In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the reflection principle and a successive approximation method, we obtain the existence and uniqueness of the solution to the considered equations. As an application, we establish the existence and uniqueness of some perturbed reflected canonical process.
Citation: Yuanbin Ma, Zhi Li. Perturbed uncertain differential equations and perturbed reflected canonical process[J]. AIMS Mathematics, 2021, 6(9): 9647-9659. doi: 10.3934/math.2021562
In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the reflection principle and a successive approximation method, we obtain the existence and uniqueness of the solution to the considered equations. As an application, we establish the existence and uniqueness of some perturbed reflected canonical process.
[1] | P. Carmona, F. Petit, M. Yor, Beta variables as times spent in $[0, \infty)$ by certain perturbed Brownian motions, J. London Math. Soc., 58 (1998), 239–256. doi: 10.1112/S0024610798006401 |
[2] | J. Norris, L. Rogers, D. Williams, Self-avoiding random walk: A Brownian motion model with local time drift, Probab. Theory Rel., 74 (1987), 271–287. doi: 10.1007/BF00569993 |
[3] | B. Davis, Brownian motion and random walk perturbed at extrema, Prob. Theory Rel., 113 (1999), 501–518. doi: 10.1007/s004400050215 |
[4] | P. Carmona, F. Petit, M. Yor, Some extentions of the arcsine law as partial consequences of the scaling property of Brownian motion, Probab. Theory. Rel., 100 (1994), 1–29. doi: 10.1007/BF01204951 |
[5] | M. Perman, W. Werner, Perturbed Brownian motions, Probab. Theory Rel., 108 (1997), 357–383. doi: 10.1007/s004400050113 |
[6] | L. Chaumont, R. A. Doney, Some calculations for doubly perturbed Brownian motion, Stoch. Proc. Appl., 85 (2000), 61–74. doi: 10.1016/S0304-4149(99)00065-4 |
[7] | R. A. Doney, T. Zhang, Perturbed Skorohod equations and perturbed reflected diffusion processes, Ann. Inst. H. Poincaré Probab. Statist, 41 (2005), 107–121. doi: 10.1016/j.anihpb.2004.03.005 |
[8] | B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16. |
[9] | B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10. |
[10] | B. Liu, Toward uncertain finance theory, J. Uncertainty Anal. Appl., 1 (2013), 1–15. doi: 10.1186/2195-5468-1-1 |
[11] | Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics Syst., 41 (2010), 535–547. doi: 10.1080/01969722.2010.511552 |
[12] | Y. Zhu, Uncertain Optimal Control, Singapore: Springer, 2019. |
[13] | X. Yang, J. Gao, Uncertain differential games with applications to capitallism, J. Uncertainty Anal. Appl., 1 (2013), 1–11. doi: 10.1186/2195-5468-1-1 |
[14] | Z. Zhang, X. Yang, Uncertain population model, Soft Comput., 24 (2020), 2417–2423. |
[15] | X. Yang, K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Ma., 16 (2017), 379–403. doi: 10.1007/s10700-016-9253-9 |
[16] | X. Yang, J. Gao, Y. Ni, Resolution principle in uncertain random environment, IEEE Trans. Fuzzy Syst., 26 (2017), 1578–1588. |
[17] | L. Jia, W. Dai, Uncertain forced libration equation of spring mass system, Technical Report, 2018. |
[18] | Z. Li, Y. Sheng, Z. Teng, H. Miao, An uncertian differential equation for SIS epidemic model, J. Int. Fuzzy Sys., 33 (2017), 2317–2327. |
[19] | B. Liu, Some research problems in uncertainy theory, J. Uncertain Syst., 3 (2009), 3–10. |
[20] | B. Liu, Uncertainty Theory, Berlin: Springer, 2007. |
[21] | J. C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: Modeling, method and analysis, Chaos Soliton Fract., 45 (2012), 279–293. doi: 10.1016/j.chaos.2011.12.009 |
[22] | X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Ma., 9 (2010), 69–81. doi: 10.1007/s10700-010-9073-2 |
[23] | J. Luo, Doubly perturbed jump-diffusion processes, J. Math. Anal. Appl., 351 (2009), 147–151. doi: 10.1016/j.jmaa.2008.09.024 |
[24] | W. Mao, L. Hu, X. Mao, Approximate solutions for a class of doubly perturbed stochastic differential equations, Adv. Differ. Equ-Ny, 2018 (2018), 1–17. doi: 10.1186/s13662-017-1452-3 |
[25] | R. Khas'minskii, A limit theorem for the solutions of differential equations with random right-hand sides, Theor. Prob. Appl., 11 (1966), 390–406. doi: 10.1137/1111038 |
[26] | B. Liu, Theory and practice of uncertain programming, Berlin: Springer, 2009. |
[27] | L. Hu, Y. Ren, Doubly perturbed neutral stochastic functional equations, J. Comput. Appl. Mat., 231 (2009), 319–326. doi: 10.1016/j.cam.2009.02.077 |
[28] | R. A Doney, T. Zhang, Perturbed Skorohod equation and perturbed reflected diffusion processes, Ann. Inst. H. Poincaré Probab. Statist, 41 (2005), 107–121. doi: 10.1016/j.anihpb.2004.03.005 |