In the present artice we discuss the weighted $p$-adic central bounded mean oscillations $(CMO)$ and $p$-adic Lipschtiz estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces.
Citation: Naqash Sarfraz, Muhammad Aslam. Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces[J]. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
In the present artice we discuss the weighted $p$-adic central bounded mean oscillations $(CMO)$ and $p$-adic Lipschtiz estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces.
[1] | M. Christ, L. Grafakos, Best Constants for two non convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. doi: 10.1090/S0002-9939-1995-1239796-6 |
[2] | D. E. Edmunds, W. D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer Verlag, Berlin, 2004. |
[3] | W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. |
[4] | Z. W. Fu, Q. Y. Wu, S. Z. Lu, Sharp estimates of $p$-adic Hardy and Hardy-Littlewood-Pólya Operators, Acta Math. Sin., 29 (2013), 137–150. |
[5] | G. Gao, Y. Zhong, Some estimates of Hardy Operators and their commutators on Morrey-Herz spaces, J. Math. Inequal., 11 (2017), 49–58. |
[6] | G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. |
[7] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, second edtion, Cambridge Univ. Press, London, 1952. |
[8] | A. Hussain, A. Ajaib, Some weighted inequalities for Hausdorff operators and commutators, J. Ineq. Appl., 2018 (2018), 1–19. |
[9] | A. Hussain, N. Sarfraz, The Hausdorff operator on weighted $p$-adic Morrey and Herz type spaces, $p$-Adic Numb. Ultrametric Anal. Appl., 11 (2019), 151–162. doi: 10.1134/S2070046619020055 |
[10] | A. Hussain, N. Sarfraz, Optimal weak type estimates for $p$-Adic Hardy operator, $p$-Adic Numb. Ultrametric. Anal. Appl., 12 (2020), 12–21. doi: 10.1134/S2070046620010021 |
[11] | A. Hussain, N. Sarfraz, F. Gürbüz, Sharp Weak Bounds for $p$-adic Hardy operators on $p$-adic Linear Spaces, arXiv: 2002.08045. |
[12] | A. Hussain, N. Sarfraz, I. Khan, A. M. Alqahtani, Estimates for Commutators of Bilinear Fractional p-Adic Hardy Operator on Herz-Type Spaces, J. Funct. Space., 2021 (2021), 1–7. |
[13] | A. Hussain, N. Sarfraz, I. Khan, A. Alsuble, N. N. Hamadnehs, The Boundedness of Commutators of Rough p-Adic Fractional Hardy Type Operators on Herz-Type Spaces, J. Inequal. Appl., 2021 (2021), (to appear). |
[14] | J. L. Journe, Calderón-Zygmund operators, differential operators and the cauchy integral of Calderón, Lect. Notes Math., 994 (1983), 1–127. doi: 10.1007/BFb0061459 |
[15] | A. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1994. |
[16] | M. Kian, On a Hardy operator inequality, Positivity, 22 (2018), 773–781. doi: 10.1007/s11117-017-0543-4 |
[17] | S.V. Kozyrev, Methods and applications of ultrametric and $p$-adic analysis: From wavelet theory to biophysics, Proc. Steklov. Inst. Math, 274 (2011), 1-84. |
[18] | R. H. Liu, J. Zhou, Sharp estimates for the $p$-adic Hardy type Operator on higher-dimensional product spaces, J. Inequal. Appl., 2017 (2017), 1–13. doi: 10.1186/s13660-016-1272-0 |
[19] | B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. doi: 10.1090/S0002-9947-1972-0293384-6 |
[20] | L. E. Persson, S. G. Samko, A note on the best constants in some Hardy inequalities, J. Math. Inequal., 9 (2015), 437–447. |
[21] | N. Sarfraz, F. Gürbüz, Weak and strong boundedness for $p$-adic fractional Hausdorff operator and its commutators, arXiv: 1911.09392, 2019. |
[22] | N. Sarfraz, A. Hussain, Estimates for the commutators of $p$-adic Hausdorff operator on Herz-Morrey spaces, Mathematics, 7 (2019), 127. doi: 10.3390/math7020127 |
[23] | N. Sarfraz, D. Filali, A. Hussain, F. Jarad, Weighted estimates for commutator of rough $p$-adic fractional Hardy operator on weighted $p$-adic Herz- Morrey spaces, J. Math., 2021 (2021), 1–14. |
[24] | Q. Sun, X. Yu, H. Li, Hardy-type operators in Lorentz-type spaces defined on measure spaces, Indian J. Pure Appl. Math., 51 (2020), 1105–1132. doi: 10.1007/s13226-020-0453-1 |
[25] | S. S. Volosivets, Weak and strong estimates for rough hausdorff type operator defined on $p$-adic linear space, $p$-Adic Numb. Ultrametric Anal. Appl., 9 (2017), 236–241. doi: 10.1134/S2070046617030062 |
[26] | V. S. Varadarajan, Path integrals for a class of $p$-adic Schrodiner equations, Lett. Math. Phys. Math., 39 (1997), 97–106. doi: 10.1023/A:1007364631796 |
[27] | V. S. Vladimirov, Tables of integrals of complex Valued Functions of $p$- Adic Arguments, Proc. Steklov. Inst. Math., 284 (2014), 1–59. |
[28] | V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994. |
[29] | S. M. Wang, D. Y. Yan, Weighted boundedness of commutators of fractional Hardy operators with Besov-Lipschitz functions, Anal. Theory Appl., 28 (2012), 79–86. doi: 10.4208/ata.2012.v28.n1.10 |
[30] | S. R. Wang, J. S. Xu, Commutators of the bilinear Hardy operator on Herz type spaces with variable exponents, J. Funct. Space., 2019 (2019), 1–11. |
[31] | Q. Y. Wu, Boundedness for Commutators of fractional $p$-adic Hardy Operator, J. Inequal. Appl., 2012 (2012), 1–12. doi: 10.1186/1029-242X-2012-1 |
[32] | Q. Y. Wu, L. Mi, Z. W. Fu, Boundedness of $p$-adic Hardy Operators and their commutators on $p$-adic central Morrey and BMO spaces, J. Funct. Spaces Appl., 2013 (2013), 1–10. |
[33] | N. Xudong, Y. Dunyan, Sharp constant of Hardy operators corresponding to general positive measures, J. Inequal. Appl., 2018 (2018), 1–18. doi: 10.1186/s13660-017-1594-6 |
[34] | N. Zhuang, G. Shasha, L. Wenming, Hardy operators and the commutators on Hardy spaces, J. Inequal. Appl., 2020 (2020), 1–11. doi: 10.1186/s13660-019-2265-6 |