Research article

Mathematical analysis of a phase-field model of brain cancers with chemotherapy and antiangiogenic therapy effects

  • Received: 22 October 2021 Accepted: 27 October 2021 Published: 28 October 2021
  • MSC : 35B50, 35D30, 35Q92, 92C50

  • Our aim in this paper is to study a mathematical model for brain cancers with chemotherapy and antiangiogenic therapy effects. We prove the existence and uniqueness of biologically relevant (nonnegative) solutions. We then address the important question of optimal treatment. More precisely, we study the problem of finding the controls that provide the optimal cytotoxic and antiangiogenic effects to treat the cancer.

    Citation: Monica Conti, Stefania Gatti, Alain Miranville. Mathematical analysis of a phase-field model of brain cancers with chemotherapy and antiangiogenic therapy effects[J]. AIMS Mathematics, 2022, 7(1): 1536-1561. doi: 10.3934/math.2022090

    Related Papers:

  • Our aim in this paper is to study a mathematical model for brain cancers with chemotherapy and antiangiogenic therapy effects. We prove the existence and uniqueness of biologically relevant (nonnegative) solutions. We then address the important question of optimal treatment. More precisely, we study the problem of finding the controls that provide the optimal cytotoxic and antiangiogenic effects to treat the cancer.



    加载中


    [1] A. C. Aristotelous, O. A. Karakashian, S. M. Wise, Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source, IMA J. Numer. Anal., 35 (2015), 1167–1198. doi: 10.1093/imanum/dru035.
    [2] A. Aubert, R. Costalat, Interaction between astrocytes and neurons studied using a math- ematical model of compartmentalized energy metabolism, J. Cereb. Blood Flow Metab., 25 (2005), 1476–1490. doi: 10.1038/sj.jcbfm.9600144.
    [3] P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Math. Models Methods Appl. Sci., 30 (2020), 1253–1295. doi: 10.1142/S0218202520500220. doi: 10.1142/S0218202520500220
    [4] P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, preprint.
    [5] P. Colli, A. Signori, J. Sprekels, Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials, Appl. Math. Optim., 83 (2021), 2017–2049. doi: 10.1007/s00245-019-09618-6.
    [6] M. Conti, S. Gatti, A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells, Nonlinear Analysis, 189 (2019), 111572. doi: 10.1016/j.na.2019.111572. doi: 10.1016/j.na.2019.111572
    [7] H. S. Friedman, M. D. Prados, P. Y. Wen, T. Mikkelsen, D. Schiff, L. E. Abrey, et al., Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma, J. Clin. Oncol., 27 (2009), 4733–4740. doi: 10.1200/JCO.2008.19.8721.
    [8] H. Garcke, K. F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, Europ. J. Appl. Math., 28 (2016), 284–316. doi: 10.1017/S0956792516000292.
    [9] H. Garcke, K. F. Lam, R. Nurnberg, E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525–577. doi: 10.1142/S0218202518500148.
    [10] H. Garcke, K. F. Lam, E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78 (2017), 495–544. doi: 10.1007/s00245-017-9414-4.
    [11] H. Garcke, K. F. Lam, A. Signori, Sparse optimal control of a phase field tumour model with mechanical effects, SIAM J. Control Optim., 59 (2021), 1555–1580. doi: 10.1137/20M1372093.
    [12] H. Garcke, K. F. Lam, E. Sitka, V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095–1148. doi: 10.1142/S0218202516500263.
    [13] H. Gomez, Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integr. Biol., 9 (2017), 257–262. doi: 10.1039/c6ib00208k.
    [14] P. Hartman, Ordinary differential equation, Corrected reprint of the second (1982) edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
    [15] J. L. Lions, Équations Différentielles Opérationnelles at Problémes aux Limites non Linéares, Springer-Verlag, Berlin/Göttingen/Heidelberg, Germany, 1961.
    [16] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, Vol. 23, Translations of Mathematical Monographs, American Mathematical Society, 1968.
    [17] M. Lahutte-Auboin, Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes, PhD thesis, Université Pierre et Marie Curie, 2015.
    [18] L. Li, A. Miranville, R. Guillevin, A Cahn-Hilliard model with a proliferation term for the proliferative-to-invasive transition of hypoxic glioma cells, Comm. Math. Sci., to appear.
    [19] A. Miranville, A singular reaction-diffusion equation associated with brain lactate kinetics, Math. Methods Appl. Sci., 40 (2017), 2454–2465. doi: 10.1002/mma.4150.
    [20] A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics, Solvability, regularity, and optimal control of boundary value problems for PDEs, 379–403, Springer INdAM Ser. 22, Springer, Cham, 2017. doi: 10.1007/978-3-319-64489-9_15.
    [21] A. Miranville, The Cahn-Hilliard equation: recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics 95, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019. doi: 10.1137/1.9781611975925.
    [22] A. Miranville, The Cahn-Hilliard equation with a nonlinear mass source, J. Diff. Equ., 294 (2021), 88–117. doi: 10.1016/j.jde.2021.05.045.
    [23] A. Miranville, E. Rocca, G. Schimperna, On the long time behavior of a tumor growth model, J. Diff. Equ., 267 (2019), 2616–2642. doi: 10.1016/j.jde.2019.03.028.
    [24] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, Vol. 68, Springer-Verlag New York, 1997.
    [25] F. Troltzsch, Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, 112. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.
    [26] J. Xu, G. Vilanova, H. Gomez, A mathematical model coupling tumor growth and angiogenesis, PLoS ONE, 11 (2016), e0149422. doi: 10.1371/journal.pone.0149422.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1985) PDF downloads(160) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog