In the present artice we discuss the weighted p-adic central bounded mean oscillations (CMO) and p-adic Lipschtiz estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces.
Citation: Naqash Sarfraz, Muhammad Aslam. Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces[J]. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
[1] | Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on p-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121 |
[2] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand p-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[3] | Naqash Sarfraz, Muhammad Bilal Riaz, Qasim Ali Malik . Some new characterizations of boundedness of commutators of p-adic maximal-type functions on p-adic Morrey spaces in terms of Lipschitz spaces. AIMS Mathematics, 2024, 9(7): 19756-19770. doi: 10.3934/math.2024964 |
[4] | Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868 |
[5] | Qianjun He, Xiang Li . Necessary and sufficient conditions for boundedness of commutators of maximal function on the p-adic vector spaces. AIMS Mathematics, 2023, 8(6): 14064-14085. doi: 10.3934/math.2023719 |
[6] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[7] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of n−dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[8] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[9] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[10] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
In the present artice we discuss the weighted p-adic central bounded mean oscillations (CMO) and p-adic Lipschtiz estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces.
In mathematical analysis Hardy operator is considered an important averaging operator as it plays a vital role in many branches of mathematics, such as complex analysis, partial differential equations and harmonic analysis (for example, see [2,7,8,10,29]). In [6], Hardy introduced the one-dimensional Hardy operator
Hf(x)=1x∫x0f(t)dt,x>0, | (1.1) |
for a measurable function f:R+→R+. The operator in (1.1) satisfies the below inequality
‖Hf‖Lq(R+)≤qq−1‖f‖Lq(R+),1<q<∞, | (1.2) |
where the constant q/(q−1) is sharp. An extension of the operator H on higher dimensional space Rn was defined in [3] by Faris as
Hf(x)=1|x|n∫|t|≤|x|f(t)dt, | (1.3) |
where |x|=(∑ni=1x2i)1/2 for x=(x1,…,xn). Furthermore, Christ and Grafakos [1] acquired the exact value of the norm of operator H defined by (1.3). Recently, Hardy operator has gained a tremendous amount of consideration, see for example [16,20,24,30,33,34] and the references therein.
In the past few decades there has been a relentless attention in p-adic models appearing in various branches of science. The applications of p-adic analysis are found mainly in the field of mathematical physics (see, for example, [15,26,27]). Importantly, many current researchers are paying a valiant effort to harmonic analysis on p-adic field [9,10,11,13,17,21,22,25].
Let Q be a field of rational numbers and p a prime number. We introduce a so called p-adic norm |x|p on Q by a rule |x|p={0}∪{p−γ:γ∈Z}, where γ=γ(x) is defined from the following representation
x=pγs/t, |
integers s and t are coprime to p. |⋅|p fulfills all the axioms of a real norm along with the following non-Archimedean property:
|x+y|p≤max{|x|p,|y|p}. | (1.4) |
The field of p-adic numbers Qp is the completion of Q with respect to |⋅|p. Any nonzero p-adic number can be written in canonical form (see [28]) as:
x=pγ∞∑j=0αjpj, | (1.5) |
where αj,γ∈Z,αj∈ZpZp,α0≠0. Interestingly, the series in (1.5) is convergent with respect to |⋅|p because |pγαkpj|p=p−γ−j.
The higher dimensional p-adic vector space Qnp consists of points x=(x1,x2,...,xn), where xi∈Qp,i=1,2,...,n, with the following norm
|x|p=max1≤i≤n|xi|p. | (1.6) |
Let
Bγ(a)={x∈Qnp:|x−a|p≤pγ}, Sγ(a)={x∈Qnp:|x−a|p=pγ} |
be the ball and sphere respectively with center at a∈Qnp and radius pγ. If a=0, we may write Bγ(0)=Bγ, Sγ(0)=Sγ.
It is well known that the space Qnp is locally compact commutative group under addition, then there exists a translation invariant Haar measure dx which is normalized such that
∫B0dx=|B0|H=1, |
where |A|H represents the Haar measure of a measurable subset A of Qnp. Moreover, one can easily show that |Bγ(a)|H=pnγ and |Sγ(a)|H=pnγ(1−p−n), for any a∈Qnp.
In what follows the p-adic Hardy operator
Hpf(x)=1|x|np∫|t|p≤|x|pf(t)dt |
and its commutator
Hpbf(x)=bHp(f)−Hp(bf) |
were defined and studied for f,b∈Lloc1(Qnp) in [4]. In the same paper, Fu et al. acquired the boundedness of p-adic Hardy operator and its commutator on Lebesgue spaces and Herz spaces. On the Morrey-Herz spaces, the p-adic Hardy type operators and their commutators are reported in [5]. For complete comprehension of p-Hardy operator and its commutator, we refer the publications [12,18,31,32].
The purpose of the current article is to discuss the weighted central bounded mean oscillations and weighted p-adic Lipschitz estimates of Hpb on two weighted p-adic Herz spaces and p-adic Morrey-Herz spaces. Throughout this article a letter C denotes a constant whose value may change at its different places. It is mandatory to recall the definitions of relevant p-adic function spaces before moving to our results.
Suppose w(x) is a nonnegative function on Qnp. The weighted measure of A is denoted and defined as w(A)=∫Aw(x)dx. The weighted p-adic Lebesgue space Lq(w,Qnp),(0<q<∞) is defined to be the space of all measurable functions f on Qnp such that:
‖f‖Lq(w,Qnp)=(∫Qnp|f(x)|qw(x)dx)1q<∞. |
The theory of Aq weights on Rn was introduced by Benjamin Muckenhoupt in [19]. Let us recall the definition of Aq weights in p-adic setting.
Definition 1.1. [23] A weight function w∈Aq(1≤q<∞) if there exists a constant C free from choice of B⊂Qnp such that
(1|B|∫Bw(x)dx)(1|B|∫Bw(x)−1q−1dx)1/q≤C. |
For the case q=1,w∈A1, we have
1|B|∫Bw(x)dx≤Cessinfx∈Bw(x), |
for every B⊂Qnp.
Remark 1.2. A weight function w∈A∞ if it undergoes the stipulation of Aq(1≤q<∞) weights.
Definition 1.3. Suppose w is a weight function and 1≤q<∞. The p-adic space CMOq(w,Qnp) is defined by
‖f‖CMOq(w,Qnp)=supγ∈Z(1w(Bγ)∫Bγ|f(x)−fBγ|qw(x)1−qdx)1/q, |
where
fBγ=1|Bγ|∫Bγf(x)dx. | (1.7) |
Definition 1.4. [22] Suppose w1 and w2 are weight functions, 0<r,q<∞ and α∈R. Then the two weighted p-adic Herz space Kα,rq(w1,w2) is defined as
Kα,rq(w1,w2)={f∈Lqloc(w2,Qnp∖{0}):‖f‖Kα,rq(w1,w2)<∞}, |
where
‖f‖Kα,rq(w1,w2)=(∞∑k=−∞w1(Bk)αr/n‖fχk‖rLq(w2,Qnp))1/r | (1.8) |
and χk is the characteristic function of the sphere Sk=Bk∖Bk−1.
Remark 1.5. Obviously K0,qq(w1,w2)=Lq(w2,Qnp).
Definition 1.6. [22] Suppose w1 and w2 are weight functions, 0<r,q<∞, α∈R and λ≥0. Then the two weighted p-adic Morrey-Herz space MKα,λr,q(w1,w2) is defined as follows
MKα,λr,q(w1,w2)={f∈Lqloc(w2,Qnp∖{0}):‖f‖MKα,λr,q(w1,w2)<∞}, |
where
‖f‖MKα,λr,q(w1,w2)=supk0∈Zw1(Bk0)−λ/n(k0∑k=−∞w1(Bk)αr/n‖fχk‖rLq(w2,Qnp))1/r. | (1.9) |
Remark 1.7. It is evident that MKα,0r,q(w1,w2)=Kα,rq(w1,w2).
Definition 1.8. [23] Suppose 1≤q<∞, 0<β<1 and w is a weight function. The p-adic space Lipβ(w,Qnp) is defined as
‖f‖Lipβ(w,Qnp)=supB⊂Qnp1w(B)β/n(1w(B)∫B|f(x)−fB|qw(x)1−qdx)1/q, |
where
fB=1|B|∫Bf(x)dx. | (1.10) |
The following section discusses the weighted CMO estimates of Hpb on two weighted p-adic Herz-type spaces. We open up the section with few lemmas which are useful in proving key results.
Lemma 2.1. [14] Suppose w∈A1, then there exist constants C1,C2 and 0<μ<1 such that
C1|A||B|≤w(A)w(B)≤C2(|A||B|)μ, |
for any measurable subset A of a ball B.
Remark 2.2. If w∈A1, then it follows from lemma (2.1) that there exist constants C and μ(0<μ<1) such that w(Bk)w(Bi)≤Cp(k−i)n as i<k and w(Bk)w(Bi)≤Cp(k−i)nμ as i≥k.
Lemma 2.3. [23] Suppose w∈A1 and b∈CMOq(w,Qnp), then there is a constant C such that for i, k∈Z,
|bBi−bBk|≤C(i−k)‖b‖CMOq(w,Qnp)w(Bk)|Bk|. |
Lemma 2.4. [23] Suppose w∈A1, then for 1<q<∞,
∫Bw(x)1−q′dx≤C|B|q′w(B)1−q′, |
where 1/q+1/q′=1.
Now we state the result about the boundedness of Hpb on two weighted p-adic Herz-type spaces.
Theorem 2.5. Let 0<r1≤r2<∞, 1≤r,q<∞ and let w∈A1. If α<nμq′, then the inequality
‖Hpbf‖˙Kα,r2q(w,w1−q)≤C‖b‖CMOrmax{q,q′}(w,Qnp)‖f‖˙Kα,r1q(w,w) |
holds for all b∈CMOrmax{q,q′}(w,Qnp) and f∈Lloc(Qnp).
If α=0,r1=r2=q, then we have the following result.
Corollary 2.6. Let 1≤r,q<∞ and w∈A1, then
‖Hpbf‖Lq(w1−q,Qnp)≤C‖b‖CMOrmax{q,q′}(w,Qnp)‖f‖Lq(w,Qnp) |
holds for all b∈CMOrmax{q,q′}(w,Qnp) and f∈Lloc(Qnp).
Theorem 2.7. Let 0<r1≤r2<∞,1≤r,q<∞ and let also w∈A1 and λ>0. If α<nμq′+λ, then
‖Hpbf‖M˙Kα,λr2,q(w,w1−q)≤C‖b‖CMOrmax{q,q′}(w,Qnp)‖f‖M˙Kα,λr1,q(w,w) |
holds for all b∈CMOrmax{q,q′}(w,Qnp) and f∈Lloc(Qnp).
Proof of Theorem 2.5: First, by the definition we have
‖(Hpbf)χk‖qLq(w1−q,Qnp)=∫Sk|x|−qnp|∫|t|p≤|x|pf(t)(b(x)−b(t))dt|qw(x)1−qdx≤Cp−kqn∫Sk(∫|t|p≤pk|f(t)(b(x)−b(t))|dt)qw(x)1−qdx=Cp−kqn∫Sk(k∑i=−∞∫Si|f(t)(b(x)−b(t))|dt)qw(x)1−qdx≤Cp−kqn∫Sk(k∑i=−∞∫Si|f(t)(b(x)−bBk)|dt)qw(x)1−qdx+Cp−kqn∫Sk(k∑i=−∞∫Si|f(t)(b(t)−bBk)|dt)qw(x)1−qdx=I+II. | (2.1) |
Since w∈A1⊂Aq, making use of Hölder's inequality along with lemma 2.4, we have
∫Sif(t)dt≤(∫Si|f(t)|qw(t)dt)1/q(∫Siw(t)−q′/qdt)1/q′≤C‖fχi‖Lq(w,Qnp)|Bi|w(Bi)−1/q. | (2.2) |
To estimate I, by the application of Hölder's inequality, Remark 2.2 along with inequality (2.2), we are down to
I≤Cp−kqn‖b‖qCMOq(w,Qnp)w(Bk)(k∑i=−∞‖fχi‖Lq(w,Qnp)|Bi|w(Bi)−1/q)q≤Cp−knq‖b‖qCMOq(w,Qnp)(k∑i=−∞‖fχi‖Lq(w,Qnp)|Bi|(w(Bk)w(Bi))1/q)q≤C‖b‖qCMOq(w,Qnp)(k∑i=−∞p(i−k)n/q′‖fχi‖Lq(w,Qnp))q. | (2.3) |
Now, we estimate II as follows
II≤Cp−kqn∫Sk(k∑i=−∞∫Si|f(t)(b(t)−bBi)|dt)qw(x)1−qdx+Cp−kqn∫Sk(k∑i=−∞∫Si|f(t)(bBk−bBi)|dt)qw(x)1−qdx=II1+II2. | (2.4) |
Next, applying Hölder's inequality to deduce
∫Si|f(t)(b(t)−bBi)|dt≤(∫Si|f(t)|qw(t)dt)1/q(∫Si|b(t)−bBi|q′w(t)−q′/qdt)1/q′≤w(Bi)−1/q′‖fχi‖Lq(w,Qnp)‖b‖CMOq′(w,Qnp). | (2.5) |
By the application of Hölder's inequality, inequality (2.5), lemma 2.4 and Remark 2.2, we are in a position to estimate II1.
II1≤Cp−kqn∫Skw(x)1−qdx(k∑i=−∞‖fχi‖Lq(w,Qnp)w(Bi)1/q′)q≤Cp−kqn|Bk|qw(Bk)1−q‖b‖qCMOq′(w,Qnp)(k∑i=−∞‖fχi‖Lq(w,Qnp)w(Bi)1/q′)q≤C‖b‖qCMOq′(w,Qnp)(k∑i=−∞(w(Bi)w(Bk))1−1/q‖fχi‖Lq(w,Qnp))q≤C‖b‖qCMOq′(w,Qnp)(k∑i=−∞p(i−k)nμ/q′‖fχi‖Lq(w,Qnp))q. | (2.6) |
Next task is to estimate II2. For this, we use Hölder's inequality, lemmas 2.3 and 2.4, Remark 2.2 and inequality (2.2)
II2≤Cp−kqn×∫Sk(k∑i=−∞∫Si|f(y)(i−k)‖b‖CMOr(w,Qnp)w(Bi)|Bi||dy)qw(x)1−qdx≤Cp−kqn‖b‖qCMOr(w,Qnp)|Bk|qw(Bk)1−q×(k∑i=−∞(k−i)w(Bi)1−1/q|Bi||Bi|‖fχi‖Lq(w,Qnp))q≤C‖b‖qCMOr(w,Qnp)×(k∑i=−∞(k−i)(w(Bi)w(Bk))1−1/q‖fχi‖Lq(w,Qnp))q≤C‖b‖qCMOr(w,Qnp)×(k∑i=−∞(k−i)p(i−k)nμ/q′‖fχi‖Lq(w,Qnp))q. | (2.7) |
From (2.3), (2.6) and (2.7) together with Jensen's Inequality, we have
‖Hpbf‖˙Kα,r2q(w,w1−q)=(∞∑k=−∞w(Bk)αr2/n‖(Hpbf)χk‖r2Lq(w1−q,Qnp))1/r2≤(∞∑k=−∞w(Bk)αr1/n‖(Hpbf)χk‖r1Lq(w1−q,Qnp))1/r1≤C‖b‖CMOq(w,Qnp)(∞∑k=−∞w(Bk)αr1/n(k∑i=−∞p(i−k)n/q′‖fχi‖Lq(w,Qnp))r1)1/r1+C‖b‖CMOq′(w,Qnp)(∞∑k=−∞w(Bk)αr1/n(k∑i=−∞p(i−k)nμ/q′‖fχi‖Lq(w,Qnp))r1)1/r1+C‖b‖CMOr(w,Qnp)(∞∑k=−∞w(Bk)αr1/n(k∑i=−∞(k−i)p(i−k)nμ/q′‖fχi‖Lq(w,Qnp))r1)1/r1=J. |
Therefore,
Jr1≤C‖b‖r1CMOrmax{q,q′}(w,Qnp)×∞∑k=−∞w(Bk)αr1/n(k∑i=−∞(k−i)p(i−k)nμ/q′‖fχi‖Lq(w,Qnp))r1≤C‖b‖r1CMOrmax{q,q′}(w,Qnp)×∞∑k=−∞(k∑i=−∞(k−i)p(i−k)nμ/q′−α‖fχi‖Lq(w,Qnp))r1. |
In what follows we consider two cases, 0<r1≤1 and r1>1.
Case 1: When 0<r1≤1 and α<nμ/q′, we have
Jr1≤C‖b‖r1CMOrmax{q,q′}(w,Qnp)×∞∑k=−∞k∑i=−∞(k−i)r1w(Bi)αr1/np(i−k)(nμ/q′−α)r1‖fχi‖r1Lq(w,Qnp)=C‖b‖r1CMOrmax{q,q′}(w,Qnp)×∞∑k=−∞w(Bi)αr1/n‖fχi‖r1Lq(w,Qnp)∞∑k=i(k−i)r1p(i−k)(nμ/q′−α)r1=C‖b‖r1CMOrmax{q,q′}(w,Qnp)‖f‖r1˙Kα,r1q(w,w). |
Case 2: Whenever r1>1, an application of Hölder's inequality with α<nμ/q′, we get
Jr1≤C‖b‖r1CMOrmax{q,q′}(w,Qnp)∞∑k=−∞k∑i=−∞w(Bi)αr1/n‖fχi‖r1Lq(w,Qnp)p(i−k)(nμ/q′−α)r1/2×(k∑i=−∞(k−i)r′1p(i−k)(nμ/q′−α)r′1/2)r1/r′1=C‖b‖r1CMOrmax{q,q′}(w,Qnp)∞∑k=−∞w(Bi)αr1/n‖fχi‖r1Lq(w,Qnp)∞∑k=ip(i−k)(nμ/q′−α)r1/2=C‖b‖r1CMOrmax{q,q′}(w,Qnp)‖f‖r1˙Kα,r1q1(w,w). |
Hence, the proof of theorem is completed.
Proof of Theorem 2.7: From theorem 2.5, we have
‖(Hpb)fχk‖Lq(w1−q,Qnp)≤C‖b‖r1CMOrmax{q,q′}(w,Qnp)k∑i=−∞(k−i)p(i−k)(nμ/q′)‖fχi‖Lq(w,Qnp). |
By definition of weighted p-adic Morrey-Herz spaces and Jensen's Inequality along with α<nμ/q′+λ, λ>0 and 1<r1<∞, we reach at
‖Hpbf‖M˙Kα,λr2,q(w,w1−q)=supk0∈Zw(Bk0)−λ/n(k0∑k=−∞w(Bk)αr2/n‖(Hpbf)χk‖r2Lq(w1−q,Qnp))1/r2≤supk0∈Zw(Bk0)−λ/n(k0∑k=−∞w(Bk)αr1/n‖(Hpbf)χk‖r1Lq(w1−q,Qnp))1/r1≤C‖b‖CMOrmax{q,q′}(w,Qnp)supk0∈Zw(Bk0)−λ/n×(k0∑k=−∞w(Bk)λr1/n(k∑i=−∞(k−i)p(i−k)nμ/q′(w(Bk)w(Bi))λr1/n×w(Bi)−λ/n(i∑l=−∞w(Bl)αr1/n‖fχi‖r1Lq(w,Qnp))1/r1)r1)1/r1≤C‖b‖CMOrmax{q,q′}(w,Qnp)supk0∈Zw(Bk0)−λ/n×(k0∑k=−∞w(Bk)λr1/n(k∑i=−∞(k−i)p(i−k)(nμ/q′−α+λ)‖f‖M˙Kα,λr1,q(w,w))r1)1/r1≤C‖b‖CMOrmax{q,q′}(w,Qnp)supk0∈Zw(Bk0)−λ/n×(k0∑k=−∞w(Bk)λr1/n)1/r1‖f‖M˙Kα,λr1,q(w,w)≤C‖b‖CMOrmax{q,q′}(w,Qnp)‖f‖M˙Kα,λr1,q(w,w). |
The current section deals the weighted p-adic Lipschitz estimates of H^{p}_{b} on two weighted p-adic Herz-type spaces. The outset of a section is with a lemma which is helpful in proving main results.
Lemma 3.1. [23] Suppose w\in A_{1} and b\in Lip_{\beta}(w, \mathbb{Q}_p^n), then there is a constant C such that for i, k\in\mathbb{Z},
\begin{equation*} |b_{B_{i}}-b_{B_{k}}|\leq C(i-k)\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}w(B_{i})^{\beta/n}\frac{w(B_{k})}{|B_{k}|}. \end{equation*} |
Now, we state the result about the boundedness of commutator of p -adic Hardy operator on two weighted p -adic Herz-type spaces.
Theorem 3.2. Let 0 < r_{1}\leq r_{2} < \infty , 1\leq q_{1}, q_{2} < \infty, \;1/q_{1}-1/q_{2} = \beta/n and let w\in A_{1}. If \alpha < \frac{n\mu}{q_{1}'} , then the inequality
\|H^{p}_{b}f\|_{\dot{K}^{\alpha,r_{2}}_{q_{2}}(w,w^{1-q_{2}})}\leq C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\|f\|_{\dot{K}^{\alpha,r_{1}}_{q_{1}}(w,w)} |
holds for all b\in Lip_{\beta}(w, \mathbb{Q}_p^n) and f\in L_{\rm loc}(\mathbb{Q}_p^n).
If \alpha = 0, r_{1} = q_{1} = p and r_{2} = q_{2} = q, then we have the following corollary.
Corollary 3.3. Let 1\leq q < \infty , 1/q_{1}-1/q_{2} = \beta/n and w\in A_{1}, then
\|H^{p}_{b}f\|_{L^{q}(w^{1-q},\mathbb{Q}_p^n)}\leq C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\|f\|_{L^{q}(w,\mathbb{Q}_p^n)} |
holds for all b\in Lip_{\beta}(w, \mathbb{Q}_p^n) and f\in L_{\rm loc}(\mathbb{Q}_p^n).
Theorem 3.4. Let 0 < r_{1}\leq r_{2} < \infty , 1\leq q_{1}, q_{2} < \infty, \;1/q_{1}-1/q_{2} = \beta/n and let w\in A_{1}. If \alpha < \frac{n\mu}{q_{1}'}+\lambda , then
\begin{eqnarray*} \begin{aligned}\|H^{p}_{b}f\|_{M\dot{K}^{\alpha,\lambda}_{r_{2},q_{2}}(w,w^{1-q_{2}})}\leq C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\|f\|_{M\dot{K}^{\alpha,\lambda}_{r_{1},q_{1}}(w,w)} \end{aligned} \end{eqnarray*} |
holds for all b\in Lip_{\beta}(w, \mathbb{Q}_p^n) and f\in L_{\rm loc}(\mathbb{Q}_p^n).
Proof of Theorem 3.2: In a similar fashion as that of theorem 2.5, we get
\begin{equation} \begin{aligned}[b] &\|(H^{p}_{b}f)\chi_{k}\|^{q_{2}}_{L^{q_{2}}(w^{1-q_{2}},\mathbb{Q}_p^n)}\\ &\leq Cp^{-kq_{2}n} \int_{S_{k}} \bigg(\sum\limits_{i = -\infty}^{k}\int_{S_{i}} |f({\bf{t}})(b({\bf{x}})-b_{B_{k}})| d{\bf{t}}\bigg)^{q_{2}}w({\bf{x}})^{1-q_{2}}d{\bf{x}} \\ &\quad+Cp^{-kq_{2}n} \int_{S_{k}}\bigg(\sum\limits_{i = -\infty}^{k} \int_{S_{i}} |f({\bf{t}}) (b({\bf{t}})-b_{B_{k}})|d{\bf{t}}\bigg)^{q_{2}}w({\bf{x}})^{1-q_{2}}d{\bf{x}} \\ & = L+LL. \end{aligned} \end{equation} | (3.1) |
For the evaluation of L, we apply Hölder's inequality, Remark 2.2, \beta/n = 1/q_{1}-1/q_{2}, \;w\in A_{1}\subset A_{q_{1}}, and inequality (2.2) to get
\begin{equation} \begin{aligned}[b] L &\leq Cp^{-kq_{2}n}\|b\|^{q_{2}}_{{Lip_{\beta}}(w,\mathbb{Q}_p^n)}w(B_{k})^{1+\beta q_{2}/n}\bigg\{\sum\limits_{i = -\infty}^{k}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}|B_{i}|w(B_{i})^{-1/q_{1}}\bigg\}^{q_{2}}\\ &\leq Cp^{-knq_{2}}\|b\|^{q_{2}}_{{Lip_{\beta}}(w,\mathbb{Q}_p^n)}\bigg\{\sum\limits_{i = -\infty}^{k}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}|B_{i}|\bigg(\frac{w(B_{k})}{w(B_{i})}\bigg)^{1/q_{1}}\bigg\}^{q_{2}}\\ &\leq C\|b\|^{q_{2}}_{{Lip_{\beta}}(w,\mathbb{Q}_p^n)}\bigg(p^{(k-i)n/q_{1}'}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{q_{2}}. \end{aligned} \end{equation} | (3.2) |
In order to evaluate LL, we proceed as follows
\begin{equation} \begin{aligned}[b] LL&\leq Cp^{-kq_{2}n} \int_{S_{k}} \bigg(\sum\limits_{i = -\infty}^{k} \int_{S_{i}} |f({\bf{t}}) (b({\bf{t}})-b_{B_{i}})|d{\bf{t}}\bigg)^{q_{2}}w({\bf{x}})^{1-q_{2}}d{\bf{x}} \\ &\quad+Cp^{-kq_{2}n}\int_{S_{k}}\bigg(\sum\limits_{i = -\infty}^{k}\int_{S_{i}}|f({\bf{t}})(b_{B_{k}}-b_{B_{i}})|d{\bf{t}}\bigg)^{q_{2}}w({\bf{x}})^{1-q_{2}}d{\bf{x}} \\ & = LL_{1}+LL_{2}. \end{aligned} \end{equation} | (3.3) |
The following preparation will do world of good to estimate LL_{1}. Using Hölder's inequality, we have
\begin{equation} \begin{aligned}[b] \int_{S_{i}}|f({\bf{t}})(b({\bf{t}})-b_{B_{i}})|d{\bf{t}}&\\\leq&\bigg(\int_{S_{i}}|f({\bf{t}})|^{q_{1}}w({\bf{t}})d{\bf{t}}\bigg)^{1/q_{1}}\bigg(\int_{S_{i}}|b({\bf{t}})-b_{B_{i}}|^{q_{1}'}w({\bf{t}})^{-q_{1}'/q_{1}}d{\bf{t}}\bigg)^{1/q_{1}'}\\ &\leq w(B_{i})^{-1/q_{1}'+\beta/n}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}. \end{aligned} \end{equation} | (3.4) |
To evaluate LL_{1}, we apply Hölder's inequality, inequality (3.4), lemma 2.4 and Remark 2.2.
\begin{equation} \begin{aligned}[b] LL_{1} &\leq Cp^{-kq_{2}n}\int_{S_{k}}w({\bf{x}})^{1-q_{2}}d{\bf{x}}\bigg(\sum\limits_{i = -\infty}^{k} \|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}w(B_{i})^{1/q_{1}'+\beta/n}\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\bigg)^{q_{2}}\\ &\leq Cp^{-kq_{2}n}|B_{k}|^{q_{2}}w(B_{k})^{1-q_{2}}\|b\|^{q_{2}}_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\bigg(\sum\limits_{i = -\infty}^{k} \|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}w(B_{i})^{1/q_{1}'+\beta/n}\bigg)^{q_{2}}\\ &\leq C\|b\|^{q_{2}}_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\bigg(\sum\limits_{i = -\infty}^{k}\bigg(\frac{w(B_{i})}{w{(B_{k})}} \bigg)^{1-1/q_{2}}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{q_{2}}\\ & \leq C\|b\|^{q_{2}}_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\bigg(\sum\limits_{i = -\infty}^{k}p^{(i-k)n\mu/q_{2}'}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{q_{2}}. \end{aligned} \end{equation} | (3.5) |
Next step is to evaluate LL_{2}. For this we use Hölder's inequality, lemmas 3.1 and 2.4, inequality (2.2), and Remark 2.2 to get
\begin{equation} \begin{aligned}[b] LL_{2} &\leq Cp^{-kq_{2}n}\|b\|^{q_{2}}_{Lip_{\beta}(w,\mathbb{Q}_p^n)}|B_{k}|^{q_{2}}w(B_{k})^{1-q_{2}}\\&\quad\times\bigg(\sum\limits_{i = -\infty}^{k}(k-i)w(B_{k})^{\beta/n}\frac{w(B_{i})}{|B_{i}|}|B_{i}|w(B_{i})^{-1/q_{1}}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{q_{2}}\\ & = C\|b\|^{q_{2}}_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\\&\quad\times\bigg(\sum\limits_{i = -\infty}^{k}(k-i)\bigg(\frac{w(B_{i})}{w(B_{k})}\bigg)^{1-1/q_{1}}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{q_{2}}\\ &\leq C\|b\|^{q_{2}}_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\\&\quad\times\bigg(\sum\limits_{i = -\infty}^{k}(k-i)p^{(i-k)n\mu/q_{1}'}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{q_{2}}. \end{aligned} \end{equation} | (3.6) |
Remaining proof is more or less same to the proof of theorem 2.5. Thus, we conclude the theorem.
Proof of Theorem 3.4: Let \alpha < n\mu/q_{1}'+\lambda. By the definition of weighted p-adic Morrey-Herz spaces together with inequalities (3.2), (3.5), and (3.6), we have
\begin{align*} &\|H^{p}_{b}f\|_{M\dot{K}^{\alpha,\lambda}_{r_{2},q_{2}}(w,w^{1-q_{2}})}\\ &\leq C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\sup\limits_{k_{0}\in\mathbb{Z}}w(B_{k_{0}})^{-\lambda/n}\bigg(\sum\limits_{k = -\infty}^{\infty}w(B_{k})^{\beta r_{2}/n}\bigg(\sum\limits_{i = -\infty}^{k}p^{(i-k)n/q_{1}'}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{r_{2}}\bigg)^{1/r_{2}}\\&\quad+C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\sup\limits_{k_{0}\in\mathbb{Z}}w(B_{k_{0}})^{-\lambda/n}\bigg(\sum\limits_{k = -\infty}^{\infty}w(B_{k})^{\beta r_{2}/n}\bigg(\sum\limits_{i = -\infty}^{k}p^{(i-k)n\mu/q_{2}'}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{r_{2}}\bigg)^{1/r_{2}}\\&\quad+C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\sup\limits_{k_{0}\in\mathbb{Z}}w(B_{k_{0}})^{-\lambda/n}\bigg(\sum\limits_{k = -\infty}^{\infty}w(B_{k})^{\beta r_{2}/n}\bigg(\sum\limits_{i = -\infty}^{k}(k-i)p^{(i-k)n\mu/q_{1}'}\|f\chi_{i}\|_{L^{q_{1}}(w,\mathbb{Q}_p^n)}\bigg)^{r_{2}}\bigg)^{1/r_{2}}\\ & = S_{1}+S_{2}+S_{3}. \end{align*} |
Next by applying the similar arguments as in theorem 2.7, we get
S_{1}\leq C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\|f\|_{M\dot{K}^{\alpha,\lambda}_{r_{1},q}(w,w)},\quad \alpha < n/q_{1}'+\lambda, |
S_{2}\leq C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\|f\|_{M\dot{K}^{\alpha,\lambda}_{r_{1},q}(w,w)},\quad \alpha < n\mu/q_{2}'+\lambda, |
S_{3}\leq C\|b\|_{Lip_{\beta}(w,\mathbb{Q}_p^n)}\|f\|_{M\dot{K}^{\alpha,\lambda}_{r_{1},q}(w,w)},\quad \alpha < n\mu/q_{1}'+\lambda. |
So, the proof of the theorem is finished.
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudia Arabia for funding this work through research groups program under grant number R.G. P-2/29/42.
The authors declare that they have no conflict of interest.
[1] |
M. Christ, L. Grafakos, Best Constants for two non convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. doi: 10.1090/S0002-9939-1995-1239796-6
![]() |
[2] | D. E. Edmunds, W. D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer Verlag, Berlin, 2004. |
[3] | W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. |
[4] | Z. W. Fu, Q. Y. Wu, S. Z. Lu, Sharp estimates of p-adic Hardy and Hardy-Littlewood-Pólya Operators, Acta Math. Sin., 29 (2013), 137–150. |
[5] | G. Gao, Y. Zhong, Some estimates of Hardy Operators and their commutators on Morrey-Herz spaces, J. Math. Inequal., 11 (2017), 49–58. |
[6] | G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. |
[7] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, second edtion, Cambridge Univ. Press, London, 1952. |
[8] | A. Hussain, A. Ajaib, Some weighted inequalities for Hausdorff operators and commutators, J. Ineq. Appl., 2018 (2018), 1–19. |
[9] |
A. Hussain, N. Sarfraz, The Hausdorff operator on weighted p-adic Morrey and Herz type spaces, p-Adic Numb. Ultrametric Anal. Appl., 11 (2019), 151–162. doi: 10.1134/S2070046619020055
![]() |
[10] |
A. Hussain, N. Sarfraz, Optimal weak type estimates for p-Adic Hardy operator, p-Adic Numb. Ultrametric. Anal. Appl., 12 (2020), 12–21. doi: 10.1134/S2070046620010021
![]() |
[11] | A. Hussain, N. Sarfraz, F. Gürbüz, Sharp Weak Bounds for p-adic Hardy operators on p-adic Linear Spaces, arXiv: 2002.08045. |
[12] | A. Hussain, N. Sarfraz, I. Khan, A. M. Alqahtani, Estimates for Commutators of Bilinear Fractional p-Adic Hardy Operator on Herz-Type Spaces, J. Funct. Space., 2021 (2021), 1–7. |
[13] | A. Hussain, N. Sarfraz, I. Khan, A. Alsuble, N. N. Hamadnehs, The Boundedness of Commutators of Rough p-Adic Fractional Hardy Type Operators on Herz-Type Spaces, J. Inequal. Appl., 2021 (2021), (to appear). |
[14] |
J. L. Journe, Calderón-Zygmund operators, differential operators and the cauchy integral of Calderón, Lect. Notes Math., 994 (1983), 1–127. doi: 10.1007/BFb0061459
![]() |
[15] | A. Khrennikov, p-Adic Valued Distributions in Mathematical Physics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1994. |
[16] |
M. Kian, On a Hardy operator inequality, Positivity, 22 (2018), 773–781. doi: 10.1007/s11117-017-0543-4
![]() |
[17] | S.V. Kozyrev, Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics, Proc. Steklov. Inst. Math, 274 (2011), 1-84. |
[18] |
R. H. Liu, J. Zhou, Sharp estimates for the p-adic Hardy type Operator on higher-dimensional product spaces, J. Inequal. Appl., 2017 (2017), 1–13. doi: 10.1186/s13660-016-1272-0
![]() |
[19] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[20] | L. E. Persson, S. G. Samko, A note on the best constants in some Hardy inequalities, J. Math. Inequal., 9 (2015), 437–447. |
[21] | N. Sarfraz, F. Gürbüz, Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutators, arXiv: 1911.09392, 2019. |
[22] |
N. Sarfraz, A. Hussain, Estimates for the commutators of p-adic Hausdorff operator on Herz-Morrey spaces, Mathematics, 7 (2019), 127. doi: 10.3390/math7020127
![]() |
[23] | N. Sarfraz, D. Filali, A. Hussain, F. Jarad, Weighted estimates for commutator of rough p-adic fractional Hardy operator on weighted p-adic Herz- Morrey spaces, J. Math., 2021 (2021), 1–14. |
[24] |
Q. Sun, X. Yu, H. Li, Hardy-type operators in Lorentz-type spaces defined on measure spaces, Indian J. Pure Appl. Math., 51 (2020), 1105–1132. doi: 10.1007/s13226-020-0453-1
![]() |
[25] |
S. S. Volosivets, Weak and strong estimates for rough hausdorff type operator defined on p-adic linear space, p-Adic Numb. Ultrametric Anal. Appl., 9 (2017), 236–241. doi: 10.1134/S2070046617030062
![]() |
[26] |
V. S. Varadarajan, Path integrals for a class of p-adic Schrodiner equations, Lett. Math. Phys. Math., 39 (1997), 97–106. doi: 10.1023/A:1007364631796
![]() |
[27] | V. S. Vladimirov, Tables of integrals of complex Valued Functions of p- Adic Arguments, Proc. Steklov. Inst. Math., 284 (2014), 1–59. |
[28] | V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994. |
[29] |
S. M. Wang, D. Y. Yan, Weighted boundedness of commutators of fractional Hardy operators with Besov-Lipschitz functions, Anal. Theory Appl., 28 (2012), 79–86. doi: 10.4208/ata.2012.v28.n1.10
![]() |
[30] | S. R. Wang, J. S. Xu, Commutators of the bilinear Hardy operator on Herz type spaces with variable exponents, J. Funct. Space., 2019 (2019), 1–11. |
[31] |
Q. Y. Wu, Boundedness for Commutators of fractional p-adic Hardy Operator, J. Inequal. Appl., 2012 (2012), 1–12. doi: 10.1186/1029-242X-2012-1
![]() |
[32] | Q. Y. Wu, L. Mi, Z. W. Fu, Boundedness of p-adic Hardy Operators and their commutators on p-adic central Morrey and BMO spaces, J. Funct. Spaces Appl., 2013 (2013), 1–10. |
[33] |
N. Xudong, Y. Dunyan, Sharp constant of Hardy operators corresponding to general positive measures, J. Inequal. Appl., 2018 (2018), 1–18. doi: 10.1186/s13660-017-1594-6
![]() |
[34] |
N. Zhuang, G. Shasha, L. Wenming, Hardy operators and the commutators on Hardy spaces, J. Inequal. Appl., 2020 (2020), 1–11. doi: 10.1186/s13660-019-2265-6
![]() |
1. | Naqash Sarfraz, Muhammad Aslam, Mir Zaman, Fahd Jarad, Estimates for p-adic fractional integral operator and its commutators on p-adic Morrey–Herz spaces, 2022, 2022, 1029-242X, 10.1186/s13660-022-02829-6 | |
2. | Amjad HUSSAİN, Naqash SARFRAZ, Ferit GÜRBÜZ, Sharp weak bounds for p-adic Hardy operators on p-adic linear spaces, 2022, 71, 1303-5991, 919, 10.31801/cfsuasmas.1076462 | |
3. | Naqash Sarfraz, Muhammad Aslam, Fahd Jarad, Sarfraz Nawaz Malik, Boundedness for Commutators of Rough p -Adic Hardy Operator on p -Adic Central Morrey Spaces, 2021, 2021, 2314-8888, 1, 10.1155/2021/4886197 | |
4. | Naqash Sarfraz, Fahd Jarad, Estimates for a Rough Fractional Integral Operator and Its Commutators on p-Adic Central Morrey Spaces, 2022, 6, 2504-3110, 117, 10.3390/fractalfract6020117 |