The study proposed an innovative path planning algorithm based on the potential function of a special case of the cobweb resistor network, addressing the path planning problem in globe environments with obstacles. For the non-regular $ m \times n $ cobweb resistor network with arbitrary longitude, we found that by introducing Chebyshev polynomial of the second class, the precise equivalent resistance formulas could be optimized effectively. Compared with the original formula, optimized equivalent resistance formulas significantly reduced the time cost in large-scale data calculations. Furthermore, we have plotted 3D views of the equivalent resistance formulas for several special cases and conducted simulation experiments on the computational efficiency of the original and optimized formulas at different data scales, verifying the superiority of the optimized formulas. These findings provided new perspectives and tools for the computation of resistor networks and the design of path planning algorithms.
Citation: Jianwei Dai, Xiaoyu Jiang, Yanpeng Zheng, Xing Zhang, Zhaolin Jiang. An application of potential function in robot path planning and three optimized formulas for equivalent resistance[J]. Electronic Research Archive, 2024, 32(12): 6733-6760. doi: 10.3934/era.2024315
The study proposed an innovative path planning algorithm based on the potential function of a special case of the cobweb resistor network, addressing the path planning problem in globe environments with obstacles. For the non-regular $ m \times n $ cobweb resistor network with arbitrary longitude, we found that by introducing Chebyshev polynomial of the second class, the precise equivalent resistance formulas could be optimized effectively. Compared with the original formula, optimized equivalent resistance formulas significantly reduced the time cost in large-scale data calculations. Furthermore, we have plotted 3D views of the equivalent resistance formulas for several special cases and conducted simulation experiments on the computational efficiency of the original and optimized formulas at different data scales, verifying the superiority of the optimized formulas. These findings provided new perspectives and tools for the computation of resistor networks and the design of path planning algorithms.
[1] | Z. Tan, Recursion-transform method to a non-regular $m \times n$ cobweb with an arbitrary longitude, Sci. Rep., 5 (2015), 11266. https://doi.org/10.1038/srep11266 doi: 10.1038/srep11266 |
[2] | M. Darwish, H. Boysan, C. Liewald, B. Nickel, A. Gagliardi, A resistor network simulation model for laser-scanning photo-current microscopy to quantify low conductance regions in organic thin films, Org. Electron., 62 (2018), 474–480. https://doi.org/10.1016/j.orgel.2018.08.002 doi: 10.1016/j.orgel.2018.08.002 |
[3] | G. Xu, G. V. Eleftheriades, S. V. Hum, Analysis and design of general printed circuit board metagratings with an equivalent circuit model approach, IEEE Trans. Antennas Propag., 69 (2021), 4657–4669. https://doi.org/10.1109/TAP.2021.3060084 doi: 10.1109/TAP.2021.3060084 |
[4] | P. Willke, T. Kotzott, T. Pruschke, M. Wenderoth, Magnetotransport on the nano scale, Nat. Commun., 8 (2017), 15283. https://doi.org/10.1038/ncomms15283 doi: 10.1038/ncomms15283 |
[5] | Y. Hadad, J. C. Soric, A. B. Khanikaev, A. Alù, Self-induced topological protection in nonlinear circuit arrays, Nat. Electron., 1 (2018), 178–182. https://doi.org/10.1038/s41928-018-0042-z doi: 10.1038/s41928-018-0042-z |
[6] | D. Zhang, B. Yang, J. Tan, Y. Jin, B. Xiao, G. Xian, et al., Impact damage localization and mode identification of CFRPs panels using an electric resistance change method, Compos. Struct., 276 (2021), 114587. https://doi.org/10.1016/j.compstruct.2021.114587 doi: 10.1016/j.compstruct.2021.114587 |
[7] | K. Rhazaoui, Q. Cai, C. S. Adjiman, N. P. Brandon, Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes: Ⅰ. Model development, Chem. Eng. Sci., 99 (2013), 161–170. https://doi.org/10.1016/j.ces.2013.05.030 doi: 10.1016/j.ces.2013.05.030 |
[8] | Z. Zhu, Y. Yin, H. Lyu, Automatic collision avoidance algorithm based on route-plan-guided artificial potential field method, Ocean Eng., 271 (2023), 113737. https://doi.org/10.1016/j.oceaneng.2023.113737 doi: 10.1016/j.oceaneng.2023.113737 |
[9] | Y. Ji, L. Ni, C. Zhao, C. Lei, Y. Du, W. Wang, TriPField: A 3D potential field model and its applications to local path planning of autonomous vehicles, IEEE Trans. Intell. Transp. Syst., 24 (2023), 3541–3554. https://doi.org/10.1109/TITS.2022.3231259 doi: 10.1109/TITS.2022.3231259 |
[10] | Z. Yu, J. Yuan, Y. Li, C. Yuan, S. Deng, A path planning algorithm for mobile robot based on water flow potential field method and beetle antennae search algorithm, Comput. Electr. Eng., 109 (2023), 108730. https://doi.org/10.1016/j.compeleceng.2023.108730 doi: 10.1016/j.compeleceng.2023.108730 |
[11] | C. Mahulea, M. Kloetzer, R. González, Path Planning of Cooperative Mobile Robots Using Discrete Event Models, 1st edition, John Wiley & Sons, 2020. https://doi.org/10.1002/9781119486305 |
[12] | J. Xue, J. Li, J. Chen, C. Tu, A. Stancu, X. Wang, Wall-climbing robot path planning for cylindrical storage tank inspection based on modified A-star algorithm, in 2021 IEEE Far East NDT New Technology & Application Forum (FENDT), (2021), 191–195. https://doi.org/10.1109/FENDT54151.2021.9749634 |
[13] | A. UĞUR, Path planning on a cuboid using genetic algorithms, Inf. Sci., 178 (2008), 113737. https://doi.org/10.1016/j.ins.2008.04.005 doi: 10.1016/j.ins.2008.04.005 |
[14] | G. Kulathunga, A reinforcement learning based path planning approach in 3D environment, Procedia Comput. Sci., 212 (2022), 152–160. https://doi.org/10.1016/j.procs.2022.10.217 doi: 10.1016/j.procs.2022.10.217 |
[15] | H. Mazaheri, S. Goli, A. Nourollah, Path planning in three-dimensional space based on butterfly optimization algorithm, Sci. Rep., 14 (2024), 2332. https://doi.org/10.1038/s41598-024-52750-9 doi: 10.1038/s41598-024-52750-9 |
[16] | G. Kirchhoff, Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird, Ann. Phys.-Berlin, 148 (1847), 497–508. https://doi.org/10.1002/andp.18471481202 doi: 10.1002/andp.18471481202 |
[17] | C. Pennetta, E. Alfinito, L. Reggiani, F. Fantini, I. DeMunari, A. Scorzoni, Biased resistor network model for electromigration failure and related phenomena in metallic lines, Phys. Rev. B, 70 (2004), 174305. https://link.aps.org/doi/10.1103/PhysRevB.70.174305 |
[18] | M. Lai, W. Wang, Fast direct solvers for Poisson equation on 2D polar and spherical geometries, Numer. Methods Partial Differ. Equations, 18 (2002), 56–68. https://doi.org/10.1002/num.1038 doi: 10.1002/num.1038 |
[19] | V. Winstead, C. L. DeMarco, Network essentiality, IEEE Trans. Circuits Syst. I Regul. Pap., 60 (2012), 703–709. https://doi.org/10.1109/TCSI.2012.2215734 |
[20] | G. Ferri, G. Antonini, Ladder-network-based model for interconnects and transmission lines time delay and cutoff frequency determination, J. Circuit. Syst. Comput., 16 (2007), 489–505. https://doi.org/10.1142/S0218126607003794 doi: 10.1142/S0218126607003794 |
[21] | M. Q. Owaidat, R. S. Hijjawi, J. M. Khalifeh, Network with two extra interstitial resistors, Int. J. Theor. Phys., 51 (2012), 3152–3159. https://doi.org/10.1007/s10773-012-1196-5 doi: 10.1007/s10773-012-1196-5 |
[22] | N. S. Izmailian, M. Huang, Asymptotic expansion for the resistance between two maximally separated nodes on an $M$ by $N$ resistor network, Phys. Rev. E, 82 (2010), 011125. https://doi.org/10.1103/PhysRevE.82.011125 doi: 10.1103/PhysRevE.82.011125 |
[23] | D. J. Klein, M. Randić, Resistance distance, J. Math. Chem., 12 (1993), 81–95. https://doi.org/10.1007/BF01164627 |
[24] | Y. Yang, D. J. Klein, A recursion formula for resistance distances and its applications, Discrete Appl. Math., 161 (2013), 2702–2715. https://doi.org/10.1016/j.dam.2012.07.015 doi: 10.1016/j.dam.2012.07.015 |
[25] | D. J. Klein, Centrality measure in graphs, J. Math. Chem., 47 (2010), 1209–1223. https://doi.org/10.1007/s10910-009-9635-0 |
[26] | N. Chair, The effective resistance of the $N$-cycle graph with four nearest neighbors, J. Stat. Phys., 154 (2014), 1177–1190. https://doi.org/10.1007/s10955-014-0916-z doi: 10.1007/s10955-014-0916-z |
[27] | H. Chen, F. Zhang, Resistance distance local rules, J. Math. Chem., 44 (2008), 405–417. https://doi.org/10.1007/s10910-007-9317-8 doi: 10.1007/s10910-007-9317-8 |
[28] | S. Katsura, S. Inawashiro, Lattice Green's functions for the rectangular and the square lattices at arbitrary points, J. Math. Phys., 12 (1971), 1622–1630. https://doi.org/10.1063/1.1665785 doi: 10.1063/1.1665785 |
[29] | W. Kook, Combinatorial Green's function of a graph and applications to networks, Adv. Appl. Math., 46 (2011), 417–423. https://doi.org/10.1016/j.aam.2010.10.006 doi: 10.1016/j.aam.2010.10.006 |
[30] | J. Cserti, Application of the lattice Green's function for calculating the resistance of an infinite network of resistors, Am. J. Phys., 68 (2000), 896–906. https://doi.org/10.1119/1.1285881 doi: 10.1119/1.1285881 |
[31] | S. Giordano, Disordered lattice networks: general theory and simulations, Int. J. Circuit Theory Appl., 33 (2005), 519–540. https://doi.org/10.1002/cta.335 doi: 10.1002/cta.335 |
[32] | S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys., 45 (1973), 574. https://link.aps.org/doi/10.1103/RevModPhys.45.574 |
[33] | L. Borges, P. Daripa, A fast parallel algorithm for the Poisson equation on a disk, J. Comput. Phys., 169 (2001), 151–192. https://doi.org/10.1006/jcph.2001.6720 doi: 10.1006/jcph.2001.6720 |
[34] | N. Chair, Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor network, and number theory, Ann. Phys., 314 (2014), 56–76. https://doi.org/10.1016/j.aop.2013.11.012 doi: 10.1016/j.aop.2013.11.012 |
[35] | F. Y. Wu, Theory of resistor networks: the two-point resistance, J. Phys. A: Math. Gen., 37 (2004), 6653. https://doi.org/10.1088/0305-4470/37/26/004 doi: 10.1088/0305-4470/37/26/004 |
[36] | W. J. Tzeng, F. Y. Wu, Theory of impedance networks: the two-point impedance and $LC$ resonances, J. Phys. A: Math. Gen., 39 (2006), 8579. https://doi.org/10.1088/0305-4470/39/27/002 doi: 10.1088/0305-4470/39/27/002 |
[37] | J. W. Essam, F. Y. Wu, The exact evaluation of the corner-to-corner resistance of an $M \times N$ resistor network: asymptotic expansion, J. Phys. A: Math. Theor., 42 (2008), 025205. https://doi.org/10.1088/1751-8113/42/2/025205 doi: 10.1088/1751-8113/42/2/025205 |
[38] | N. S. Izmailian, R. Kenna, F. Y. Wu, The two-point resistance of a resistor network: a new formulation and application to the cobweb network, J. Phys. A: Math. Theor., 47 (2013), 035003. https://doi.org/10.1088/1751-8113/47/3/035003 doi: 10.1088/1751-8113/47/3/035003 |
[39] | N. S. Izmailian, R. Kenna, A generalised formulation of the Laplacian approach to resistor networks, J. Stat. Mech.: Theory Exp., 9 (2014), 09016. https://doi.org/10.1088/1742-5468/2014/09/P09016 doi: 10.1088/1742-5468/2014/09/P09016 |
[40] | Z. Tan, J. W. Essam, F. Y. Wu, Two-point resistance of a resistor network embedded on a globe, Phys. Rev. E, 90 (2014), 012130. https://doi.org/10.1103/PhysRevE.90.012130 doi: 10.1103/PhysRevE.90.012130 |
[41] | Z. Tan, Z. Tan, Electrical properties of an $m \times n$ rectangular network, Phys. Scr., 95 (2020), 035226. https://doi.org/10.1088/1402-4896/ab5977 doi: 10.1088/1402-4896/ab5977 |
[42] | Z. Tan, Z. Tan, Electrical properties of $m \times n$ cylindrical network, Chin. Phys. B, 29 (2020), 080503. https://doi.org/10.1088/1674-1056/ab96a7 doi: 10.1088/1674-1056/ab96a7 |
[43] | Z. Tan, Resistance theory for two classes of $n$-periodic networks, Eur. Phys. J. Plus, 137 (2022), 1–12. https://doi.org/10.1140/epjp/s13360-022-02750-3 doi: 10.1140/epjp/s13360-022-02750-3 |
[44] | Z. Tan, Z. Tan, J. Chen, Potential formula of the nonregular $m \times n$ fan network and its application, Sci. Rep., 8 (2018), 5798. https://doi.org/10.1038/s41598-018-24164-x doi: 10.1038/s41598-018-24164-x |
[45] | Z. Tan, Theory of an $m \times n$ apple surface network with special boundary, Commun. Theor. Phys., 75 (2023), 065701. https://doi.org/10.1088/1572-9494/accb82 doi: 10.1088/1572-9494/accb82 |
[46] | Z. Tan, Electrical property of an $m \times n$ apple surface network, Results Phys., 47 (2023), 106361. https://doi.org/10.1016/j.rinp.2023.106361 doi: 10.1016/j.rinp.2023.106361 |
[47] | Z. Tan, Z. Tan, Potential formula of an $m \times n$ globe network and its application, Sci. Rep., 8 (2018), 9937. https://doi.org/10.1038/s41598-018-27402-4 doi: 10.1038/s41598-018-27402-4 |
[48] | S. Zhou, Z. Wang, Y. Zhao, Z. Tan, Electrical properties of a generalized $2 \times n$ resistor network, Commun. Theor. Phys., 75 (2023), 075701. https://doi.org/10.1088/1572-9494/acd2b9 doi: 10.1088/1572-9494/acd2b9 |
[49] | Y. Wei, X. Jiang, Z. Jiang, S. Shon, Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices, Adv. Differ. Equ., 2019 (2019), 410. https://doi.org/10.1186/s13662-019-2335-6 doi: 10.1186/s13662-019-2335-6 |
[50] | Y. Wei, Y. Zheng, Z. Jiang, S. Shon, A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers, Mathematics, 7 (2019), 893. https://doi.org/10.3390/math7100893 doi: 10.3390/math7100893 |
[51] | J. Wang, Y. Zheng, Z. Jiang, Norm equalities and inequalities for tridiagonal perturbed Toeplitz operator matrIices, J. Appl. Anal. Comput., 13 (2023), 671–683. https://doi.org/10.11948/20210489 doi: 10.11948/20210489 |
[52] | Y. Wei, X. Jiang, Z. Jiang, S. Shon, On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners, J. Appl. Anal. Comput., 10 (2020), 178–191. https://doi.org/10.11948/20190105 doi: 10.11948/20190105 |
[53] | Y. Fu, X. Jiang, Z. Jiang, S. Jhang, Properties of a class of perturbed Toeplitz periodic tridiagonal matrices, Comp. Appl. Math., 57 (2020), 1–19. https://doi.org/10.1007/s40314-020-01171-1 doi: 10.1007/s40314-020-01171-1 |
[54] | Y. Fu, X. Jiang, Z. Jiang, S. Jhang, Inverses and eigenpairs of tridiagonal Toeplitz matrix with opposite-bordered rows, J. Appl. Anal. Comput., 10 (2020), 1599–1613. https://doi.org/10.11948/20190287 doi: 10.11948/20190287 |
[55] | Y. Wei, Y. Zheng, Z. Jiang, S. Shon, The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows, J. Appl. Math. Comput., 68 (2022), 623–636. https://doi.org/10.1007/s12190-021-01532-x doi: 10.1007/s12190-021-01532-x |
[56] | Z. Jiang, W. Wang, Y. Zheng, B. Zuo, B. Niu, Interesting explicit expressions of determinants and inverse matrices for Foeplitz and Loeplitz Matrices, Mathematics, 7 (2019), 939. https://doi.org/10.3390/math7100939 doi: 10.3390/math7100939 |
[57] | Q. Meng, Y. Zheng, Z. Jiang, Exact determinants and inverses of (2, 3, 3)-Loeplitz and (2, 3, 3)-Foeplitz matrices., Comp. Appl. Math., 41 (2022), 35. https://doi.org/10.1007/s40314-021-01738-6 doi: 10.1007/s40314-021-01738-6 |
[58] | Q. Meng, Y. Zheng, Z. Jiang, Determinants and inverses of weighted Loeplitz and weighted Foeplitz matrices and their applications in data encryption, J. Appl. Math. Comput., 68 (2022), 3999–4015. https://doi.org/10.1007/s12190-022-01700-7 doi: 10.1007/s12190-022-01700-7 |
[59] | Q. Meng, X. Zheng, Z. Jiang, Interesting determinants and inverses of skew Loeplitz and Foeplitz matrices, J. Appl. Anal. Comput., 11 (2021), 2947–2958. https://doi.org/10.11948/20210070 doi: 10.11948/20210070 |
[60] | Y. Shi, L. Jin, S. Li, J. Li, J. Qiang, D. K. Gerontitis, Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application, IEEE Trans. Neural Networks Learn. Syst., 33 (2020), 587–599. https://doi.org/10.1109/TNNLS.2020.3028136 doi: 10.1109/TNNLS.2020.3028136 |
[61] | Z. Sun, G. Wang, L. Jin, C. Cheng, B. Zhang, J. Yu, Noise-suppressing zeroing neural network for online solving time-varying matrix square roots problems: A control-theoretic approach, Expert Syst. Appl., 192 (2022), 116272. https://doi.org/10.1016/j.eswa.2021.116272 doi: 10.1016/j.eswa.2021.116272 |
[62] | L. Jin, Y. Qi, X. Luo, S. Li, M. Shang, Distributed competition of multi-robot coordination under variable and switching topologies, IEEE Trans. Autom. Sci. Eng., 19 (2021), 3575–3586. https://doi.org/10.1109/TASE.2021.3126385 doi: 10.1109/TASE.2021.3126385 |
[63] | L. Jin, X. Zheng, X. Luo, Neural dynamics for distributed collaborative control of manipulators with time delays, IEEE/CAA J. Autom. Sin., 9 (2022), 854–863. https://doi.org/10.1109/JAS.2022.105446 doi: 10.1109/JAS.2022.105446 |
[64] | X. Wang, M. Che, Y. Wei, Complex-valued neural networks for the Takagi vector of complex symmetric matrices, Neurocomputing, 223 (2017), 77–85. https://doi.org/10.1016/j.neucom.2016.10.034 doi: 10.1016/j.neucom.2016.10.034 |
[65] | W. Wu, Y. Zhang, Zeroing neural network with coefficient functions and adjustable parameters for solving time-variant Sylvester equation, IEEE Trans. Neural Networks Learn. Syst., 35 (2022), 6757–6766. https://doi.org/10.1109/TNNLS.2022.3212869 doi: 10.1109/TNNLS.2022.3212869 |
[66] | Q. Hu, B. Zheng, An efficient Takagi-Sugeno fuzzy zeroing neural network for solving time-varying Sylvester equation, IEEE Trans. Fuzzy Syst., 31 (2022), 2401–2411. https://doi.org/10.1109/TFUZZ.2022.3225630 doi: 10.1109/TFUZZ.2022.3225630 |
[67] | X. Jiang, G. Zhang, Y. Zheng, Z. Jiang, Explicit potential function and fast algorithm for computing potentials in $\alpha$ $\times$ $\beta$ conic surface resistor network, Expert Syst. Appl., 238 (2024), 122–157. https://doi.org/10.1016/j.eswa.2023.122157 doi: 10.1016/j.eswa.2023.122157 |
[68] | Y. Zhou, Y. Zheng, X. Jiang, Z. Jiang, Fast algorithm and new potential formula represented by Chebyshev polynomials for an $m \times n$ globe network, Sci. Rep., 12 (2022), 21260. https://doi.org/10.1038/s41598-022-25724-y doi: 10.1038/s41598-022-25724-y |
[69] | Z. Jiang, Y. Zhou, X. Jiang, Y. Zheng, Analytical potential formulae and fast algorithm for a horn torus resistor network, Phys. Rev. E, 107 (2023), 044123. https://doi.org/10.1103/PhysRevE.107.044123 doi: 10.1103/PhysRevE.107.044123 |
[70] | X. Meng, X. Jiang, Y. Zheng, Z. Jiang, A novel formula for representing the equivalent resistance of the $m\times n$ cylindrical resistor network, Sci. Rep., 14 (2024), 21254. https://doi.org/10.1038/s41598-024-72196-3 doi: 10.1038/s41598-024-72196-3 |
[71] | G. Udrea, A note on the sequence $(W_n)_{n\geq0}$ of A. F. Horadam, Port. Math., 53 (1996), 143–156. |
[72] | J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, 1st edition, Chapman and Hall/CRC, 2002. |