Research article

Perturbed uncertain differential equations and perturbed reflected canonical process

  • Received: 03 January 2021 Accepted: 03 June 2021 Published: 28 June 2021
  • MSC : 26A33, 60G15, 60H15

  • In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the reflection principle and a successive approximation method, we obtain the existence and uniqueness of the solution to the considered equations. As an application, we establish the existence and uniqueness of some perturbed reflected canonical process.

    Citation: Yuanbin Ma, Zhi Li. Perturbed uncertain differential equations and perturbed reflected canonical process[J]. AIMS Mathematics, 2021, 6(9): 9647-9659. doi: 10.3934/math.2021562

    Related Papers:

  • In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the reflection principle and a successive approximation method, we obtain the existence and uniqueness of the solution to the considered equations. As an application, we establish the existence and uniqueness of some perturbed reflected canonical process.



    加载中


    [1] P. Carmona, F. Petit, M. Yor, Beta variables as times spent in $[0, \infty)$ by certain perturbed Brownian motions, J. London Math. Soc., 58 (1998), 239–256. doi: 10.1112/S0024610798006401
    [2] J. Norris, L. Rogers, D. Williams, Self-avoiding random walk: A Brownian motion model with local time drift, Probab. Theory Rel., 74 (1987), 271–287. doi: 10.1007/BF00569993
    [3] B. Davis, Brownian motion and random walk perturbed at extrema, Prob. Theory Rel., 113 (1999), 501–518. doi: 10.1007/s004400050215
    [4] P. Carmona, F. Petit, M. Yor, Some extentions of the arcsine law as partial consequences of the scaling property of Brownian motion, Probab. Theory. Rel., 100 (1994), 1–29. doi: 10.1007/BF01204951
    [5] M. Perman, W. Werner, Perturbed Brownian motions, Probab. Theory Rel., 108 (1997), 357–383. doi: 10.1007/s004400050113
    [6] L. Chaumont, R. A. Doney, Some calculations for doubly perturbed Brownian motion, Stoch. Proc. Appl., 85 (2000), 61–74. doi: 10.1016/S0304-4149(99)00065-4
    [7] R. A. Doney, T. Zhang, Perturbed Skorohod equations and perturbed reflected diffusion processes, Ann. Inst. H. Poincaré Probab. Statist, 41 (2005), 107–121. doi: 10.1016/j.anihpb.2004.03.005
    [8] B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16.
    [9] B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10.
    [10] B. Liu, Toward uncertain finance theory, J. Uncertainty Anal. Appl., 1 (2013), 1–15. doi: 10.1186/2195-5468-1-1
    [11] Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics Syst., 41 (2010), 535–547. doi: 10.1080/01969722.2010.511552
    [12] Y. Zhu, Uncertain Optimal Control, Singapore: Springer, 2019.
    [13] X. Yang, J. Gao, Uncertain differential games with applications to capitallism, J. Uncertainty Anal. Appl., 1 (2013), 1–11. doi: 10.1186/2195-5468-1-1
    [14] Z. Zhang, X. Yang, Uncertain population model, Soft Comput., 24 (2020), 2417–2423.
    [15] X. Yang, K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Ma., 16 (2017), 379–403. doi: 10.1007/s10700-016-9253-9
    [16] X. Yang, J. Gao, Y. Ni, Resolution principle in uncertain random environment, IEEE Trans. Fuzzy Syst., 26 (2017), 1578–1588.
    [17] L. Jia, W. Dai, Uncertain forced libration equation of spring mass system, Technical Report, 2018.
    [18] Z. Li, Y. Sheng, Z. Teng, H. Miao, An uncertian differential equation for SIS epidemic model, J. Int. Fuzzy Sys., 33 (2017), 2317–2327.
    [19] B. Liu, Some research problems in uncertainy theory, J. Uncertain Syst., 3 (2009), 3–10.
    [20] B. Liu, Uncertainty Theory, Berlin: Springer, 2007.
    [21] J. C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: Modeling, method and analysis, Chaos Soliton Fract., 45 (2012), 279–293. doi: 10.1016/j.chaos.2011.12.009
    [22] X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Ma., 9 (2010), 69–81. doi: 10.1007/s10700-010-9073-2
    [23] J. Luo, Doubly perturbed jump-diffusion processes, J. Math. Anal. Appl., 351 (2009), 147–151. doi: 10.1016/j.jmaa.2008.09.024
    [24] W. Mao, L. Hu, X. Mao, Approximate solutions for a class of doubly perturbed stochastic differential equations, Adv. Differ. Equ-Ny, 2018 (2018), 1–17. doi: 10.1186/s13662-017-1452-3
    [25] R. Khas'minskii, A limit theorem for the solutions of differential equations with random right-hand sides, Theor. Prob. Appl., 11 (1966), 390–406. doi: 10.1137/1111038
    [26] B. Liu, Theory and practice of uncertain programming, Berlin: Springer, 2009.
    [27] L. Hu, Y. Ren, Doubly perturbed neutral stochastic functional equations, J. Comput. Appl. Mat., 231 (2009), 319–326. doi: 10.1016/j.cam.2009.02.077
    [28] R. A Doney, T. Zhang, Perturbed Skorohod equation and perturbed reflected diffusion processes, Ann. Inst. H. Poincaré Probab. Statist, 41 (2005), 107–121. doi: 10.1016/j.anihpb.2004.03.005
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2014) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog