Research article

Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces

  • Received: 31 March 2021 Accepted: 23 June 2021 Published: 25 June 2021
  • MSC : 42B35, 26D15, 46B25, 47G10

  • In the present artice we discuss the weighted $p$-adic central bounded mean oscillations $(CMO)$ and $p$-adic Lipschtiz estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces.

    Citation: Naqash Sarfraz, Muhammad Aslam. Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces[J]. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561

    Related Papers:

  • In the present artice we discuss the weighted $p$-adic central bounded mean oscillations $(CMO)$ and $p$-adic Lipschtiz estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces.



    加载中


    [1] M. Christ, L. Grafakos, Best Constants for two non convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. doi: 10.1090/S0002-9939-1995-1239796-6
    [2] D. E. Edmunds, W. D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer Verlag, Berlin, 2004.
    [3] W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373.
    [4] Z. W. Fu, Q. Y. Wu, S. Z. Lu, Sharp estimates of $p$-adic Hardy and Hardy-Littlewood-Pólya Operators, Acta Math. Sin., 29 (2013), 137–150.
    [5] G. Gao, Y. Zhong, Some estimates of Hardy Operators and their commutators on Morrey-Herz spaces, J. Math. Inequal., 11 (2017), 49–58.
    [6] G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317.
    [7] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, second edtion, Cambridge Univ. Press, London, 1952.
    [8] A. Hussain, A. Ajaib, Some weighted inequalities for Hausdorff operators and commutators, J. Ineq. Appl., 2018 (2018), 1–19.
    [9] A. Hussain, N. Sarfraz, The Hausdorff operator on weighted $p$-adic Morrey and Herz type spaces, $p$-Adic Numb. Ultrametric Anal. Appl., 11 (2019), 151–162. doi: 10.1134/S2070046619020055
    [10] A. Hussain, N. Sarfraz, Optimal weak type estimates for $p$-Adic Hardy operator, $p$-Adic Numb. Ultrametric. Anal. Appl., 12 (2020), 12–21. doi: 10.1134/S2070046620010021
    [11] A. Hussain, N. Sarfraz, F. Gürbüz, Sharp Weak Bounds for $p$-adic Hardy operators on $p$-adic Linear Spaces, arXiv: 2002.08045.
    [12] A. Hussain, N. Sarfraz, I. Khan, A. M. Alqahtani, Estimates for Commutators of Bilinear Fractional p-Adic Hardy Operator on Herz-Type Spaces, J. Funct. Space., 2021 (2021), 1–7.
    [13] A. Hussain, N. Sarfraz, I. Khan, A. Alsuble, N. N. Hamadnehs, The Boundedness of Commutators of Rough p-Adic Fractional Hardy Type Operators on Herz-Type Spaces, J. Inequal. Appl., 2021 (2021), (to appear).
    [14] J. L. Journe, Calderón-Zygmund operators, differential operators and the cauchy integral of Calderón, Lect. Notes Math., 994 (1983), 1–127. doi: 10.1007/BFb0061459
    [15] A. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.
    [16] M. Kian, On a Hardy operator inequality, Positivity, 22 (2018), 773–781. doi: 10.1007/s11117-017-0543-4
    [17] S.V. Kozyrev, Methods and applications of ultrametric and $p$-adic analysis: From wavelet theory to biophysics, Proc. Steklov. Inst. Math, 274 (2011), 1-84.
    [18] R. H. Liu, J. Zhou, Sharp estimates for the $p$-adic Hardy type Operator on higher-dimensional product spaces, J. Inequal. Appl., 2017 (2017), 1–13. doi: 10.1186/s13660-016-1272-0
    [19] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. doi: 10.1090/S0002-9947-1972-0293384-6
    [20] L. E. Persson, S. G. Samko, A note on the best constants in some Hardy inequalities, J. Math. Inequal., 9 (2015), 437–447.
    [21] N. Sarfraz, F. Gürbüz, Weak and strong boundedness for $p$-adic fractional Hausdorff operator and its commutators, arXiv: 1911.09392, 2019.
    [22] N. Sarfraz, A. Hussain, Estimates for the commutators of $p$-adic Hausdorff operator on Herz-Morrey spaces, Mathematics, 7 (2019), 127. doi: 10.3390/math7020127
    [23] N. Sarfraz, D. Filali, A. Hussain, F. Jarad, Weighted estimates for commutator of rough $p$-adic fractional Hardy operator on weighted $p$-adic Herz- Morrey spaces, J. Math., 2021 (2021), 1–14.
    [24] Q. Sun, X. Yu, H. Li, Hardy-type operators in Lorentz-type spaces defined on measure spaces, Indian J. Pure Appl. Math., 51 (2020), 1105–1132. doi: 10.1007/s13226-020-0453-1
    [25] S. S. Volosivets, Weak and strong estimates for rough hausdorff type operator defined on $p$-adic linear space, $p$-Adic Numb. Ultrametric Anal. Appl., 9 (2017), 236–241. doi: 10.1134/S2070046617030062
    [26] V. S. Varadarajan, Path integrals for a class of $p$-adic Schrodiner equations, Lett. Math. Phys. Math., 39 (1997), 97–106. doi: 10.1023/A:1007364631796
    [27] V. S. Vladimirov, Tables of integrals of complex Valued Functions of $p$- Adic Arguments, Proc. Steklov. Inst. Math., 284 (2014), 1–59.
    [28] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.
    [29] S. M. Wang, D. Y. Yan, Weighted boundedness of commutators of fractional Hardy operators with Besov-Lipschitz functions, Anal. Theory Appl., 28 (2012), 79–86. doi: 10.4208/ata.2012.v28.n1.10
    [30] S. R. Wang, J. S. Xu, Commutators of the bilinear Hardy operator on Herz type spaces with variable exponents, J. Funct. Space., 2019 (2019), 1–11.
    [31] Q. Y. Wu, Boundedness for Commutators of fractional $p$-adic Hardy Operator, J. Inequal. Appl., 2012 (2012), 1–12. doi: 10.1186/1029-242X-2012-1
    [32] Q. Y. Wu, L. Mi, Z. W. Fu, Boundedness of $p$-adic Hardy Operators and their commutators on $p$-adic central Morrey and BMO spaces, J. Funct. Spaces Appl., 2013 (2013), 1–10.
    [33] N. Xudong, Y. Dunyan, Sharp constant of Hardy operators corresponding to general positive measures, J. Inequal. Appl., 2018 (2018), 1–18. doi: 10.1186/s13660-017-1594-6
    [34] N. Zhuang, G. Shasha, L. Wenming, Hardy operators and the commutators on Hardy spaces, J. Inequal. Appl., 2020 (2020), 1–11. doi: 10.1186/s13660-019-2265-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2116) PDF downloads(118) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog