Prostate cancer bone metastasis poses significant health challenges, affecting countless individuals. While treatment with the radioactive isotope radium-223 ($ ^{223} $Ra) has shown promising results, there remains room for therapy optimization. In vivo studies are crucial for optimizing radium therapy; however, they face several roadblocks that limit their effectiveness. By integrating in vivo studies with in silico models, these obstacles can be potentially overcome. Existing computational models of tumor response to $ ^{223} $Ra are often computationally intensive. Accordingly, we here present a versatile and computationally efficient alternative solution. We developed a PDE mathematical model to simulate the effects of $ ^{223} $Ra on prostate cancer bone metastasis, analyzing mitosis and apoptosis rates based on experimental data from both control and treated groups. To build a robust and validated model, our research explored three therapeutic scenarios: no treatment, constant $ ^{223} $Ra exposure, and decay-accounting therapy, with tumor growth simulations for each case. Our findings align well with experimental evidence, demonstrating that our model effectively captures the therapeutic potential of $ ^{223} $Ra, yielding promising results that support our model as a powerful infrastructure to optimize bone metastasis treatment.
Citation: Zholaman Bektemessov, Laurence Cherfils, Cyrille Allery, Julien Berger, Elisa Serafini, Eleonora Dondossola, Stefano Casarin. On a data-driven mathematical model for prostate cancer bone metastasis[J]. AIMS Mathematics, 2024, 9(12): 34785-34805. doi: 10.3934/math.20241656
Prostate cancer bone metastasis poses significant health challenges, affecting countless individuals. While treatment with the radioactive isotope radium-223 ($ ^{223} $Ra) has shown promising results, there remains room for therapy optimization. In vivo studies are crucial for optimizing radium therapy; however, they face several roadblocks that limit their effectiveness. By integrating in vivo studies with in silico models, these obstacles can be potentially overcome. Existing computational models of tumor response to $ ^{223} $Ra are often computationally intensive. Accordingly, we here present a versatile and computationally efficient alternative solution. We developed a PDE mathematical model to simulate the effects of $ ^{223} $Ra on prostate cancer bone metastasis, analyzing mitosis and apoptosis rates based on experimental data from both control and treated groups. To build a robust and validated model, our research explored three therapeutic scenarios: no treatment, constant $ ^{223} $Ra exposure, and decay-accounting therapy, with tumor growth simulations for each case. Our findings align well with experimental evidence, demonstrating that our model effectively captures the therapeutic potential of $ ^{223} $Ra, yielding promising results that support our model as a powerful infrastructure to optimize bone metastasis treatment.
[1] | E. Aarts, J. Korst, Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing, John Wiley, 1989. https://doi.org/10.2307/2008816 |
[2] | M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, et al., The FEniCS Project Version 1.5, Archive of Numerical Software, 3 (2015), 9–23. https://doi.org/10.11588/ans.2015.100.20553 doi: 10.11588/ans.2015.100.20553 |
[3] | C. Baldessari, S. Pipitone, E. Molinaro, K. Cerma, M. Fanelli, C. Nasso, et al., Bone metastases and health in prostate cancer: From pathophysiology to clinical implications, Cancers (Basel), 15 (2023), 1–24. https://doi.org/10.3390/cancers15051518 doi: 10.3390/cancers15051518 |
[4] | G. Beni, From Swarm Intelligence to Swarm Robotics, Lecture Notes in Computer Science, 3342 (2005), 1–9. https://doi.org/10.1007/978-3-540-30552-1_1 doi: 10.1007/978-3-540-30552-1_1 |
[5] | O. Bergengren, K. R. Pekala, K. Matsoukas, J. Fainberg, S. F. Mungovan, O. Bratt, et al., 2022 update on prostate cancer epidemiology and risk factors—a systematic review, European Urology, 84 (2023), 191–206. https://doi.org/10.1016/j.eururo.2023.04.021 doi: 10.1016/j.eururo.2023.04.021 |
[6] | J. Berger, D. Dutykh, Evaluation of the reliability of building energy performance models for parameter estimation, Journal Computational Technologies, 24 (2019), 4–32. https://doi.org/10.25743/ICT.2019.24.3.002 doi: 10.25743/ICT.2019.24.3.002 |
[7] | J. Berger, T. Colinart, B. R. Loiola, H. R. B. Orlande, Parameter estimation and model selection for water sorption in a wood fibre material, Wood Science and Technology, 6 (2020), 1423–1446. https://doi.org/10.1007/s00226-020-01206-0 doi: 10.1007/s00226-020-01206-0 |
[8] | D. Bertsimas, J. Tsitsiklis, Simulated Annealing, Statistical Science, 8 (1993), 10–15. https://doi.org/10.1214/ss/1177011077 doi: 10.1214/ss/1177011077 |
[9] | S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2007. https://doi.org/10.1007/978-0-387-75934-0 |
[10] | S. Casarin, E. Dondossola, An agent-based model of prostate Cancer bone metastasis progression and response to Radium223, BMC Cancer, 20 (2020), 1–19. https://doi.org/10.1186/s12885-020-07084-w doi: 10.1186/s12885-020-07084-w |
[11] | P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Math. Models Methods Appl. Sci., 30 (2020), 1253–1295. https://doi.org/10.1142/S0218202520500220 doi: 10.1142/S0218202520500220 |
[12] | E. Deshayes, M. Roumiguie, C. Thibault, P. Beuzeboc, F. Cachin, C. Hennequin, et al., Radium 223 dichloride for prostate cancer treatment, Drug design, development and therapy, 11 (2017), 2643–2651. https://doi.org/10.2147/DDDT.S122417 doi: 10.2147/DDDT.S122417 |
[13] | E. Dondossola, S. Casarin, C. Paindelli, E. M. De-Juan-Pardo, D. W. Hutmacher, C. J. Logothetis, et al., Radium 223-Mediated Zonal cytotoxicity of Prostate Cancer in Bone, JNCI: Journal of the National Cancer Institute, 111 (2019), 1042–1050. https://doi.org/10.1093/jnci/djz007 doi: 10.1093/jnci/djz007 |
[14] | C. B. Haskell, The method of steepest descent for non-linear minimization problems, Quarterly of Applied Mathematics, 2 (1944), 258–261. http://www.jstor.org/stable/43633461 |
[15] | A. Jumabekova, J. Berger, D. Dutykh, H. Le Meur, A. Foucquier, M. Pailha, et al., An efficient numerical model for liquid water uptake in porous material and its parameter estimation, Numerical Heat Transfer, Part A: Applications, 75 (2019), 110–136. https://doi.org/10.1080/10407782.2018.1562739 doi: 10.1080/10407782.2018.1562739 |
[16] | A. Jumabekova, J. Berger, A. Foucquier, G. S. Dulikravich, Searching an optimal experiment observation sequence to estimate the thermal properties of a multilayer wall under real climate conditions, International Journal of Heat and Mass Transfer, 155 (2020), 1–28. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119810 doi: 10.1016/j.ijheatmasstransfer.2020.119810 |
[17] | A. Jumabekova, J. Berger, A. Foucquier, An efficient sensitivity analysis for energy performance of building envelope: A continuous derivative based approach, Building Simulation, 14 (2021), 909–930. https://doi.org/10.1007/s12273-020-0712-4 doi: 10.1007/s12273-020-0712-4 |
[18] | S. Kabanikhin, M. Bektemesov, O. Krivorotko, Z. Bektemessov, Practical identifiability of mathematical models of biomedical processes, Journal of Physics: Conference Series, 2092 (2021), 1–12. https://doi.org/10.1088/1742-6596/2092/1/012014 doi: 10.1088/1742-6596/2092/1/012014 |
[19] | T. Le, S. Su, A. Kirshtein, L. Shahriyari, Data-Driven Mathematical Model of Osteosarcoma, Cancers (Basel), 13 (2021), 1–34. https://doi.org/10.3390/cancers13102367 doi: 10.3390/cancers13102367 |
[20] | K. Levenberg, A Method for the Solution of Certain Non-Linear Problems in Least Squares, Quarterly of Applied Mathematics, 2 (1944), 164–168. https://doi.org/10.1090/qam/10666 doi: 10.1090/qam/10666 |
[21] | D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM Journal on Applied Mathematics, 11 (1963), 431–441. https://doi.org/10.1137/0111030 doi: 10.1137/0111030 |
[22] | P. Mukherjee, S. Roy, D. Ghosh, S. K. Nandi, Role of animal models in biomedical research: a review, Lab. Anim. Res., 38 (2022), 1–17. https://doi.org/10.1186/s42826-022-00128-1 doi: 10.1186/s42826-022-00128-1 |
[23] | R. A. Muller, Physics and Technology for Future Presidents: An Introduction to the Essential Physics Every World Leader Needs to Know, Princeton, New Jercey: Princeton University Press, 2010. |
[24] | C. R. Nave. "Radioactive Half-Life". HyperPhysics. Georgia State University, "Radioactive Half-Life". HyperPhysics. Georgia State University, 2024. Available from: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html. |
[25] | C. Paindelli, S. Casarin, F. Wang, L. Diaz-Gomez, J. Zhang, A. G. Mikos, et al., Enhancing $^223$Ra Tretment Efficacy by Anti-$\beta 1$ Integrin Targeting, J. Nucl. Med., 63 (2022), 1039–1045. https://doi.org/10.2967/jnumed.121.262743 doi: 10.2967/jnumed.121.262743 |
[26] | C. Parker, S. Nilsson, D. Heinrich, S. I. Helle, J. M. O'Sullivan, S. D. Fosså, et al., Alpha emitter radium-223 and survival in metastatic prostate cancer, N. Engl. J. Med., 369 (2013), 213–223. https://doi.org/10.1056/NEJMoa1213755 doi: 10.1056/NEJMoa1213755 |
[27] | H. Raad, C. Allery, L. Cherfils, C. Guillevin, A. Miranville, T. Sookiew, et al., Simulation of tumor density evolution upon chemotherapy alone or combined with a treatment to reduce lactate levels, AIMS Mathematics, 9 (2024), 5250–5268. https://doi.org/10.3934/math.2024254 doi: 10.3934/math.2024254 |
[28] |
T. |
[29] | I. M. Sobol, S. Kucherenko, Derivative based global sensitivity measures and their link with global sensitivity indices, Mathematics and Computers in Simulation, 79 (2009), 3009–3017. https://doi.org/10.1016/j.matcom.2009.01.023 doi: 10.1016/j.matcom.2009.01.023 |
[30] | P. Tracqui, G. C. Cruywagen, D. E. Woodward, G. T. Bartoo, J. D. Murray, E. C. Alvord, A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth, Cell Proliferation, 28 (1995), 17–31. https://doi.org/10.1111/j.1365-2184.1995.tb00036.x doi: 10.1111/j.1365-2184.1995.tb00036.x |
[31] | E. Walter, Y. Lecourtier, Global approaches to identifiability testing for linear and nonlinear state space models, Mathematics and Computers in Simulation, 24 (1982), 472–482. https://doi.org/10.1016/0378-4754(82)90645-0 doi: 10.1016/0378-4754(82)90645-0 |
[32] | F. Wu, Y. Zhou, L. Li, X. Shen, G. Chen, X. Wang, et al., Computational approaches in preclinical studies on drug discovery and development, Front Chem., 8 (2020), 1–32. https://doi.org/10.3389/fchem.2020.00726 doi: 10.3389/fchem.2020.00726 |
[33] | X. S. Yang, Nature-Inspired Optimization Algorithms, Elsevier, 2014. https://doi.org/10.1016/C2013-0-01368-0 |
[34] | O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, Volume 1: The Basis, Butterworth-Heinemann, 2000. |