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Abstract: Prostate cancer bone metastasis poses significant health challenges, affecting countless
individuals. While treatment with the radioactive isotope radium-223 (223Ra) has shown promising
results, there remains room for therapy optimization. In vivo studies are crucial for optimizing radium
therapy; however, they face several roadblocks that limit their effectiveness. By integrating in vivo
studies with in silico models, these obstacles can be potentially overcome. Existing computational
models of tumor response to 223Ra are often computationally intensive. Accordingly, we here present a
versatile and computationally efficient alternative solution. We developed a PDE mathematical model
to simulate the effects of 223Ra on prostate cancer bone metastasis, analyzing mitosis and apoptosis
rates based on experimental data from both control and treated groups. To build a robust and validated
model, our research explored three therapeutic scenarios: no treatment, constant 223Ra exposure, and
decay-accounting therapy, with tumor growth simulations for each case. Our findings align well with
experimental evidence, demonstrating that our model effectively captures the therapeutic potential of
223Ra, yielding promising results that support our model as a powerful infrastructure to optimize bone
metastasis treatment.
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1. Introduction

Prostate cancer (PCa) is the fifth leading cause of death from cancer worldwide and the most
common malignancy in elderly men [5]. Bone metastasis, the most frequent complication in PCa,
reduce life expectancy in patients with advanced PCa because they are unresponsive to conventional
molecular targeting therapy [3]. Radium-223 (223Ra), a bone-targeted radionuclide, has recently been
approved for the treatment of bone metastasis, since it improves symptom-free and overall survival
in patients with advanced metastatic PCa [26]. Despite encouraging evidence during early follow-up,
clinical response is often followed by relapses and disease progression, and associated mechanisms of
efficacy and resistance are poorly understood [26]. Research efforts to overcome this gap have been
largely based on the use of animal models, which are useful but require a large investment of time
and resources [22]. Computational models, integrated with animal data, can mitigate experimental
limitations and better guide research at a preclinical level [32].

Several mathematical models have been developed to study the progression of many cancer types,
from agent-based models (ABMs) [10], to partial differential equation (PDE) models [27,30], and more
specifically PCa [11]. However, to our knowledge, only a few papers address bone metastasis and the
therapeutic effect of 223Ra therapy. In [10,13,25], an ABM of PCa bone metastasis is developed where
tumor cell mitosis and apoptosis are described as probability densities, and each cell (agent) is regulated
by stochastic dynamics linked to the mentioned probability. While simulating 223Ra administration, the
bone becomes a reservoir for this drug and then the probability of mitosis and apoptosis of cancer cells
depends on two factors: the distance from the cell to mineral bone, since 223Ra reduces its effect toward
the bone marrow in a distance-dependent fashion; and time, since the drug has an approximate 11-day
half-life, meaning that the effect of 223Ra on mitosis and apoptosis is halved after 11 days of follow-up.

While existing computational models detail spatial resolution through computationally intensive
agent-based approaches, we propose a PDE model that retains spatial detail with a more efficient
computational infrastructure. We hypothesize that this alternative approach will reduce computational
costs and enhance accessibility, allowing faster iterations and easier integration into clinical workflows.

Accordingly, in this work, we develop a data-driven PDE model to simulate the effect of 223Ra
therapy on the PCa bone metastasis progression. We calibrated the model driving coefficients on
metastatic cell line growth data provided by the David H. Koch Center for Applied Research of
Genitourinary Cancers at MD Anderson Cancer Center, in Houston, Texas, USA.

Overall, we propose a computational resource-efficient infrastructure for the study of 223Ra therapy
that will facilitate broad usage, quick scenario testing, and real-time decision support, ultimately
leading to more predictions of therapy outcomes.

2. The tumor growth mathematical model

2.1. The PDE model

Cancer cells are characterized by abnormally high mitosis and, as the other cells, they are subjected
to standard diffusion laws. Their evolution can be described by the classical equation (see [19] for
instance):
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∂Ĉ
∂t
− ρ∆Ĉ = α(t) Ĉ(1 −

Ĉ
Ĉmax

) − g(t)Ĉ inΩ × [0,T ],

∇Ĉ · n = 0 on ∂Ω × [0,T ],
Ĉ(x, 0) = Ĉ0 inΩ,

(2.1)

in which Ĉ = Ĉ(x, t) defines the tumor cell density at location x (cm) and time t (day), ρ > 0 (cm2day−1)
is the diffusion coefficient representing the motility of the tumor cells, α > 0 (day−1) represents the
proliferation (mitosis) rate, and g > 0 (day−1) is the apoptosis rate. We assume that α > g. Moreover
Ĉmax is the carrying capacity (limiting the density of cells that a volume of tissue can hold), Ĉ0 is the
initial distribution of the tumor cells, Ω is a bounded and regular domain of R2 standing for a part of
the bone surrounding the tumor, and n is the unit normal to the domain boundary ∂Ω.

When α and g are Lipschitz continuous and bounded functions, the well-posedness of this equation
is well-known. The main results are summarized in the following theorem, whose proof can be found,
for instance, in [28].

Theorem 2.1. We assume that Ĉ0 belongs to L2(Ω) and that 0 ≤ Ĉ0(x) ≤ Ĉmax, ∀x ∈ Ω. Then,
problem (2.1) possesses a unique weak solution Ĉ in L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)) which satisfies

0 ≤ Ĉ(x, t) ≤ Ĉmax, ∀(x, t) ∈ Ω × [0,T ].

In modeling the control condition (where the tumor growth is not subjected to therapy), we will
consider the Eq (2.1) with constant α0 (mitosis) and g0 (apoptosis) rates. We note

ρ = ρ0, α(t) = α0, g(t) = g0, ∀t ∈ [0,T ]. (2.2)

Alternatively, in modeling tumor response to 223Ra therapy, cancer cells are less diffusive, with
impaired mitosis and with enhanced apoptosis, than control cancer cells. Then, as a first choice, we
will consider Eqs (2.1) with the mitosis, apoptosis, and diffusion rates such that:

ρ = ρrad, α(t) = αrad, g(t) = grad, ∀t ∈ [0,T ], (2.3)

satisfying αrad < α0, grad > g0, and ρrad ≤ ρ0, with α0, g0, and ρ0 introduced in (2.2) for the control
case (without 223Ra therapy).

To take into account the decay of the 223Ra treatment efficacy over time (11-day half-life), we will
consider the alternative, more accurate model,

ρ = ρrad, α(t) =
α0

1 + re−t/τ , g(t) =
g0

1 − re−t/τ , ∀t ∈ [0,T ], (2.4)

with α0 and g0 introduced in (2.2), and r and τ as positive constants. The parameter r is related to the
treatment aggressiveness, while τ modulates the time-dependent effect of 223Ra (see [10]).

2.2. The ODE model

The PDE model (2.1) involves several positive parameters (namely ρ , α, and g)1 that can be
determined using experimental observations of tumor cell growth obtained from animal experiments.

1(ρ0 , α0, g0) in (2.1)-(2.2), (ρrad , αrad, grad) in (2.1)-(2.3), (ρrad , r, τ) in (2.1)-(2.4)
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However, due to experiment design constraints, only measured data of the evolution of the total number
of cancer cells with respect to time are available. Therefore, the diffusion coefficient ρ cannot be
retrieved. The model will be calibrated only regarding the mitosis α and apoptosis g rates.

Accordingly, we assume that the dependence on x of Ĉ is negligible, thus making Ĉ only depending
on t, i.e. Ĉ = Ĉ(t). We denote by C the total number of cancer cells in the tumor, and we have

C(t) = Ĉ(t)|ω|,

with ω ⊂ Ω being the (fixed in time) domain of the tumor, and |ω| its area.

Figure 1. Illustration of the tumor domain ω within the whole domain Ω.

Replacing Ĉ =
C
|ω|

in (2.1), we obtain that C satisfies the equation
∂C
∂t
= α(t) C(1 −

C
Cmax

) − g(t)C, t ∈ [0,T ],

C(0) = C0,
(2.5)

where C0 = Ĉ0 |ω| stands for the initial number of cancer cells in the tumor and Cmax = Ĉmax |ω| is the
maximum number of cancer cells. We emphasize that the same coefficients α and g appear in (2.1)
and (2.5); however, it is worth noting that the value of Cmax will differ for problems with and without
treatment, as follows: C0

max (without treatment) and Crad
max (with treatment).

The rest of the paper is organized as follows. The coefficients α and g will be estimated using
experimental data and considering the ordinary differential equation (ODE) model (2.5) in sections 3
and 4 for the two different cases: control (without 223Ra therapy) and with 223Ra therapy. With the
retrieved parameters of mitosis and apoptosis, 2-D simulations of the tumor growth from the (2.1)
model will be proposed in section 5.

3. Identifiability of the parameters in the ODE

This section describes the stages of solving the parameter estimation problem based on uniquely
identifying a set of parameters p = (α,Cmax, g) of a mathematical model (2.5) in the form of differential
equations, tools of identifiability analysis, and optimization algorithms for the objective function.
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When working with unknown parameters, in most cases, the question arises whether it is possible to
identify the unique set of parameters that fits the experimental data. The identifiability analysis helps
in verifying that parameters can be estimated with satisfying accuracy.

3.1. Structural identifiability analysis

It is crucial first to verify whether the relevant parameters can be determined independently from
the available data or measurements. Without this initial verification, the validity and reliability of
the overall study may be compromised. If, based on the input data and measurement data, the set
of parameters is unique, then the dynamic system can be called structurally globally identifiable,
otherwise it is unidentifiable [18].

To prove the identifiability in our model, the definition is recalled based on [31]:

Definition 3.1. Let C : Ωp × [0,T ] → R, an observable function associated with the parameter
p ∈ Ωp. The parameter p is structurally globally identifiable if we have the following condition:

∀ p̄ ∈ Ωp, ∀t ∈ [0 , T ] , C(p, t) = C( p̄, t) ⇒ p = p̄ .

Interested readers are invited to consult the following references for practical examples of
identifiability for analytical [7], ordinary differential [6], and partial differential models [15, 16].

Now, Definition 3.1 is applied to the ODE model (2.5) for the parameters p = (α,Cmax, g) that
stand for p0 = (α0,C0

max, g
0) in (2.2) or prad = (αrad,Crad

max, g
rad) in (2.3), depending on the experimental

dataset considered for the parameter estimation problem.
We assume two sets of observable C and C̄ associated with the parameters p and p̄, respectively.

Both functions verify the ODE equation (2.5). Thus, we have:

dC
dt
= αC

(
1 −

C
Cmax

)
− g C (3.1)

and
dC̄
dt
= ᾱ C̄

(
1 −

C̄
C̄max

)
− ḡ C̄. (3.2)

Now, we assume that ∀t ∈
[
0 , T

]
,C = C̄ and so ∀t ∈

[
0 , T

]
, dC

dt =
dC̄
dt . Then, from Equations (3.1)

and (3.2), we obtain:(
(α − g) − (ᾱ − ḡ)

)
C(t) −

(
α

Cmax
−
ᾱ

C̄max

)
C2(t) = 0, ∀ t ∈ [0,T ]. (3.3)

Assuming that C is a non-constant and positive function in [0,T ], we immediately obtain that:

 (α − g) = (ᾱ − ḡ) ,
α

Cmax
=
ᾱ

C̄max
.

(3.4)

Equation (3.4) shows that Definition 3.1 is not satisfied for the ODE model (2.5) with the parameters
p = (α,Cmax, g) . But the combination of parameters

( α
Cmax

, α − g
)

is structurally identifiable in
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the model. Therefore, Equation (2.5) is slightly changed and the following mathematical model, with
parameters ( a , b ) that are structurally identifiable, is proposed for further investigations:

dC
dt
= a C2 + b C, t ∈ [0,T ]

C(0) = C0,
(3.5)

with parameters a and b defined by:

a = −
α

Cmax
(< 0) , b = α − g (> 0). (3.6)

In what follows, we will denote by Ca,b the solution of Eq (3.5). Note that from identified parameters
a (day−1) and b (day−1), the parameters (α,Cmax, g) can be retrieved only if one of the three parameters
is known a priori. In [19], authors defined the carrying capacity Cmax as the M-times increase in the
steady state value of a population of cancer cells, i.e. in which the system reaches equilibrium and the
number of cancer cells remains constant over time:

Cmax = M C∞ , (3.7)

with M > 1 a given coefficient and, according to (3.5),

C∞ = lim
t→+∞

Ca,b(t) = −
b
a
. (3.8)

In the end, given Eqs (3.7) and (3.6), parameters α and g are retrieved through parameters a and b using
the following relations: α = −a M C∞ = M b,

g = b(M − 1).
(3.9)

Remark 1. Eq (3.9) implies that the parameters α and g are related in the following form:

α =
M

M − 1
g. (3.10)

3.2. Practical identifiability analysis

This section investigates the practical identifiability of the unknown parameters a and b in the
model (3.5). It analyses whether the observations are “rich” or sufficient to provide an accurate
estimation of the unknowns. This concept is based on the parameters’ sensitivity coefficients. For
model (3.5), they are defined by:

χ a (t) =
∂Ca,b

∂a
, χ b (t) =

∂Ca,b

∂b
. (3.11)

Several methods (finite-difference approximation, direct differentiation of the equation, complex step
differentiation) are available to evaluate such quantities in Eq (3.11) (see [17] as a primary overview).
However, in this work, an analytical solution holds for Eq (3.5):

Ca,b (t) =
b C0(

a C0 + b
)

exp(−b t ) − a C0
. (3.12)
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Therefore, the parameters’ sensitivity coefficients (3.11) are given analytically by:

χa (t) = −
b C0
(
C0 exp(−bt ) − C0

)((
a C0 + b

)
exp(−bt ) − a C0

)2 , (3.13a)

χb (t) =
C0(

a C0 + b
)

exp(−bt ) − αC0
−

b C0

(
exp(−bt ) −

(
a C0 + b

)
t exp(−bt )

)
( (

a C0 + b
)

exp(−bt ) − αC0

)2 . (3.13b)

With the sensitivity coefficients (3.13), one may investigate several issues for practical identifiability
purposes [16]. First, if one sensitivity coefficient has low magnitude values with respect to the
other and to the measurement noise, the model is poorly sensitive to the parameters. Next, if the
sensitivity coefficients are linearly dependent, there is a correlation between the two parameters, and
their simultaneous identification cannot be performed. Therefore, to get a reliable estimation of the
parameters, it is necessary to have linearly independent sensitivity coefficients. The easiest way to
check these issues is to plot one sensitivity coefficient according to the other for each time instant. This
was shown in Figure 4. By analyzing such a plot, the sensitivity coefficient magnitude and correlation
can be analyzed.

3.3. The parameter estimation problem statement

Consider the Eq (3.5), based on known data on the change in the number of cancer cells Ca,b(t)
over time, and it is necessary to identify the values of unknown parameters a and b. To solve this
parameter estimation problem, an optimization problem was formulated, aiming to minimize the
following objective function:

J(a, b) =
K∑

k=1

[Ca,b(tk) −Ck]2 (3.14)

where the objective function J(a, b) is the sum of least squared errors between the values of the function
Ca,b(tk), solution of (3.5), and experimental data of Ck on a certain set of time points tk, where K is the
total number of experimental points over time.

To find optimal values of a and b, the objective function J(a, b) is minimized:

(a∗, b∗) = arg min
(a,b)∈U

J(a, b), (3.15)

with U = [−1, 0] × [0, 1] being the set of acceptable parameters. The optimization problem can be
solved using various methods, such as the gradient method [14], stochastic methods [1, 4, 8, 33], and
others. In this work, we applied the Levenberg-Marquardt method [20, 21], a popular tool for solving
a wide range of nonlinear optimization problems. The solution of the parameter estimation problem
is implemented in MATLAB (version 8.6.0.267246 (R2015b)), using the lsqcurvefit function, with the
Levenberg-Marquardt algorithm set in the option.

With this approach, the confidence interval (CI) of the retrieved parameter can be obtained. Thus,
the uncertainty on the estimated parameter can be propagated in the model prediction by carrying out
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derivative-based sensitivity analysis [29]. For this, a Taylor expansion of the first-order solution is
written as:

CTay(t, a, b) = Ca∗,b∗( t ) + χ a∗( t )
(

a − a∗
)
+ χ b∗( t )

(
b − b∗

)
(3.16)

where Ca∗,b∗ is the solution of the ODE model (3.5), and χa∗ and χb∗ are the sensitivity coefficients from
(3.13a) and (3.13b). Those quantities are evaluated using estimated parameters a∗ and b∗. The terms
(a − a∗) and (b − b∗) are set using the confidence intervals [ a∗− , a∗+ ] and [ b∗− , b∗+ ] of the retrieved
parameters given by the optimization algorithm. More specifically, since in our case the sensitivity
coefficients are positive for all time, those terms are defined using a = a∗+ and b = b∗+ for the upper
bound confidence interval on the solution and a = a∗− and b = b∗− for the lower bound.

Equation (3.16) enables us to evaluate the influence of a small change of the estimated parameters
(in their CI) on the predicted solution.

4. Parameter estimation results for ODE models

In this section, we consider the experimental data obtained from in vivo experiments on 31 mice
with PCa bone metastasis, of which 19 were not treated, and 12 were treated (originally 13, however,
1 experiment had to be discarded because of operational issues). Data were acquired on days 0, 2,
5, 8, 12, and 15. Each data harvesting involved the use of luciferase as a standard indicator of tumor
volume. Table 1 reports the mean volume at each investigation time point: ctrl-data refers to the
control trend, while rad-data to treated cancer cells. Both ctrl-data and rad-data are used as Ck in
Eq (3.14), depending on the problem being solved.

Table 1. The mean values of tumor cells from the in vivo data.

Day Ck as ctrl-data Standard deviation
of ctrl-data

Ck as rad-data Standard deviation
of rad-data

0 24864 23994 13870 10771
2 112059 99399 41827 31738
5 577111 746142 70969 71813
8 1614381 1462355 122695 158071
12 2601221 1602812 255674 445121
15 4253605 2428198 419105 862375

4.1. The control data

The dataset of 19 control mice without treatment, their mean values Ck as ctrl-data, and standard
deviation are illustrated in Figure 2.
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t [day]
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C
(t
)
[−

]

×10
6

19 untreated mice
Ck

Figure 2. The dynamics of cancer cells in 19 untreated mice (gray lines), the mean value Ck

as ctrl-data (marked blue line), and blue bars showing the standard deviation.

0 2 5 8 12 15

t [day]

0

1
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3

4

5

6

7

C
(t
)
[−

]

×10
6

Ck

Ca∗,b∗(t)

Figure 3. The graph of predicted dynamics of cancer cells’ mean value with the estimated
values of a∗ and b∗ parameters Ca∗,b∗(t) is dashed brown line, while the blue marked line is
the experimental data Ck as ctrl-data and the blue bars are the standard deviation.

The parameter estimation problem was calculated using data at 6 time points, distributed unevenly
during the 15 days (see Table 1). Upper and lower limits of acceptable parameter values were set as
[−1, 0] and [0, 1], respectively, to a and b. The initial guess for the parameters was chosen randomly,
and the result did not change at all on each code compilation (more than 20 times). The numerical
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results of solving the parameter estimation problem using ctrl-data as additional information are given
in Table 2 and Figure 3.

Table 2. Identified parameters a∗ and b∗ of Ck as ctrl-data.

Parameter Value Upper CI Lower CI Units
a∗ −1.13 · 10−7 −0.41 · 10−7 −1.84 · 10−7 [day−1]
b∗ 0.50005 0.62 0.37 [day−1]

Figure 3 presents the experimental data and the predicted number of cancer cells. The blue marked
line shows the actual dynamics of changes in the number of cancer cells according to the experimental
data Ck, and the brown dashed line represents the predicted dynamics of cancer cells’ mean value
Ca∗,b∗(t) obtained by the estimated parameters a∗ and b∗. Meanwhile, the blue bars accompanying the
blue circles indicate the standard deviation of the data.

0 0.5 1 1.5 2

χb∗ [day] ×10
7

0

0.5

1

1.5

2

2.5

3

3.5

χ
a
∗
[d
a
y
]

×10
13

χa∗ [day] vs. χb∗ [day]

Figure 4. Dependency of the sensitivity functions.

The dependence of the sensitivity of the function Ca,b for each time instant to the parameter a∗

on the sensitivity to the parameter b∗ is illustrated in Figure 4, where the graph shows an upward
curve that increases slowly at first and then accelerates, indicating a nonlinear relationship between the
parameters. Once a∗ and b∗ are estimated, the constant C∞ can be calculated with M = 2 (see [19]).
According to (3.8), we have:

C0
max = 2C∞ = −2

b∗

a∗
. (4.1)

Using (3.9), we obtain the following: α0 = 2b∗,

g0 = b∗.
(4.2)
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Table 3. Identified parameters p0 of ctrl-data Ck.

Parameter Value Units
α0 1.0001 [day−1]
C0

max 8814147 [−]
g0 0.50005 [day−1]

0 2 5 8 12 15

t [day]

0

2

4

6

8

C
(t
)
[−

]

×10
6

CTay(t)
C(p0, t)
Ck

Figure 5. Illustration of solution C(p0, t) with estimated parameters p0 = (α0,C0
max, g

0) in
comparison with experimental data Ck as ctrl-data, with indicated sensitivity region CTay(t)
and standard deviation bars.

Thus, the solution C (p0, t), which depends on the obtained parameters p0 = (α0,C0
max, g

0) from
Table 3, is represented in Figure 5 as a dash-dotted dark red line, whereas the blue line with markers
is the experimental data ctrl-data Ck. The gray shaded area indicates the sensitivity region, reflecting
the range of possible model values when varying the parameters in their confidence interval. The
blue bars, representing the standard deviation, demonstrate the spread of the experimental data. The
graph illustrates the correspondence of the analytical solution to the experimental data and shows the
influence of the parameters on the model predictions. The magnitude of the model sensitivity is higher
than the measurement standard deviation for t = { 12 , 15 } days. It indicates that the uncertainty on
the retrieved parameters is too high to have a reliable model. Indeed, the predictions of the model
tend to reach a threshold around 4 · 10 6, corresponding to the stationary state of the model, while the
experimental data indicates a phase of growth. To improve the estimation, additional experimental data
for t > 15 days are required.

4.2. The 223Ra data

To study 223Ra treatment applied to 12 mice, we used their mean values Ck as rad-data and standard
deviation (Figure 6), considering 2 variants of mathematical models: with constant 223Ra exposure (2.3)
and taking into account 223Ra decay over time (2.4).
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t [day]

0

0.5

1

1.5

2

2.5

3

C
(t
)
[−

]

×10
6

12 treated mice
Ck

Figure 6. The dynamics of cancer cells in 12 treated mice (gray lines), the mean value Ck as
rad-data of 12 data sets (blue marked line), and blue bars representing the standard deviation.

4.2.1. The 223Ra data with constant mitosis and apoptosis rates

To solve the parameter estimation problem and identify the parameters prad = (αrad,Crad
max, g

rad),
here the same protocol was used as for the control data (subsection 4.1). However in order to take
into account the assumptions that αrad < α0 and grad > g0 from (2.3) and Remark 1, the parameter
Crad

max was estimated with M = 3 in (3.7). Then the obtained values of the required parameters prad =

(αrad,Crad
max, g

rad) are presented in Table 4.

Table 4. Identified parameters prad of rad-data.

Parameter Value
αrad 0.84677
Crad

max 2178142
grad 0.56452

Figure 7 shows the dynamics of cancer cell growth under the influence of 223Ra over time, where
the blue line with markers represents the experimental data Ck as rad-data, and the green dash-dotted
line is the solution C(prad, t) of the equation (2.5) taking into account the radiation effect, depending on
the parameters prad = (αrad,Crad

max, g
rad). The gray area and blue bars are the model sensitivity area and

measurement standard deviation, respectively. The solution C(prad, t) completely repeats the growth
of the experimental data, which means that the estimated parameters are very satisfying. Furthermore,
the magnitude of the model sensitivity is lower than the measurement standard deviation for all time.
It indicates that the uncertainty on the retrieved parameters is small and that the model is reliable for
this time interval.
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CTay(t)
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Figure 7. Illustration of solution C(prad, t) with estimated parameters prad = (αrad,Crad
max, g

rad)
in comparison with experimental data Ck as rad-data, with indicated sensitivity region
CTay(t) and standard deviation bars.

4.2.2. The 223Ra data with taking into account decay over time

Let us now consider an alternative and more accurate model that takes into account the decay of
223Ra, namely equation (2.5) with diffusion, mitosis, and apoptosis parameters satisfying (2.4). There
is no analytical solution for this model, so the solution of the direct problem was obtained in MATLAB
using the ODE45 function, which implements the explicit Runge-Kutta method of the 4th and 5th order
with a variable step.

For Eq (2.4), the required values of α0 and g0 are shown in Table 3, the value of carrying capacity
Crad

max is shown in Table 4, and τ (day) was obtained from the following equation [23, 24]:

τ =
T1/2

ln 2
= 15.89, (4.3)

where T1/2 = 11 days, since it is the half-life time period of 223Ra. We estimate the value of parameter
r by minimizing an objective function similar to (3.14). Note that the obtained solution of this model
is called C(pr, t), with pr = (r,Crad

max, τ).

Table 5. The values of the estimated parameter of treatment aggressiveness r.

Parameter Value Upper CI Lower CI Units
r 0.23 0.21 0.25 [−]
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Figure 8. The comparison of the growth of cancer cells over time for different models: with
constant rates (green dash-dotted line) and with time dependence (purple dashed line).

Figure 8 illustrates a comparison of the growth of cancer cells over time for different models: with
constant rates and with time-dependent rates. The blue marked line shows the experimental data Ck

as rad-data, C(pr, t) (the purple dashed line) corresponds to the model with time dependence of the
decay of 223Ra, and C(prad, t) (the green dash-dotted line) corresponds to the model without taking
into account the decay over time. The gray area and blue bars are the model sensitivity area and
measurement standard deviation, respectively.

Figure 9 shows changes in the values of mitosis and apoptotic rates for different scenarios: without
treatment, with treatment employing constant coefficients, and with treatment considering time-
dependence coefficients according to 223Ra decay. The values of α0 and g0 remain constant throughout
the observation period, as do the values of the parameters for the treatment with constant coefficients
(αrad and grad). Whereas the parameters α(t) and g(t) show a dynamic change over time: α(t) tends
to increase, and g(t) to decrease. This reflects the time dependence of the treatment effect, where
the treatment parameters change. The graph shows that at the initial time points, the effect of the
therapy slows the mitosis rate α(t) of cancer cells (at a level of about 0.8, compared to 0.84 of αrad)
and increases the rate of their apoptosis g(t) (approximately 0.66 versus 0.56 of grad), while by the end
of the period, mitosis increases to a level at about 0.92 (compared to 1.0001 of α0 without treatment),
and apoptosis falls to a level of about 0.54, slightly lower than the value of grad.

To prove the usage of the time-dependent trend of 223Ra and its activity in our mathematical model,
the simulation was done until the 50th day and the results of the estimation (Figure 10) replicated the
in vivo and in silico tests of [10], reaching nearly 0% effectiveness by days 45 − 50 (g(t = 50) is very
close to g0). Furthermore, as can be seen from the graph, the effect of the 223Ra application decreased
by 50% by day 11, which corresponds to its half-life time [10, 12].
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treatment, represented by the dark orange solid line), grad (with treatment with constant
coefficients, represented by the blue dashed line), and g(t) (with treatment with time-
dependent coefficients, represented by the purple dotted line).
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5. Tumor growth simulations with the PDE model

In section 4, the parameters p = (α(t),Cmax, g(t)) in (2.1) have been identified, under the assumption
that the diffusion coefficient ρ is small, for 3 cases: without treatment p0 (see Table 3), with constant
treatment prad (see Table 4), and with time-dependent treatment pr (see (4.3) and Table 5). These
results establish a basis to solve the partial differential equation (2.1).

Numerical modeling of the PDE problem was performed in Python (version 3.10.12) using the
FEniCS package (2019.2.0.13.dev0) [2], which uses the finite element method (FEM) [9, 34]. The
calculation was performed in a square region Ω = [−1, 1]cm × [−1, 1]cm, and the mesh was obtained
by dividing Ω into 2 · 104 triangular elements.
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Figure 11. Color map of the density (number) of the cancer-cell distribution in the bone-
cancer interaction region at t = 0. The blue area represents bone, while the ellipsoidal red
area represents cancer. The scale on the right displays the numerical density values, ranging
from 0 to 25000.

We discretized Eq (2.1) in space with a P2-finite element method, and in time with an implicit Euler
scheme. The time step was chosen to be fixed and equal to ∆t = 0.1 (day). We chose the carrying
capacity Ĉmax = 106 and the diffusion coefficients ρ0 = ρrad = 10−4 cm2/day−1. The tumor geometry
was initially described as an ellipse (see Table 6), and the initial total number of cancer cells was taken
equal to the initial number of cancer cells of ctrl-data, evenly distributed on the area of the ellipse.

The density (number) of the cancer-cell distribution in the region of interest at time t = 0 is shown
in Figure 11. The blue area corresponds to bone tissue. In the center of the image, an ellipsoidal area
is highlighted, colored in red tones, which corresponds to the cancer tumor zone.

Figures 12−14 illustrate the simulation results at time t = 15 day in the case of no treatment (Figure
12), meaning the use of parameters p0, with constant treatment (Figure 13) using parameters prad, and
time-dependent 223Ra treatment (Figure 14) using parameters pr. To illustrate the difference in the
simulation results of all 3 cases, the numerical density values were rescaled from the range 0-25000 to
the range 0-350000.
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Figure 12. Color map of the density (number) of the cancer-cell distribution in the bone-
cancer interaction region at t = 15 day without treatment (p0). The blue area represents
bone with low density values, while the ellipsoidal red area represents cancer with increased
density. The scale on the right displays the numerical density values, ranging from 0 to
350000.
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Figure 13. Color map of the density (number) of the cancer-cell distribution in the bone-
cancer interaction region at t = 15 day with constant treatment (prad).

As can be seen, the greatest tumor growth was demonstrated in Figure 12, where there was no
treatment. The clearly defined density of the ellipsoid area exceeding 300000 units indicates disease
progression, and the bright contrast between cancer cells and bone tissue indicates the absence of
regression. The continuous 223Ra treatment (Figure 13) shows a significant impact on the invasion and
growth of the tumor, due to less defined contours and a decline in the intensity of the red area. The
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treatment has a visible effect on the tumor, slowing down further growth.
The most pronounced treatment effectiveness compared to the previous ones is demonstrated in

Figure 14 by the time-dependent treatment scenario, as indicated by the small tumor size, very blurred
boundaries, and a weak area with low density, with maximum values less than 150000 units.
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Figure 14. Color map of the density (number) of the cancer-cell distribution in the bone-
cancer interaction region at t = 15 day with time-dependent 223Ra treatment (pr).

Table 6 presents the radii of the ellipsoidal regions representing the tumor in the three scenarios, at
time t = 15 day. The comparison shows that no treatment (p0) results in a large tumor invasion, while
constant 223Ra treatment (prad) and time-dependent 223Ra treatment (pr) have a significant positive
effect, reducing the tumor growth.

Table 6. Comparison of radii values at t = 0 and t = 15 days on 3 scenarios.

Radius t = 0 t = 15 t = 15 t = 15 Direction Units
p0 prad pr

r1 0.375 0.553 0.489 0.438 x-axis [cm]
r2 0.075 0.273 0.213 0.169 y-axis [cm]

6. Conclusions

We developed a versatile PDE model to investigate the effects of 223Ra therapy on PCa bone
metastasis. Mitosis and apoptosis coefficients of the model have been calibrated using data from 31
mice with metastatic lesions, both treated and untreated. While available ABMs offer biologically
precise results, they are limited to small scales, such as individual tumors. In contrast, our PDE model
operates on a larger scale encompassing the entire affected organ while also significantly reducing
computational costs. Importantly, our model accurately reflects experimental realities, making it
a more efficient and scalable alternative to existing ABM approaches in studying bone metastasis
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response to 223Ra. Future work will address the model’s consideration of the distance from bone in
223Ra efficacy.
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