Tl.(i),i = 1,2 and then collocated at relatively coarse mesh grids.
On the other hand, a rule of thumb for choosing the optimal map scaling parameter value, L*, based
on the derived error bounds in Section 5 and extensive numerical simulations performed in Section 6
suggests to choose L within the range (0, 1) for large mesh grids. However, the question of how can we
find L* remains open for coarse meshes. An interesting direction for future work may involve a study
of new mappings with slower growth rates and derivatives with less sensitivity to input data errors.
Another interesting direction is to extend the current work to handle IHOCs subject to boundary value

problems.

is more severely sensitive for 7 ~ 1 than T;"L), and that

, T 1; therefore, Té“L) is more apt for the

paper also shows that the parametric map T
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Appendix

A.

Barycentric GRDM

To construct the barycentric GRDM, we follow the derivation presented in [23] and multiply both

sides of Eq (4.6) by x — 7; Vj to render them differentiable at x = 7; such that

" &lx—Ti) &ilx—T;
e o) &l ’), i=0,....n (A1)
e x— T X—T
. " & (x-1)) . - . _
Letting S (x) = Z —— and differentiating Eq (A.1) with respect to x yields
=0 X — Tk
’ ’ X—=T; ' .
S)L, (x) + L, (x)S"(x) = & | i=0,...,n. (A.2)
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Since S(7;) =¢;,8'(1)) = Z é}

jk

differentiation matrix D = (d;;)o<;i<» can be calculated by using the following formula:

&€

J
Tj—T,‘

dj’,' = .5;”-(7']') = . Vl * ]

For i = j, we have Z L, (x)=1,s0 Z L, (x) =0and
i=0 i=0

dij= L) == L) == dj i=0...n

J#i i#]

and L,;(tr;) = 0Vi # j, the off-diagonal elements of the

(A.3)

(A4)

Hence, the derivative of a real-valued function f € C![-1, 1] can be approximated at the GGR points

by using the following formula:
f,(Tj)dej,i o Jj=0,...,n.
i=0

B. Computational algorithms

(A.S)

Algorithm B.1 First switching formula of the barycentric weights for the GGR points.

Input: Positive integer n; a real number @ > —1/2; the set of GGR points and quadrature weights

n .

{Ti, @} arelatively small positive real number &.
Output: Barycentric weights &,i=0,...,n.
: &y —VQ2a + Day.
:fori=1tondo
if |1 — 7;| > ¢ then
&« (D)T'VI -1
else
& — (=1)! sin(% cos™! T,-) ;.
end if
end for
. Stop.

R AN o e
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Algorithm B.2 Second switching formula of the barycentric weights for the GGR points.

Input: Positive integer n; a real number @ > —1/2; the set of GGR points and quadrature weights
{Ti, @;}_,; a relatively small positive real number &.
Output: Barycentric weights &;,i =0, ..., n.

1: & « —VQRa + .

2: fori=1tondo

3: if |1 — 7;| > ¢ then

4 &= (DTN -1) @
5: else

6: & «— (=1)"'sin (cos‘l T,')
7: end if

8: end for

9: Stop.

1+T,"
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