Research article Special Issues

BO-B&B: A hybrid algorithm based on Bayesian optimization and branch-and-bound for discrete network design problems

  • Received: 15 July 2022 Revised: 16 August 2022 Accepted: 24 August 2022 Published: 13 September 2022
  • A discrete network design problem (DNDP) is conventionally formulated as an analytical bi-level programming problem to acquire an optimal network design strategy for an existing traffic network. In recent years, multimodal network design problems have benefited from simulation-based models. The nonconvexity and implicity of bi-level DNDPs make it challenging to obtain an optimal solution, especially for simulation-related models. Bayesian optimization (BO) has been proven to be an effective method for optimizing the costly black-box functions of simulation-based continuous network design problems. However, there are only discrete inputs in DNDPs, which cannot be processed using standard BO algorithms. To address this issue, we develop a hybrid method (BO-B&B) that combines Bayesian optimization and a branch-and-bound algorithm to deal with discrete variables. The proposed algorithm exploits the advantages of the cutting-edge machine-learning parameter-tuning technique and the exact mathematical optimization method, thereby balancing efficiency and accuracy. Our experimental results show that the proposed method outperforms benchmarking discrete optimization heuristics for simulation-based DNDPs in terms of total computational time. Thus, BO-B&B can potentially aid decision makers in mapping practical network design schemes for large-scale networks.

    Citation: Ruyang Yin, Jiping Xing, Pengli Mo, Nan Zheng, Zhiyuan Liu. BO-B&B: A hybrid algorithm based on Bayesian optimization and branch-and-bound for discrete network design problems[J]. Electronic Research Archive, 2022, 30(11): 3993-4014. doi: 10.3934/era.2022203

    Related Papers:

  • A discrete network design problem (DNDP) is conventionally formulated as an analytical bi-level programming problem to acquire an optimal network design strategy for an existing traffic network. In recent years, multimodal network design problems have benefited from simulation-based models. The nonconvexity and implicity of bi-level DNDPs make it challenging to obtain an optimal solution, especially for simulation-related models. Bayesian optimization (BO) has been proven to be an effective method for optimizing the costly black-box functions of simulation-based continuous network design problems. However, there are only discrete inputs in DNDPs, which cannot be processed using standard BO algorithms. To address this issue, we develop a hybrid method (BO-B&B) that combines Bayesian optimization and a branch-and-bound algorithm to deal with discrete variables. The proposed algorithm exploits the advantages of the cutting-edge machine-learning parameter-tuning technique and the exact mathematical optimization method, thereby balancing efficiency and accuracy. Our experimental results show that the proposed method outperforms benchmarking discrete optimization heuristics for simulation-based DNDPs in terms of total computational time. Thus, BO-B&B can potentially aid decision makers in mapping practical network design schemes for large-scale networks.



    加载中


    [1] R. Z. Farahani, E. Miandoabchi, W. Y. Szeto, H. Rashidi, A review of urban transportation network design problems, Eur. J. Oper. Res., 229 (2013), 281–302. https://doi.org/10.1016/j.ejor.2013.01.001 doi: 10.1016/j.ejor.2013.01.001
    [2] E. Chen, Z. Ye, C. Wang, M. Xu, Subway passenger flow prediction for special events using smart card data, IEEE Trans. Intell. Transp. Syst., 21 (2019), 1109–1120. https://doi.org/10.1109/TITS.2019.2902405 doi: 10.1109/TITS.2019.2902405
    [3] H. Yang, M. G. H. Bell, Models and algorithms for road network design: a review and some new developments, Transp. Rev., 18 (1998), 257–278. https://doi.org/10.1080/01441649808717016 doi: 10.1080/01441649808717016
    [4] S. Wang, Q. Meng, H. Yang, Global optimization methods for the discrete network design problem, Transp. Res. Part B Methodol., 50 (2013), 42–60. https://doi.org/10.1016/j.trb.2013.01.006 doi: 10.1016/j.trb.2013.01.006
    [5] D. Z. Wang, H. Liu, W. Y. Szeto, A novel discrete network design problem formulation and its global optimization solution algorithm, Transp. Res. Part E Logist. Transp. Rev., 79 (2015), 213–230. https://doi.org/10.1016/j.tre.2015.04.005 doi: 10.1016/j.tre.2015.04.005
    [6] G. Wang, Z. Gao, M. Xu, Integrating link-based discrete credit charging scheme into discrete network design problem, Eur. J. Oper. Res., 272 (2019), 176–187. https://doi.org/10.1016/j.ejor.2018.05.069 doi: 10.1016/j.ejor.2018.05.069
    [7] D. Huang, J. Xing, Z. Liu, Q. An, A multi-stage stochastic optimization approach to the stop-skipping and bus lane reservation schemes, Transportmetrica A: Transp. Sci., 17 (2021), 1272–1304. https://doi.org/10.1080/23249935.2020.1858206 doi: 10.1080/23249935.2020.1858206
    [8] D. Huang, Y. Wang, S. Jia, Z. Liu, S. Wang, A Lagrangian relaxation approach for the electric bus charging scheduling optimization problem, Transportmetrica A: Transp. Sci., 2022 (2022), 1–24. https://doi.org/10.1080/23249935.2021.2023690
    [9] L. J. Leblanc, An algorithm for the discrete network design problem, Transp. Sci., 9 (1975), 183–199. https://doi.org/10.1287/trsc.9.3.183 doi: 10.1287/trsc.9.3.183
    [10] Q. Cheng, Y. Chen, Z. Liu, A bi-level programming model for the optimal lane reservation problem, Expert Syst. Appl., 189 (2022), 116147. https://doi.org/10.1016/j.eswa.2021.116147 doi: 10.1016/j.eswa.2021.116147
    [11] S. A. Bagloee, M. Sarvi, M. Patriksson, A hybrid branch-and-bound and benders decomposition algorithm for the network design problem, Comput. Aided Civ. Infrastruct. Eng., 32 (2017), 319–343. https://doi.org/10.1111/mice.12224 doi: 10.1111/mice.12224
    [12] Q. Cheng, Z. Liu, Y. Lin, X. S. Zhou, An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship, Transp. Res. Part B Methodol., 153 (2021), 246–271. https://doi.org/10.1016/j.trb.2021.09.004 doi: 10.1016/j.trb.2021.09.004
    [13] Q. Cheng, Z. Liu, W. Y. Szeto, A cell-based dynamic congestion pricing scheme considering travel distance and time delay, Transportmetrica B: Transp. Dyn., 7 (2019), 1286–1304. https://doi.org/10.1080/21680566.2019.1602487 doi: 10.1080/21680566.2019.1602487
    [14] Q. Cheng, Z. Liu, J. Guo, X. Wu, R. Pendyala, B. Belezamo, et al., Estimating key traffic state parameters through parsimonious spatial queue models, Transp. Res. Part C Emerging Technol., 137 (2022), 103596. https://doi.org/10.1016/j.trc.2022.103596
    [15] C. Iliopoulou, K. Kepaptsoglou, E. Vlahogianni, Metaheuristics for the transit route network design problem: a review and comparative analysis, Public Transp., 11 (2019), 487–521. https://doi.org/10.1007/s12469-019-00211-2 doi: 10.1007/s12469-019-00211-2
    [16] H. Poorzahedy, O. M. Rouhani, Hybrid meta-heuristic algorithms for solving network design problem, Eur. J. Oper. Res., 182 (2007), 578–596. https://doi.org/10.1016/j.ejor.2006.07.038 doi: 10.1016/j.ejor.2006.07.038
    [17] L. Ahmed, C. Mumford, A. Kheiri, Solving urban transit route design problem using selection hyper-heuristics, Eur. J. Oper. Res., 274(2019), 545–559. https://doi.org/10.1016/j.ejor.2018.10.022 doi: 10.1016/j.ejor.2018.10.022
    [18] Y. Shi, Z. Liu, Z. Wang, J. Ye, W. Tong, Z. Liu, An integrated traffic and vehicle co-simulation testing framework for connected and autonomous vehicles, IEEE Intell. Transp. Syst. Mag., 2022 (2022), 2–15. https://doi.org/10.1109/MITS.2022.3188566 doi: 10.1109/MITS.2022.3188566
    [19] P. I. Frazier, A tutorial on Bayesian optimization, preprint, arXiv: 1807.02811.
    [20] L. Du, R. Gao, P. N. Suganthan, D. Z. Wang, Bayesian optimization based dynamic ensemble for time series forecasting, Inf. Sci., 591 (2022), 155–175. https://doi.org/10.1016/j.ins.2022.01.010 doi: 10.1016/j.ins.2022.01.010
    [21] R. Yin, Z. Liu, N. Zheng, A simulation-based model for continuous network design problem using Bayesian optimization, IEEE Trans. Intell. Transp. Syst., 2022 (2022), 1–16. https://doi.org/10.1109/TITS.2022.3176918
    [22] L. Yang, Z. Di, M. M. Dessouky, Z. Gao, J. Shi, Collaborative optimization of last-train timetables with accessibility: A space-time network design based approach, Transp. Res. Part C Emerging Technol., 114 (2020), 572–597. https://doi.org/10.1016/j.trc.2020.02.022 doi: 10.1016/j.trc.2020.02.022
    [23] Z. Gao, J. Wu, H. Sun, Solution algorithm for the bi-level discrete network design problem, Transp. Res. Part B Methodol., 39 (2005), 479–495. https://doi.org/10.1016/j.trb.2004.06.004 doi: 10.1016/j.trb.2004.06.004
    [24] H. Poorzahedy, M. A. Turnquist, Approximate algorithms for the discrete network design problem, Transp. Res. Part B Methodol., 16 (1982), 45–55. https://doi.org/10.1016/0191-2615(82)90040-6 doi: 10.1016/0191-2615(82)90040-6
    [25] H. Farvaresh, M. M. Sepehri, A branch and bound algorithm for bi-level discrete network design problem, Netw. Spat. Econ., 13 (2013), 67–106. https://doi.org/10.1007/s11067-012-9173-3 doi: 10.1007/s11067-012-9173-3
    [26] P. Luathep, A. Sumalee, W. H. Lam, Z. C. Li, H. K. Lo, Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach, Transp. Res. Part B Methodol., 45 (2011), 808–827. https://doi.org/10.1016/j.trb.2011.02.002 doi: 10.1016/j.trb.2011.02.002
    [27] H. Farvaresh, M. M. Sepehri, A single-level mixed integer linear formulation for a bi-level discrete network design problem, Transp. Res. Part E Logist. Transp. Rev., 47 (2011), 623–40. https://doi.org/10.1016/j.tre.2011.02.001 doi: 10.1016/j.tre.2011.02.001
    [28] L. Zhang, H. Yang, D. Wu, D. Wang, Solving a discrete multimodal transportation network design problem, Transp. Res. Part C Emerging Technol., 49 (2014), 73–86. https://doi.org/10.1016/j.trc.2014.10.008 doi: 10.1016/j.trc.2014.10.008
    [29] P. Fontaine, S. Minner, Benders decomposition for discrete-continuous linear bilevel problems with application to traffic network design, Transp. Res. Part B Methodol., 70 (2014), 163–172. https://doi.org/10.1016/j.trb.2014.09.007 doi: 10.1016/j.trb.2014.09.007
    [30] P. Fontaine, S. Minner, A dynamic discrete network design problem for maintenance planning in traffic networks, Ann. Oper. Res., 253 (2017), 757–772. https://doi.org/10.1007/s10479-016-2171-y doi: 10.1007/s10479-016-2171-y
    [31] S. Ding, Z. Wang, J. Zhang, F. Han, X. Gu, Time delay system identification using controlled recurrent neural network and discrete Bayesian optimization, Appl. Intell., 52 (2022), 8351–8371. https://doi.org/10.1007/s10489-021-02823-3 doi: 10.1007/s10489-021-02823-3
    [32] E. C. Garrido-Merchán, D. Hernández-Lobato, Dealing with categorical and integer-valued variables in Bayesian optimization with gaussian processes, Neurocomputing, 380 (2020), 20–35. https://doi.org/10.1016/j.neucom.2019.11.004
    [33] P. Luong, S. Gupta, D. Nguyen, S. Rana, S. Venkatesh, Bayesian optimization with discrete variables, in Australasian Joint Conference on Artificial Intelligence, Springer, Cham, (2019), 473–484. https://doi.org/10.1007/978-3-030-35288-2_38
    [34] F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in International conference on learning and intelligent optimization, Springer, Berlin, Heidelberg, (2011), 507–523. https://doi.org/10.1007/978-3-642-25566-3_40
    [35] B. Lakshminarayanan, D. M. Roy, Y. W. Teh, Mondrian forests for large-scale regression when uncertainty matters, preprint, arXiv: 1506.03805.
    [36] J. Bergstra, D. Yamins, D. D. Cox, Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms, in Proceedings of the 12th Python in science conference, (2013), 1-8. https://doi.org/10.25080/MAJORA-8B375195-003
    [37] D. E. Boyce, Urban transportation network-equilibrium and design models: recent achievements and future prospects, Environ. Plann. A: Econ. Space, 16 (1984), 1445–1474. https://doi.org/10.1068/a161445 doi: 10.1068/a161445
    [38] T. L. Magnanti, R. T. Wong, Network design and transportation planning: models and algorithms, Transp. Sci., 18 (1984), 1–55. https://doi.org/10.1287/trsc.18.1.1 doi: 10.1287/trsc.18.1.1
    [39] J. Huo, X. Wu, C. Lyu, W. Zhang, Z. Liu, Quantify the road link performance and capacity using deep learning models, IEEE Trans. Intell. Transp. Syst., 2022 (2022), 1–11. https://doi.org/10.1109/TITS.2022.3153397 doi: 10.1109/TITS.2022.3153397
    [40] Z. Chen, X. Li, X. Qu, A continuous model for designing corridor systems with modular autonomous vehicles enabling station-wise docking, Transp. Sci., 56 (2021), 1–30. https://doi.org/10.1287/trsc.2021.1085 doi: 10.1287/trsc.2021.1085
    [41] Z. Liu, C. Lyu, J. Huo, S. Wang, J. Chen, Gaussian process regression for transportation system estimation and prediction problems: the Deformation and a Hat Kernel, IEEE Trans. Intell. Transp. Syst., 2022 (2022), 1–12. https://doi.org/10.1109/TITS.2022.3155527 doi: 10.1109/TITS.2022.3155527
    [42] Y. Liu, F. Wu, C. Lyu, S. Li, J. Ye, X. Qu, Deep dispatching: A deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform, Transp. Res. Part E Logist. Transp. Rev., 161 (2022), 102694. https://doi.org/10.1016/j.tre.2022.102694 doi: 10.1016/j.tre.2022.102694
    [43] Y. Liu, R. Jia, J. Ye, X. Qu, How machine learning informs ride-hailing services: A survey, Commun. Transp. Res., 2 (2022), 100075. https://doi.org/10.1016/j.commtr.2022.100075 doi: 10.1016/j.commtr.2022.100075
    [44] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA, USA, 2006. https://doi.org/10.7551/mitpress/3206.001.0001
    [45] T. Pourmohamad, H. K. Lee, Bayesian optimization via barrier functions, J. Comput. Graphical Stat., 31 (2022), 74–83. https://doi.org/10.1080/10618600.2021.1935270 doi: 10.1080/10618600.2021.1935270
    [46] E. Brochu, V. M. Cora, N. De Freitas, A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning, preprint, arXiv: 1012.2599.
    [47] B. Hao, Y. Abbasi-Yadkori, Z. Wen, G. Cheng, Bootstrapping upper confidence bound, preprint, arXiv: 1906.05247.
    [48] S. Liu, A. B. Owen, Quasi-monte carlo quasi-newton in variational bayes, J. Mach. Learn. Res., 22 (2021), 11043–11065
    [49] P. E. Gill, E. Wong, Sequential quadratic programming methods, in Mixed Integer Nonlinear Programming, Academic press, (2012), 147–224. https://doi.org/10.1007/978-1-4614-1927-3_6
    [50] S. A. C. S. Jayasooriya, Y. M. M. S. Bandara, Measuring the Economic costs of traffic congestion, in 2017 Moratuwa Engineering Research Conference (MERCon), IEEE, Moratuwa, Sri Lanka, (2017), 141–146. https://doi.org/10.1109/MERCon.2017.7980471
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1604) PDF downloads(116) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog