Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces

Naqash Sarfraz1,* and Muhammad Aslam2

1 Department of Mathematics, University of Kotli Azad Jammu and Kashmir, Pakistan
2 Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia

* Correspondence: Email: naqashawesome@gmail.com

Abstract: In the present article we discuss the weighted p-adic central bounded mean oscillations (CMO) and p-adic Lipschtiz estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces.

Keywords: p-adic Hardy operator; commutators; two weighted p-adic Morrey-Herz spaces; central bounded mean oscillations; weighted p-adic Lipschitz spaces

Mathematics Subject Classification: 42B35, 26D15, 46B25, 47G10.

1. Introduction

In mathematical analysis Hardy operator is considered an important averaging operator as it plays a vital role in many branches of mathematics, such as complex analysis, partial differential equations and harmonic analysis (for example, see [2,7,8,10,29]). In [6], Hardy introduced the one-dimensional Hardy operator

$$Hf(x) = \frac{1}{x} \int_0^x f(t)dt, \quad x > 0,$$

(1.1)

for a measurable function $f : \mathbb{R}^+ \to \mathbb{R}^+$. The operator in (1.1) satisfies the below inequality

$$\|Hf\|_{L^q(\mathbb{R}^+)} \leq \frac{q}{q-1} \|f\|_{L^q(\mathbb{R}^+)}, \quad 1 < q < \infty,$$

(1.2)

where the constant $q/(q-1)$ is sharp. An extension of the operator H on higher dimensional space \mathbb{R}^n was defined in [3] by Faris as

$$Hf(x) = \frac{1}{|x|^n} \int_{|t| \leq |x|} f(t)dt,$$

(1.3)
where $|x| = \left(\sum_{i=1}^{n} x_i^p\right)^{1/2}$ for $x = (x_1, \ldots, x_n)$. Furthermore, Christ and Grafakos [1] acquired the exact value of the norm of operator H defined by (1.3). Recently, Hardy operator has gained a tremendous amount of consideration, see for example [16, 20, 24, 30, 33, 34] and the references therein.

In the past few decades there has been a relentless attention in p-adic models appearing in various branches of science. The applications of p-adic analysis are found mainly in the field of mathematical physics (see, for example, [15, 26, 27]). Importantly, many current researchers are paying a valiant effort to harmonic analysis on p-adic field [9–11, 13, 17, 21, 22, 25].

Let \mathbb{Q} be a field of rational numbers and p a prime number. We introduce a so called p-adic norm $|x|_p$ on \mathbb{Q} by a rule $|x|_p = \{0\} \cup \{p^{-\gamma} : \gamma \in \mathbb{Z}\}$, where $\gamma = \gamma(x)$ is defined from the following representation

$$x = p^\gamma s/t,$$

where s and t are coprime to p. $|\cdot|_p$ fulfills all the axioms of a real norm along with the following non-Archimedean property:

$$|x + y|_p \leq \max\{|x|_p, |y|_p\}. \quad (1.4)$$

The field of p-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$. Any nonzero p-adic number can be written in canonical form (see [28]) as:

$$x = p^\gamma \sum_{j=0}^{\infty} \alpha_j p^j, \quad (1.5)$$

where $\alpha_j \in \mathbb{Z}, \alpha_j \in \frac{\mathbb{Z}}{p\mathbb{Z}}$, $\alpha_0 \neq 0$. Interestingly, the series in (1.5) is convergent with respect to $|\cdot|_p$ because $|p^\gamma \alpha_1 p^j|_p = p^{-\gamma-j}$.

The higher dimensional p-adic vector space \mathbb{Q}_p^n consists of points $x = (x_1, x_2, \ldots, x_n)$, where $x_i \in \mathbb{Q}_p$, $i = 1, 2, \ldots, n$, with the following norm

$$|x|_p = \max_{1 \leq i \leq n} |x_i|_p. \quad (1.6)$$

Let

$$B_\gamma(a) = \{x \in \mathbb{Q}_p^n : |x - a|_p \leq p^\gamma\}, \quad S_\gamma(a) = \{x \in \mathbb{Q}_p^n : |x - a|_p = p^\gamma\}$$

be the ball and sphere respectively with center at $a \in \mathbb{Q}_p^n$ and radius p^γ. If $a = 0$, we may write $B_\gamma(0) = B_\gamma$, $S_\gamma(0) = S_\gamma$.

It is well known that the space \mathbb{Q}_p^n is locally compact commutative group under addition, then there exists a translation invariant Haar measure dx which is normalized such that

$$\int_{B_0} dx = |B_0|_H = 1,$$

where $|A|_H$ represents the Haar measure of a measurable subset A of \mathbb{Q}_p^n. Moreover, one can easily show that $|B_\gamma(a)|_H = p^{n\gamma}$ and $|S_\gamma(a)|_H = p^{n\gamma}(1 - p^{-n})$, for any $a \in \mathbb{Q}_p^n$.

In what follows the p-adic Hardy operator

$$H_p f(x) = \frac{1}{|x|_p^n} \int_{|t|_p \leq |x|_p} f(t) dt$$
and its commutator
\[H^p_w f(x) = b H^p(f) - H^p(b f) \]
were defined and studied for \(f, b \in L^{loc}_1(Q^n_p) \) in [4]. In the same paper, Fu et al. acquired the boundedness of \(p \)-adic Hardy operator and its commutator on Lebesgue spaces and Herz spaces. On the Morrey-Herz spaces, the \(p \)-adic Hardy type operators and their commutators are reported in [5]. For complete comprehension of \(p \)-Hardy operator and its commutator, we refer the publications [12, 18, 31, 32].

The purpose of the current article is to discuss the weighted central bounded mean oscillations and weighted \(p \)-adic Lipschitz estimates of \(H^p_w \) on two weighted \(p \)-adic Herz spaces and \(p \)-adic Morrey-Herz spaces. Throughout this article a letter \(C \) denotes a constant whose value may change at its different places. It is mandatory to recall the definitions of relevant \(p \)-adic function spaces before moving to our results.

Suppose \(w(x) \) is a nonnegative function on \(Q^n_p \). The weighted measure of \(A \) is denoted and defined as \(w(A) = \int_A w(x) dx \). The weighted \(p \)-adic Lebesgue space \(L^q(w, Q^n_p) \), \((0 < q < \infty)\) is defined to be the space of all measurable functions \(f \) on \(Q^n_p \) such that:

\[\|f\|_{L^q(w, Q^n_p)} = \left(\int_{Q^n_p} |f(x)|^q w(x) dx \right)^{1/q} < \infty. \]

The theory of \(A_q \) weights on \(\mathbb{R}^n \) was introduced by Benjamin Muckenhoupt in [19]. Let us recall the definition of \(A_q \) weights in \(p \)-adic setting.

Definition 1.1. [23] A weight function \(w \in A_q(1 \leq q < \infty) \) if there exists a constant \(C \) free from choice of \(B \subset Q^n_p \) such that

\[\left(\frac{1}{|B|} \int_B w(x) dx \right) \left(\frac{1}{|B|} \int_B w(x)^{-\frac{1}{q-1}} dx \right)^{1/q} \leq C. \]

For the case \(q = 1 \), \(w \in A_1 \), we have

\[\frac{1}{|B|} \int_B w(x) dx \leq \text{Cess inf}_{x \in B} w(x), \]

for every \(B \subset Q^n_p \).

Remark 1.2. A weight function \(w \in A_{\infty} \) if it undergoes the stipulation of \(A_q(1 \leq q < \infty) \) weights.

Definition 1.3. Suppose \(w \) is a weight function and \(1 \leq q < \infty \). The \(p \)-adic space \(CMO^q(w, Q^n_p) \) is defined by

\[\|f\|_{CMO^q(w, Q^n_p)} = \sup_{\gamma \in \mathbb{Z}} \left(\frac{1}{w(B_{\gamma})} \int_{B_{\gamma}} |f(x) - f_{B_{\gamma}}| w(x)^{1-q} dx \right)^{1/q}, \]

where

\[f_{B_{\gamma}} = \frac{1}{|B_{\gamma}|} \int_{B_{\gamma}} f(x) dx. \]

Definition 1.4. [22] Suppose \(w_1 \) and \(w_2 \) are weight functions, \(0 < r, q < \infty \) and \(\alpha \in \mathbb{R} \). Then the two weighted \(p \)-adic Herz space \(K^q_{\alpha,r}(w_1, w_2) \) is defined as

\[K^q_{\alpha,r}(w_1, w_2) = \{ f \in L^q_{loc}(w_2, Q^n_p \setminus \{0\}) : \|f\|_{K^q_{\alpha,r}(w_1, w_2)} < \infty \}, \]
where
\[\|f\|_{M_{q}^{\alpha,\lambda}(w, Q_{p})} = \left(\sum_{k=-\infty}^{\infty} w_{1}(B_{k})^{\alpha/n} \|f\chi_{k}\|_{L^{q}(w, Q_{p})}^{\lambda} \right)^{1/r} \]
and \(\chi_{k} \) is the characteristic function of the sphere \(S_{k} = B_{k} \setminus B_{k-1} \).

Remark 1.7. Obviously \(K_{q}^{0,0}(w, 1) = L^{q}(w, Q_{p}) \).

Definition 1.6. \(^{22}\) Suppose \(w_{1} \) and \(w_{2} \) are weight functions, \(0 < r, q < \infty, \alpha \in \mathbb{R} \) and \(\lambda \geq 0 \). Then the two weighted \(p \)-adic Morrey-Herz space \(M_{r,q}^{\alpha,\lambda}(w_{1}, w_{2}) \) is defined as follows
\[M_{r,q}^{\alpha,\lambda}(w_{1}, w_{2}) = \{ f \in L_{\text{loc}}^{q}(w_{2}, Q_{p}) \setminus \{ 0 \}) : \|f\|_{M_{r,q}^{\alpha,\lambda}(w_{1}, w_{2})} < \infty \}, \]
where
\[\|f\|_{M_{r,q}^{\alpha,\lambda}(w_{1}, w_{2})} = \sup_{k_{0} \in \mathbb{Z}} w_{1}(B_{k_{0}})^{-\lambda/n} \left(\sum_{k=-\infty}^{k_{0}} w_{1}(B_{k})^{\alpha/n} \|f\chi_{k}\|_{L^{q}(w, Q_{p})}^{\lambda} \right)^{1/r}. \]

Remark 1.7. It is evident that \(M_{r,q}^{0,0}(w_{1}, w_{2}) = K_{q}^{\alpha,\lambda}(w_{1}, w_{2}) \).

Definition 1.8. \(^{23}\) Suppose \(1 \leq q < \infty, 0 < \beta < 1 \) and \(w \) is a weight function. The \(p \)-adic space \(\text{Lip}_{\beta}(w, Q_{p}) \) is defined as
\[\|f\|_{\text{Lip}_{\beta}(w, Q_{p})} = \sup_{B \subset Q_{p}} \frac{1}{w(B)^{\beta/n}} \left(\frac{1}{w(B)} \int_{B} |f(x) - f_{B}|^{q} w(x)^{1-q} \, dx \right)^{1/q}, \]
where
\[f_{B} = \frac{1}{|B|} \int_{B} f(x) \, dx. \]

2. **Weighted CMO estimates of \(H_{p}^{q} \) on two weighted \(p \)-adic Herz-type spaces**

The following section discusses the weighted \(CMO \) estimates of \(H_{p}^{q} \) on two weighted \(p \)-adic Herz-type spaces. We open up the section with few lemmas which are useful in proving key results.

Lemma 2.1. \(^{14}\) Suppose \(w \in A_{1} \), then there exist constants \(C_{1}, C_{2} \) and \(0 < \mu < 1 \) such that
\[C_{1} \frac{|A|}{|B|} \leq \frac{w(A)}{w(B)} \leq C_{2} \left(\frac{|A|}{|B|} \right)^{\mu}, \]
for any measurable subset \(A \) of a ball \(B \).

Remark 2.2. If \(w \in A_{1} \), then it follows from lemma (2.1) that there exist constants \(C_{1} \) and \(\mu \) \((0 < \mu < 1) \) such that \(\frac{w(B_{i})}{w(B)} \leq C_{1} p^{(k-i)\mu} \) as \(i < k \) and \(\frac{w(B_{i})}{w(B)} \leq C_{1} p^{(k-i)\mu} \) as \(i \geq k \).

Lemma 2.3. \(^{23}\) Suppose \(w \in A_{1} \) and \(b \in CMO^{q}(w, Q_{p}) \), then there is a constant \(C \) such that for \(i, k \in \mathbb{Z} \),
\[|b_{B_{i}} - b_{B_{k}}| \leq C |i - k| \|b\|_{CMO^{q}(w, Q_{p})} \frac{w(B_{i})}{|B_{k}|}. \]
Lemma 2.4. [23] Suppose \(w \in A_1 \), then for \(1 < q < \infty \),

\[
\int_B w(x)^{1-q'} \, dx \leq C |B|^{q'} w(B)^{1-q'},
\]

where \(1/q + 1/q' = 1 \).

Now we state the result about the boundedness of \(H_b^p \) on two weighted \(p \)-adic Herz-type spaces.

Theorem 2.5. Let \(0 < r_1 \leq r_2 < \infty \), \(1 \leq r, q < \infty \) and let \(w \in A_1 \). If \(\alpha < \frac{nm}{q'} \), then the inequality

\[
\|H_b^p f\|_{\kappa_{r_2}^{\alpha} (w_1, w_2)} \leq C \|b\|_{\text{CMO}^{\alpha}(w, Q_p^n)} \|f\|_{\kappa_{r_1}^{\alpha} (w, w_2)}
\]

holds for all \(b \in \text{CMO}^{\alpha}(w, Q_p^n) \) and \(f \in L_{\text{loc}}(Q_p^n) \).

If \(\alpha = 0 \), \(r_1 = r_2 = q \), then we have the following result.

Corollary 2.6. Let \(1 \leq r, q < \infty \) and \(w \in A_1 \), then

\[
\|H_b^p f\|_{L^q(w_1, Q_p^n)} \leq C \|b\|_{\text{CMO}^{\alpha}(w, Q_p^n)} \|f\|_{L^q(w, Q_p^n)}
\]

holds for all \(b \in \text{CMO}^{\alpha}(w, Q_p^n) \) and \(f \in L_{\text{loc}}(Q_p^n) \).

Theorem 2.7. Let \(0 < r_1 \leq r_2 < \infty \), \(1 \leq r, q < \infty \) and let also \(w \in A_1 \) and \(\lambda > 0 \). If \(\alpha < \frac{nm}{q'} + \lambda \), then

\[
\|H_b^p f\|_{\text{MK}^{\alpha}(w_1, Q_p^n)} \leq C \|b\|_{\text{CMO}^{\alpha}(w, Q_p^n)} \|f\|_{\text{MK}^{\alpha}(w, Q_p^n)}
\]

holds for all \(b \in \text{CMO}^{\alpha}(w, Q_p^n) \) and \(f \in L_{\text{loc}}(Q_p^n) \).

Proof of Theorem 2.5: First, by the definition we have

\[
\|(H_b^p f)\chi_k\|_{L^q(w_1, Q_p^n)}^q = \int_{S_k} |x|^{-qn} \int_{|t|_p \leq |x|_p} f(t)(b(x) - b(t)) \, dt \, w(x)^{1-q} \, dx
\]

\[
\leq C p^{-kn} \int_{S_k} \left(\sum_{i=-\infty}^{k} \int_{S_{i}} |f(t)(b(x) - b(t))| \, dt \right)^q \, w(x)^{1-q} \, dx
\]

\[
= C p^{-kn} \int_{S_k} \left(\sum_{i=-\infty}^{k} \int_{S_{i}} |f(t)(b(x) - b(t))| \, dt \right)^q \, w(x)^{1-q} \, dx
\]

\[
\leq C p^{-kn} \int_{S_k} \left(\sum_{i=-\infty}^{k} \int_{S_{i}} |f(t)(b(x) - b(t))| \, dt \right)^q \, w(x)^{1-q} \, dx
\]

\[
+ C p^{-kn} \int_{S_k} \left(\sum_{i=-\infty}^{k} \int_{S_{i}} |f(t)(b(t) - b(t))| \, dt \right)^q \, w(x)^{1-q} \, dx
\]

\[
= I + II.
\]

(2.1)
Since $w \in A_1 \subset A_q$, making use of Hölder’s inequality along with lemma 2.4, we have

\[
\int_{S_i} f(t)dt \leq \left(\int_{S_i} |f(t)|^q w(t)dt \right)^{1/q} \left(\int_{S_i} w(t)^{-q'q'}dt \right)^{1/q'} \\
\leq C \|fX_i\|_{L^q(w, Q_p^q)} |B_i| w(B_i)^{-1/q}. \tag{2.2}
\]

To estimate I, by the application of Hölder’s inequality, Remark 2.2 along with inequality (2.2), we are down to

\[
I \leq C p^{-kq} \|b\|^q_{CMO^*(w, Q_p^q)} w(B_k) \left(\sum_{i=-\infty}^k \|fX_i\|_{L^q(w, Q_p^q)} |B_i| w(B_i)^{-1/q} \right)^q \\
\leq C p^{-kq} \|b\|^q_{CMO^*(w, Q_p^q)} \left(\sum_{i=-\infty}^k \|fX_i\|_{L^q(w, Q_p^q)} |B_i| \left(\frac{w(B_k)}{w(B_i)} \right)^{1/q} \right)^q \\
\leq C \|b\|^q_{CMO^*(w, Q_p^q)} \left(\sum_{i=-\infty}^k p^{i-kq} \|fX_i\|_{L^q(w, Q_p^q)} \right)^q. \tag{2.3}
\]

Now, we estimate II as follows

\[
II \leq C p^{-kq} \int_{S_k} \left(\sum_{i=-\infty}^k \int_{S_i} |f(t)(b(t) - b_{B_i})|dt \right)^q w(x)^{1-q} dx \\
+ C p^{-kq} \int_{S_k} \left(\sum_{i=-\infty}^k \int_{S_i} |f(t)(b_{B_i} - b_{B_i})|dt \right)^q w(x)^{1-q} dx \\
= II_1 + II_2. \tag{2.4}
\]

Next, applying Hölder’s inequality to deduce

\[
\int_{S_i} |f(t)(b(t) - b_{B_i})|dt \\
\leq \left(\int_{S_i} |f(t)|^q w(t)dt \right)^{1/q} \left(\int_{S_i} |b(t) - b_{B_i}|^{q'} w(t)^{-q'q'}dt \right)^{1/q'} \\
\leq w(B_i)^{-1/q} \|fX_i\|_{L^q(w, Q_p^q)} \|b\|_{CMO^*(w, Q_p^q)}. \tag{2.5}
\]

By the application of Hölder’s inequality, inequality (2.5), lemma 2.4 and Remark 2.2, we are in a position to estimate II_1.

\[
II_1 \leq C p^{-kq} \int_{S_k} w(x)^{1-q} dx \left(\sum_{i=-\infty}^k \|fX_i\|_{L^q(w, Q_p^q)} w(B_i)^{1/q} \right)^q \\
\leq C p^{-kq} |B_k|^{1-q} \|b\|^q_{CMO^*(w, Q_p^q)} \left(\sum_{i=-\infty}^k \|fX_i\|_{L^q(w, Q_p^q)} w(B_i)^{1/q} \right)^q \\
\leq C \|b\|^q_{CMO^*(w, Q_p^q)} \left(\sum_{i=-\infty}^k \left(\frac{w(B_k)}{w(B_i)} \right)^{1-1/q} \|fX_i\|_{L^q(w, Q_p^q)} \right)^q \\
\leq C \|b\|^q_{CMO^*(w, Q_p^q)} \left(\sum_{i=-\infty}^k p^{i-kq} \|fX_i\|_{L^q(w, Q_p^q)} \right)^q. \tag{2.6}
\]
Next task is to estimate I_2. For this, we use Hölder’s inequality, lemmas 2.3 and 2.4, Remark 2.2 and inequality (2.2)

$$I_2 \leq Cp^{-knq}$$

$$\times \int_{S_k} \left(\sum_{l=-\infty}^{\infty} \int_{S_l} |f(y)(i-k)||\|b\|_{CMO^r(w,Q^p)} w(B_l)\|B_l\|^{-1} \right) \frac{w(y)}{w(x)} \lesssim q$$

$$\leq C p^{-knq} \|b\|_{CMO^r(w,Q^p)}^q w(B_k)^{1-q}$$

$$\times \left(\sum_{l=-\infty}^{\infty} \frac{w(B_l)^{1-1/q}}{|B_l|} \|fX_l\|_{L^q(w,Q^p)} \right)^q$$

$$\leq C \|b\|_{CMO^r(w,Q^p)}^q$$

$$\times \left(\sum_{l=-\infty}^{\infty} \frac{(k-i)w(B_l)^{1-1/q}}{w(B_k)} \|fX_l\|_{L^q(w,Q^p)} \right)^q$$

$$\leq C \|b\|_{CMO^r(w,Q^p)}^q$$

$$\times \left(\sum_{l=-\infty}^{\infty} \frac{(k-i)p^{(i-k)\mu/q} \|fX_l\|_{L^q(w,Q^p)}^q} \right)^q.$$ \tag{2.7}

From (2.3), (2.6) and (2.7) together with Jensen’s Inequality, we have

$$\|H^2 f\|_{K_{q^2}^{\alpha^{r_2}}(w, w^{1-r})}$$

$$= \left(\sum_{k=-\infty}^{\infty} w(B_k)^{\alpha r_2/n} \|H^2 f\|_{L^2(w^{1-r}, Q^p)} \right)^{1/r_2}$$

$$\leq \left(\sum_{k=-\infty}^{\infty} w(B_k)^{\alpha r_1/n} \|H^2 f\|_{L^1(w^{1-r}, Q^p)} \right)^{1/r_1}$$

$$\leq C \|b\|_{CMO^r(w,Q^p)} \left(\sum_{k=-\infty}^{\infty} w(B_k)^{\alpha r_1/n} \left(\sum_{l=-\infty}^{\infty} \frac{p^{(i-k)\mu/q} \|fX_l\|_{L^q(w,Q^p)}}{r_1} \right) \right)^{1/r_1}$$

$$+ C \|b\|_{CMO^r(w,Q^p)} \left(\sum_{k=-\infty}^{\infty} w(B_k)^{\alpha r_1/n} \left(\sum_{l=-\infty}^{\infty} p^{(i-k)\mu/q} \|fX_l\|_{L^q(w,Q^p)} \right)^{r_1} \right)^{1/r_1}$$

$$+ C \|b\|_{CMO^r(w,Q^p)} \left(\sum_{k=-\infty}^{\infty} w(B_k)^{\alpha r_1/n} \left(\sum_{l=-\infty}^{\infty} (k-i)p^{(i-k)\mu/q} \|fX_l\|_{L^q(w,Q^p)} \right) \right)^{1/r_1}$$

$$= J.$$

Therefore,

$$J^{r_1} \leq C \|b\|_{CMO^{\mu/q_1}(w,Q^p)}^r$$

$$\times \sum_{k=-\infty}^{\infty} w(B_k)^{\alpha r_1/n} \left(\sum_{l=-\infty}^{\infty} (k-i)p^{(i-k)\mu/q} \|fX_l\|_{L^q(w,Q^p)} \right)^{r_1}$$

$$\leq C \|b\|_{CMO^{\mu/q_1}(w,Q^p)}^r.$$
\[
\times \sum_{k=-\infty}^{\infty} \left(\sum_{l=-\infty}^{k} (k - i)p^{(i-k)\mu/q' - \alpha} ||f_X||_{L^p(w,Q_p^\alpha)} \right)^{r_1}.
\]

In what follows we consider two cases, \(0 < r_1 \leq 1\) and \(r_1 > 1\).

Case 1: When \(0 < r_1 \leq 1\) and \(\alpha < n\mu/q'\), we have

\[
J^{r_1} \leq C||b||_{CMO_{max,q'}^\alpha(w,Q_p^\alpha)}^{r_1} \times \sum_{k=-\infty}^{\infty} \left(\sum_{l=-\infty}^{k} (k - i)^n (B_i)^{\alpha q}/n \right)^{r_1} p^{[(i-k)(n\mu/q' - \alpha)]^{r_1}} ||f_X||_{L^p(w,Q_p^\alpha)}^{r_1} = C||b||_{CMO_{max,q'}^\alpha(w,Q_p^\alpha)}^{r_1} \times \sum_{k=-\infty}^{\infty} \left(\sum_{l=-\infty}^{k} (k - i)^n (B_i)^{\alpha q}/n \right)^{r_1} p^{[(i-k)(n\mu/q' - \alpha)]^{r_1}} ||f_X||_{L^p(w,Q_p^\alpha)}^{r_1} = C||b||_{CMO_{max,q'}^\alpha(w,Q_p^\alpha)}^{r_1} ||f||_{K_q^{r_1}(w,w)}^{r_1}.
\]

Case 2: Whenever \(r_1 > 1\), an application of Hölder’s inequality with \(\alpha < n\mu/q'\), we get

\[
J^{r_1} \leq C||b||_{CMO_{max,q'}^\alpha(w,Q_p^\alpha)}^{r_1} \sum_{k=-\infty}^{\infty} \left(\sum_{l=-\infty}^{k} (k - i)^{n} (B_i)^{\alpha q}/n \right)^{r_1} p^{[(i-k)(n\mu/q' - \alpha)]^{r_1}} ||f_X||_{L^p(w,Q_p^\alpha)}^{r_1} = C||b||_{CMO_{max,q'}^\alpha(w,Q_p^\alpha)}^{r_1} \sum_{k=-\infty}^{\infty} \left(\sum_{l=-\infty}^{k} (k - i)^{n} (B_i)^{\alpha q}/n \right)^{r_1} p^{[(i-k)(n\mu/q' - \alpha)]^{r_1}} ||f_X||_{L^p(w,Q_p^\alpha)}^{r_1} = C||b||_{CMO_{max,q'}^\alpha(w,Q_p^\alpha)}^{r_1} ||f||_{K_q^{r_1}(w,w)}^{r_1}.
\]

Hence, the proof of theorem is completed.

Proof of Theorem 2.7: From theorem 2.5, we have

\[
||H_{k}^{\alpha}f_X||_{L^p(w^{1-q},Q_p)} \leq C||b||_{CMO_{max,q'}^\alpha(w,Q_p^\alpha)}^{r_1} \sum_{k=-\infty}^{\infty} \left(\sum_{l=-\infty}^{k} (k - i)^{(i-k)(n\mu/q')} \right)^{r_1} ||f_X||_{L^p(w,Q_p^\alpha)}^{r_1}.
\]

By definition of weighted \(p\)-adic Morrey-Herz spaces and Jensen’s Inequality along with \(\alpha < n\mu/q' + \lambda\),
\(\lambda > 0 \) and \(1 < r_1 < \infty \), we reach at
\[
\| H^p_{b} f \|_{W^p_{q_1} \cap (w, w^{1/r_1})} = \sup_{k_0 \in \mathbb{Z}} w(B_{k_0})^{-\lambda/n} \left(\sum_{k = -\infty}^{k_0} w(B_k) \| (H^p_{b} f) \chi_k \|_{L^q(w^{1/q} \cap Q_p)}^{r_1} \right)^{1/r_1} \\
\leq \sup_{k_0 \in \mathbb{Z}} w(B_{k_0})^{-\lambda/n} \left(\sum_{k = -\infty}^{k_0} w(B_k) \| (H^p_{b} f) \chi_k \|_{L^q(w^{1/q} \cap Q_p)}^{r_1} \right)^{1/r_1} \\
\leq C \| b \|_{CMO^{\max\mu/q_1}(w, Q_p)} \sup_{k_0 \in \mathbb{Z}} w(B_{k_0})^{-\lambda/n} \left(\sum_{k = -\infty}^{k_0} w(B_k) \| (H^p_{b} f) \chi_k \|_{L^q(w^{1/q} \cap Q_p)}^{r_1} \right)^{1/r_1} \\
\leq C \| b \|_{CMO^{\max\mu/q_1}(w, Q_p)} \sup_{k_0 \in \mathbb{Z}} w(B_{k_0})^{-\lambda/n} \left(\sum_{k = -\infty}^{k_0} w(B_k) \| (H^p_{b} f) \chi_k \|_{L^q(w^{1/q} \cap Q_p)}^{r_1} \right)^{1/r_1} \\
\leq C \| b \|_{CMO^{\max\mu/q_1}(w, Q_p)} \sup_{k_0 \in \mathbb{Z}} w(B_{k_0})^{-\lambda/n} \left(\sum_{k = -\infty}^{k_0} w(B_k) \| (H^p_{b} f) \chi_k \|_{L^q(w^{1/q} \cap Q_p)}^{r_1} \right)^{1/r_1} \\
\leq C \| b \|_{CMO^{\max\mu/q_1}(w, Q_p)} \| f \|_{W^p_{q_1} \cap (w, w^{1/r_1})}.
\]

3. Weighted \(p \)-adic Lipschitz estimates of \(H^p_{b} \) on two weighted \(p \)-adic Herz-type Spaces

The current section deals the weighted \(p \)-adic Lipschitz estimates of \(H^p_{b} \) on two weighted \(p \)-adic Herz-type spaces. The outset of a section is with a lemma which is helpful in proving main results.

\textbf{Lemma 3.1.} [23] Suppose \(w \in A_1 \) and \(b \in Lip_\beta(w, \mathbb{Q}_p^n) \), then there is a constant \(C \) such that for \(i, k \in \mathbb{Z} \),
\[
| b_{B_i} - b_{B_k} | \leq C(i - k) \| b \|_{Lip_\beta(w, \mathbb{Q}_p^n)} w(B_i)^{\beta/n} w(B_k)^{1/n}.
\]

Now, we state the result about the boundedness of commutator of \(p \)-adic Hardy operator on two weighted \(p \)-adic Herz-type spaces.

\textbf{Theorem 3.2.} Let \(0 < r_1 \leq r_2 < \infty, 1 \leq q_1, q_2 < \infty, 1/q_1 - 1/q_2 = \beta/n \) and let \(w \in A_1 \). If \(\alpha \leq \frac{\mu}{q_1} \), then the inequality
\[
\| H^p_{b} f \|_{K^p_{q_2} \cap (w, w^{1/q_2})} \leq C \| b \|_{Lip_\beta(w, \mathbb{Q}_p^n)} \| f \|_{K^p_{q_1} \cap (w, w)}
\]
holds for all \(b \in Lip_\beta(w, \mathbb{Q}_p^n) \) and \(f \in L_{loc}(\mathbb{Q}_p^n) \).

If \(\alpha = 0, r_1 = q_1 = p \) and \(r_2 = q_2 = q \), then we have the following corollary.
Corollary 3.3. Let $1 \leq q < \infty$, $1/q_1 - 1/q_2 = \beta/n$ and $w \in A_1$, then
\[
\|H_b^p f\|_{L^q(w, Q_{p,B})} \leq C \|b\|_{L^{p,q}(w, Q_{p,B})} \|f\|_{L^q(w, Q_{p,B})}
\]
holds for all $b \in \text{Lip}(w, Q_{p,B})$ and $f \in L^q_{\text{loc}}(Q_{p,B})$.

Theorem 3.4. Let $0 < r_1 \leq r_2 < \infty$, $1 \leq q_1, q_2 < \infty$, $1/q_1 - 1/q_2 = \beta/n$ and let $w \in A_1$. If $\alpha < \frac{\mu}{q_1} + \lambda$, then
\[
\|H_b^p f\|_{M^{\alpha,\lambda}_{r_1, r_2}(w, Q_{p,B})} \leq C \|b\|_{L^{p,q}(w, Q_{p,B})} \|f\|_{M^{\alpha,\lambda}_{r_1, r_2}(w, Q_{p,B})}
\]
holds for all $b \in \text{Lip}(w, Q_{p,B})$ and $f \in L^q_{\text{loc}}(Q_{p,B})$.

Proof of Theorem 3.2: In a similar fashion as that of theorem 2.5, we get
\[
\|(H_b^p f)_x\|_{L^{q_2}(w, Q_{p,B})} \leq C P^{-kq_2/n} \int_{S_k} \left(\sum_{i=-\infty}^k \int_{S_i} |f(t)(b(x) - b_{B_x})| dt \right)^{q_2} w(x)^{1-q_2} dx
\]
\[
+ C P^{-kq_2/n} \int_{S_k} \left(\sum_{i=-\infty}^k \int_{S_i} |f(t)(b(t) - b_{B_t})| dt \right)^{q_2} w(x)^{1-q_2} dx
\]
\[
= L + LL. \quad (3.1)
\]
For the evaluation of L, we apply Hölder’s inequality, Remark 2.2, $\beta/n = 1/q_1 - 1/q_2$, $w \in A_1 \subset A_{q_1}$, and inequality (2.2) to get
\[
L \leq C P^{-kq_2/n} \|b\|_{L^{p,q}(w, Q_{p,B})} w(B_t)^{1+\beta/n} \left\{ \sum_{i=-\infty}^k \|f(x)\|_{L^{q_1}(w, Q_{p,B})} |B_i| \right\}^{q_2}
\]
\[
\leq C P^{-kq_2/n} \|b\|_{L^{p,q}(w, Q_{p,B})} \left\{ \sum_{i=-\infty}^k \|f(x)\|_{L^{q_1}(w, Q_{p,B})} |B_i| \left(\frac{w(B_i)}{w(B_t)} \right)^{1/q_1} \right\}^{q_2}
\]
\[
\leq C \|b\|_{L^{p,q}(w, Q_{p,B})}^q \left(p^{k-\beta/n q_2} \|f(x)\|_{L^{q_1}(w, Q_{p,B})} \right)^{q_2} \quad (3.2)
\]
In order to evaluate LL, we proceed as follows
\[
LL \leq C P^{-kq_2/n} \int_{S_k} \left(\sum_{i=-\infty}^k \int_{S_i} |f(t)(b(t) - b_{B_t})| dt \right)^{q_2} w(x)^{1-q_2} dx
\]
\[
+ C P^{-kq_2/n} \int_{S_k} \left(\sum_{i=-\infty}^k \int_{S_i} |f(t)(b_{B_t} - b_{B_t})| dt \right)^{q_2} w(x)^{1-q_2} dx
\]
\[
= LL_1 + LL_2. \quad (3.3)
\]
The following preparation will do world of good to estimate LL_1. Using Hölder’s inequality, we have
\[
\int_{S_i} |f(t)(b(t) - b_{B_t})| dt
\]
\[
\leq \left(\int_{S_i} |f(t)|^{q_1} w(t) |dt| \right)^{1/q_1} \left(\int_{S_i} |b(t) - b_{B_t}|^{\mu} w(t)^{-q_1/q_2} |dt| \right)^{1/q_2}
\]
\[
\leq w(B_t)^{-1/q_2 + \beta/n} \|f(x)\|_{L^{q_1}(w, Q_{p,B})} |b| \|L^{p,q}(w, Q_{p,B})|. \quad (3.4)
\]
To evaluate LL_1, we apply Hölder’s inequality, inequality (3.4), lemma 2.4 and Remark 2.2.

\[
LL_1 \leq C p^{-kq_2n} \int_{S_k} w(x)^{1-q_2} dx \left(\sum_{i=-\infty}^{\infty} \|f \chi_i\|_{L^{q_1}(w^{1/q_1})} \|w(B_i)^{1/q_1+\beta/n} \|_{L^{p}(w^{2/q_1})} \right)^{q_2}
\]

\[
\leq C p^{-kq_2n} |B_k|^{q_2} w(B_k)^{1-q_2} \|b\|_{L^{p}(w^{2/q_1})} \left(\sum_{i=-\infty}^{\infty} \|f \chi_i\|_{L^{q_1}(w^{1/q_1})} \|w(B_i)^{1/q_1+\beta/n} \|_{L^{p}(w^{2/q_1})} \right)^{q_2}
\]

\[
\leq C |\|b\|_{L^{p}(w^{2/q_1})} \left(\sum_{i=-\infty}^{\infty} \|w(B_i)^{1/q_1} \|_{L^{q_1}(w^{1/q_1})} \right)^{q_2}
\]

\[
\leq C |\|b\|_{L^{p}(w^{2/q_1})} \left(\sum_{i=-\infty}^{\infty} p^{1-k\eta_i/q_1} \|f \chi_i\|_{L^{q_1}(w^{1/q_1})} \right)^{q_2}.
\]

Next step is to evaluate LL_2. For this we use Hölder’s inequality, lemmas 3.1 and 2.4, inequality (2.2), and Remark 2.2 to get

\[
LL_2 \leq C p^{-kq_1n} \|b\|_{L^{p}(w^{2/q_1})} \|B_k\|^{q_2} w(B_k)^{1-q_2}
\]

\[
\times \left(\sum_{i=-\infty}^{\infty} \|k-i\| w(B_k)^{\beta/n} \|w(B_k)^{1/q_1} \|_{L^{q_1}(w^{1/q_1})} \right)^{q_2}
\]

\[
= C |\|b\|_{L^{p}(w^{2/q_1})} \left(\sum_{i=-\infty}^{\infty} \|w(B_k)^{1/q_1} \|_{L^{q_1}(w^{1/q_1})} \right)^{q_2}
\]

\[
\times \left(\sum_{i=-\infty}^{\infty} \|k-i\| p^{1-k\eta_i/q_1} \|f \chi_i\|_{L^{q_1}(w^{1/q_1})} \right)^{q_2}.
\]

Remaining proof is more or less same to the proof of theorem 2.5. Thus, we conclude the theorem.

Proof of Theorem 3.4: Let $\alpha < \eta_i/q_1 + \lambda$. By the definition of weighted p-adic Morrey-Herz spaces together with inequalities (3.2), (3.5), and (3.6), we have

\[
\|H^p w \|_{MK}^{\alpha} \leq C |\|b\|_{L^{p}(w^{2/q_1})} \sup_{k_i \in \mathbb{Z}} \|w(B_k)^{1/q_1} \|_{L^{q_1}(w^{1/q_1})} \left(\sum_{i=-\infty}^{\infty} p^{1-k\eta_i/q_1} \|f \chi_i\|_{L^{q_1}(w^{1/q_1})} \right)^{1/r_2}
\]

\[
+ C |\|b\|_{L^{p}(w^{2/q_1})} \sup_{k_i \in \mathbb{Z}} \|w(B_k)^{1/q_1} \|_{L^{q_1}(w^{1/q_1})} \left(\sum_{i=-\infty}^{\infty} p^{1-k\eta_i/q_1} \|f \chi_i\|_{L^{q_1}(w^{1/q_1})} \right)^{1/2/r_2}
\]

\[
+ C |\|b\|_{L^{p}(w^{2/q_1})} \sup_{k_i \in \mathbb{Z}} \|w(B_k)^{1/q_1} \|_{L^{q_1}(w^{1/q_1})} \left(\sum_{i=-\infty}^{\infty} p^{1-k\eta_i/q_1} \|f \chi_i\|_{L^{q_1}(w^{1/q_1})} \right)^{1/r_2}
\]

\[
= S_1 + S_2 + S_3.
\]
Next by applying the similar arguments as in theorem 2.7, we get

\[S_1 \leq C \|b\|_{\text{Lip}(w, \mathbb{Q}_p^n)} \|f\|_{M_{K^{\alpha,\lambda}_{q_1,q_2}}(w, w)}, \quad \alpha < n/q'_1 + \lambda, \]

\[S_2 \leq C \|b\|_{\text{Lip}(w, \mathbb{Q}_p^n)} \|f\|_{M_{K^{\alpha,\lambda}_{q_1,q_2}}(w, w)}, \quad \alpha < n\mu/q'_2 + \lambda, \]

\[S_3 \leq C \|b\|_{\text{Lip}(w, \mathbb{Q}_p^n)} \|f\|_{M_{K^{\alpha,\lambda}_{q_1,q_2}}(w, w)}, \quad \alpha < n\mu/q'_1 + \lambda. \]

So, the proof of the theorem is finished.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work through research groups program under grant number R.G. P-2/29/42.

Conflict of interest

The authors declare that they have no conflict of interest.

References

