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Abstract: The study proposed an innovative path planning algorithm based on the potential func-
tion of a special case of the cobweb resistor network, addressing the path planning problem in globe
environments with obstacles. For the non-regular m × n cobweb resistor network with arbitrary longi-
tude, we found that by introducing Chebyshev polynomial of the second class, the precise equivalent
resistance formulas could be optimized effectively. Compared with the original formula, optimized
equivalent resistance formulas significantly reduced the time cost in large-scale data calculations. Fur-
thermore, we have plotted 3D views of the equivalent resistance formulas for several special cases
and conducted simulation experiments on the computational efficiency of the original and optimized
formulas at different data scales, verifying the superiority of the optimized formulas. These findings
provided new perspectives and tools for the computation of resistor networks and the design of path
planning algorithms.

Keywords: resistor network; potential function; path planning; Chebyshev polynomial; equivalent
resistance

1. Introduction

Tan [1] innovatively constructed a mathematical model of the non-regular cobweb resistor network
with arbitrary longitude. Through analyzing this model, an extremely precise equivalent resistance
function was obtained theoretically. This groundbreaking work has significant implications for mul-
tiple fields. As is well-known, the most common way of analyzing and solving problems in classical
physics is to build physical mathematical models. The large-scale numerical computation of physical
models has been replaced by computers, which holds profound implications for traditional science
and engineering. In addition, researchers are well aware that improving the computational efficiency
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of equivalent resistance is of utmost importance for the progress and development of related fields.
Therefore, to better adapt to computer analysis, optimizing the equivalent resistance formula is a good
choice. In this paper, we re-expressed the original function using Chebyshev polynomial of the second
class, resulting in greatly improved computational efficiency.

The rapid pace of advancement in modern scientific development exceeds imagination, yet the com-
plex challenges faced across various fields cannot be overlooked. A large amount of research shows
that resistor network models [2–7] can well address a considerable part of the complex challenges. By
using the resistor network model, it is possible to quantify the low conductivity areas in organic thin
films [2], analyze and design the grating of general printed circuit boards [3], simulate the interaction
of magnetic fields [4], establish nonlinear circuit arrays for self-induced topological protection [5],
locate the damage in materials [6], perform 3D modeling of the conductivity of materials [7], etc.

Path planning problems have always attracted the attention of researchers, and the research results
related to path planning have been widely applied [8–11]. Among them, the most challenging problem
is path planning on special spatial shapes which has been researched in recent years [12–15]. This
paper employs resistor networks as a tool to tentatively propose a new robot path planning algorithm.
This scheme is based on the heuristic algorithm of potential function and incorporates a unique cobweb
model. This will undoubtedly provide a broader perspective for related research in path planning.

This paper is structured as follows: In Section 2, we introduce some of the development history
of resistor networks. In Section 3, we discuss the path planning algorithm designed for the globe
environment based on the potential function. Section 4 presents the original exact equivalent resistance
formulas for the cobweb resistor network. In Section 5, we describe the optimized exact equivalent
resistance formulas. Section 6 details the derivation process of the optimized formulas. Section 7
provides 3D views of the equivalent resistance formulas under several special conditions. In Section
8, we compare the computational efficiency of the original and optimized formulas through specific
experiments.

2. Background

Since the introduction of Kirchhoff’s laws [16], the development of resistor networks has been
continuous. However, progress has been significantly slowed by the complexities of boundary condi-
tions. Infinite resistor networks do not require consideration of boundary conditions; hence, researchers
have initially studied infinite resistor networks using methods such as electromigration [17], Poisson
equation [18], impedance theory [19–22], graph theory [23–27], Green’s functions [28–31] and some
special methods [32–34]. The research on finite resistor networks has progressed relatively slowly,
until 2004 when Wu [35] proposed the Laplacian matrix (LM) method and achieved some relevant
research results [35–39]. However, the LM method is only applicable to resistor networks with regular
boundaries.

To achieve a new theoretical breakthrough, Tan proposed the recursive transformation (RT) method.
Compared to the LM method, the RT method is better suited for handling resistor networks with com-
plex boundary conditions. In 2014, Tan et al. [40] first solved the resistance formula for globe resistor
networks. Te RT methods includes the RT-V method based on node voltage and the RT-I method based
on branch current. Subsequently, Tan et al. studied other three-dimensional resistive network models
using the RT-V method [41–46] and RT-I method [47,48], respectively. The contributions of Tan et al.
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to the field of resistor networks are undeniable. It is worth noting that the utilization of the RT method
involves many aspects related to tridiagonal matrices. The tridiagonal matrices have yielded numer-
ous reliable conclusions [49–55]. It is interesting that the inverses of some special Toeplitz matrices
are also the perturbed tridiagonal Toeplitz matrices [56–59]. In recent years, Shi et al. [60–66] made
achievements in the field of neural networks that has also provided certain inspirations for the study of
resistor networks. Some researchers in the field of resistor networks have begun to apply various meth-
ods to improve computational efficiency in solving resistor network models [67–70], further advancing
the development of the resistor network domain.

(a) (b) (c)

Figure 1. (a) is a non-regular m × n cobweb with an arbitrary top boundary and longitude
(with r1), which has m latitudes and n longitudes. Excluding the resistance r1 on one specific
longitude and the resistance r2 at the top, the resistances in the longitudinal and latitudinal
directions are r0 and r, respectively; (b) is a m× n globe network with an arbitrary longitude,
which has m latitudes and n longitudes. Bonds in the longitudes and latitudes directions
represent, respectively, resistors r0 and r except for the resistance r1 on one arbitrary longi-
tude; (c) is an m × n conventional cobweb network with an arbitrary longitude, which has m
latitudes and n longitudes. Bonds in the longitudes and latitudes directions represent, respec-
tively, resistors r0 and r except for the resistance r1 on one arbitrary longitude.

3. An application of potential function in path planning

In this section, we will design a preliminary path planning method suitable for the globe Figure 1(b)
model as an example.

3.1. Potential function

In 2018, Tan et al. [43] first used the recursion transformation method with current parameters (RT-
I) to derive the accurate potential function of the globe resistor network. In 2022, Zhou et al. [68]
optimized the potential function of the globe resistor network. The optimized potential function is as
follows Um×n(x, y)

J
=

y(y1 − y2)
mn

r0 +
2r
m

m∑
j=2

γ
( j)
x1,xCy1, j − γ

( j)
x2,xCy2, j

t jU
( j)
n−1 − 2U ( j)

n−2 − 2
Cy, j, (3.1)
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where
γ( j)

xs,xk
= U ( j)

n−|xs−xk |−1 + U ( j)
|xs−xk |−1, s = 1, 2, (3.2)

Cp, j = sin(
p( j − 1)π

m
), p = y1, y2, y, (3.3)

t j = 2 +
2r
r0
−

2r
r0

cos
( j − 1)π

m
, (3.4)

U ( j)
k = U ( j)

k (cosψ j) =
sin(k + 1)ψ j

sin(ψ j)
, ψ j = arccos

(
1 +

r
r0
−

r
r0

cos
( j − 1)π

m

)
,

k = n − |x1 − x|, |x1 − x|, n − |x2 − x|, |x2 − x|, n − 1, n − 2, j = 1, 2, . . . , m.
(3.5)

3.2. Path planning algorithm
This method (the potential function path planning method) completes the robot path planning by

simulating the potential drop from the current input point to the output point. Compared with the
traditional artificial potential field method, this method is more suitable for robot path planning of the
globe model and can better adapt to the cyclic characteristics of the model’s latitude direction. The
description of the related robot path planning algorithm is as follows:
Step 1: Set the robot’s work environment map, including the starting and ending points, and obstacle
locations, based on the grid method.
Step 2: Assign the starting point and the target point to the input and output points of the current in
the globe resistor network, respectively, and use the potential formula (3.1) to calculate the potential.
Step 3: Increase a fixed amount of potential at the corresponding nodes in the globe resistor network
where the grid points of the obstacles are located. The potential after the fixed increment is added in
U(x,y)

J + 0.3U(x1,y1)
J , where the U(x1,y1)

J denotes the potential at the starting point.
Step 4: Use min

{
U(x+i,y+ j)

J

}
({(i, j) |i, j ∈ {−1, 0, 1} , (i, j) , (0, 0)}) to select the node with the smallest

potential adjacent to the robot.
Step 5: Move the robot to the grid point corresponding to the node selected in Step 4 and update its
current position.
Step 6: Determine whether the current position of the robot is the target point. If it is, terminate the
algorithm. Otherwise, repeat Step 4.
Step 7: End the algorithm.

3.3. Detailed explanation of path planning method
To enhance the visual clarity of the results produced by our path planning method. Let m = n =

10, x1 = 7, y1 = 8, x2 = 3, y2 = 2, r = 1, r0 = 1, and J = 1, where (x1, y1) and (x2, y2) correspond to
the starting point and ending point of the robot in path planning respectively.

The overall approach of our designed path planning method is very clear. First, based on the actual
globe environment containing obstacles, we grid the globe environment, placing obstacles at the grid
nodes. Next, we construct a resistor network corresponding to the shape of the physical grid, which
does not include obstacles. Then, we solve for the node potentials using formula (3.1) and plot the
distribution of the potentials across all nodes in the resistor network. Subsequently, we plot the po-
tential distribution map, where the potentials at the nodes corresponding to the obstacles are weighted.
Using this weighted potential distribution map, we apply the gradient descent method to determine the
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optimal path for the robot. Finally, we map the optimal path obtained from the above process onto the
actual globe environment map containing obstacles. The implementation process of the overall idea of
path planning is shown from Figure 2 to Figure 4.

(a) (b)

Figure 2. (a) Globe environment map without obstacles; (b) Potential distribution diagram
of a globe resistor network.

(a) (b)

Figure 3. (a) Globe environment map after adding obstacles; (b) Potential distribution dia-
gram after node-weighted adjustments for obstacles.

(a) (b)

Figure 4. (a) Path planning in node-weighted potential distribution diagram; (b) Path plan-
ning in the globe environment map.

Electronic Research Archive Volume 32, Issue 12, 6733–6760.



6738

In the future, we will further study the path planning problem on the globe network, and we also
hope that this method can provide help to related researchers.

4. The original formulas for equivalent resistance between any two points

In 2015, Tan [1] used the RT-I method for the first time to study a non-regular cobweb network
as shown in Figure 1(a). We have derived the general formula for the equivalent resistance when
r2 = {0, r, 2r}. When r2 = 0, the cobweb network transforms into the globe network, as shown in
Figure 1(b). The equivalent resistance between any two nodes d1 (x1, y1) and d2 (x2, y2) in a nearly
m × n cobweb network with 0 boundary is

Rm×n(d1, d2) =
r0r1(y2 − y1)2

m [(n − 1) r1 + r0]
+

2r
m

m∑
i=2

g(i)
1,1S 2

1,i − 2g(i)
1,2S 1,iS 2,i + g(i)

2,2S 2
2,i

∆F(i)
n + (2h1 − 1)∆F(i)

n−1 − 2h1

. (4.1)

When r2 = r, the cobweb network transforms into the conventional cobweb network, as shown in
Figure 1(c). The equivalent resistance is

Rm×n(d1, d2) =
4r

2m + 1

m∑
i=1

g(i)
1,1S 2

1,i − 2g(i)
1,2S 1,iS 2,i + g(i)

2,2S 2
2,i

∆F(i)
n + (2h1 − 1)∆F(i)

n−1 − 2h1

. (4.2)

When r2 = 2r, we have

Rm×n(d1, d2) =
2r
m

m∑
i=1

g(i)
1,1S 2

1,i − 2g(i)
1,2S 1,iS 2,i + g(i)

2,2S 2
2,i

∆F(i)
n + (2h1 − 1)∆F(i)

n−1 − 2h1

. (4.3)

The relevant parameters are as follows:

g(i)
k,s = (ti − 2) (1 − h1) F(i)

xk
F(i)

n−xs
+ h1(F(i)

n−|xk−xs |
+ F(i)

|xk−xs |
), (4.4)

F(i)
k =

(λk
i − λ̄

k
i )

(λi − λ̄i)
, ∆F(i)

k = F(i)
k+1 − F(i)

k , (4.5)

h = r/r0, hk = rk/r0, S k,i = sin(ykθi) (k = 1, 2), ti = λi + λ̄i = 2 (1 + h − h cos θi) , (4.6)

where λiλi = 1, θi =
{

(i−1)π
m , (2i−1)π

2m+1 ,
(2i−1)π

2m

}
, and λi, λ̄i are expressed as

λi = 1 + h − h cos θi +

√
(1 + h − h cos θi)2

− 1,

λi = 1 + h − h cos θi −

√
(1 + h − h cos θi)2

− 1.

5. New formulas optimized by Chebyshev polynomials

This section presents the re-expressed Eqs (4.1)–(4.3) of the resistor network. The formulas ex-
pressed by the Chebyshev polynomial of the second class can improve the running speed of computers
in related aspects.
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The accurate equivalent resistance formulas of any two nodes d(x, y) in the m × n cobweb resistor
network are as follows.
When r2 = 0,

Rm×n(d1, d2) =
r0r1(y2 − y1)2

m [(n − 1) r1 + r0]
+

2r
m

m∑
i=2

l(i)
1,1S 2

1,i − 2l(i)
1,2S 1,iS 2,i + l(i)

2,2S 2
2,i

∆U (i)
n−1 + (2h1 − 1)∆U (i)

n−2 − 2h1

, (5.1)

where S k,i = sin (ykθi) (k = 1, 2) and θi =
(i−1)π

m .

When r2 = r,

Rm×n(d1, d2) =
4r

2m + 1

m∑
i=1

l(i)
1,1S 2

1,i − 2l(i)
1,2S 1,iS 2,i + l(i)

2,2S 2
2,i

∆U (i)
n−1 + (2h1 − 1)∆U (i)

n−2 − 2h1

, (5.2)

where S k,i = sin (ykθi) (k = 1, 2) and θi =
(2i−1)π
2m+1 .

When r2 = 2r,

Rm×n(d1, d2) =
2r
m

m∑
i=1

l(i)
1,1S 2

1,i − 2l(i)
1,2S 1,iS 2,i + l(i)

2,2S 2
2,i

∆U (i)
n−1 + (2h1 − 1)∆U (i)

n−2 − 2h1

, (5.3)

where S k,i = sin (ykθi) (k = 1, 2) and θi =
(2i−1)π

2m .

The relevant parameters are as follows:

l(i)
k,s = (ti − 2) (1 − h1) U (i)

xk−1U (i)
n−xs−1 + h1(U (i)

n−|xk−xs |−1 + U (i)
|xk−xs |−1), (5.4)

∆U (i)
k = U (i)

k+1 − U (i)
k , (5.5)

h = r/r0, hk = rk/r0, (5.6)

U (i)
τ = U (i)

τ (coshψi) =
sinh(τ + 1)ψi

sinh(ψi)
, coshψi =

ti

2
,

ti

2
> 1, ψi > 0, (5.7)

ti = 2 +
2r
r0
−

2r
r0

cos θi, (5.8)

where
τ = n − 1, n − 2, xk − 1, n − xs − 1, n + xk − xs − 1, xs − xk − 1
k = 1, 2, s = 1, 2, i = 1, 2, . . . , m, θi =

(i−1)π
m , (2i−1)π

2m+1 ,
(2i−1)π

2m .

To calculate the equivalent resistance Rm×n(d1, d2), we introduce a current (J) between points
d1(x1, y1) and d2(x2, y2). Using Ohm’s law, we can measure the potential difference along a path from
d1(x1, y1) to O and then to d2(x2, y2), so we can obtain

Rm×n(d1, d2) =
VOd2 − VOd1

J
=

r0

J

( y2∑
i=1

I(i)
x2
−

y1∑
i=1

I(i)
x1

)
. (5.9)

6. Method and derivation of the new formulas

In this section, in order to improve the actual performance, we introduce Horadam sequence [71]
represented by the Chebyshev polynomial of the second class [72]. By applying the represented
Hadamard sequence to the optimization process of the original equivalent resistance formulas, the
purpose of improving computational efficiency is achieved.
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6.1. Method

Chebyshev polynomial of the second class has excellent mathematical properties, which can trans-
form complex Hadamard sequences into a series of simple polynomial calculations, thereby improving
the efficiency of large-scale data computation. In this paper, the derivation of the optimized equivalent
resistance formulas is based on the Chebyshev polynomial of the second class.

The Horadam sequence is defined by the following conditions:

Wτ = dWτ−1 − qWτ−2, W0 = A, W1 = B, (6.1)

where τ ∈ N, τ ≥ 2, A, B, d, q ∈ C, N is the set of all natural numbers and C is the set of all complex
numbers.

We know that the Horadam sequence represented by the Chebyshev polynomial of the second class
is

Wτ = (
√

q)τ
(

B
√

q
Uτ−1

(
d

2
√

q

)
− AUτ−2

(
d

2
√

q

))
, (6.2)

where

Uτ = Uτ(cosφ) =
sin(τ + 1)φ

sinφ
, cosφ =

d
2
√

q
, φ ∈ C. (6.3)

6.2. Derivation of the new formulas

To start, considering the actual physical context of the resistor network, the Chebyshev polynomial
of the second class needs to be re-expressed through hyperbolic functions, then Eq (6.3) is transformed
into

Uτ = Uτ(coshψ) =
sinh(τ + 1)ψ

sinhψ
, coshψ =

d
2
√

q
, ψ = iφ, (6.4)

where i is the imaginary unit.
Next, we will present the derivation of Eq (4.5) represented by the Chebyshev polynomial of the

second class.
Remark 1: It can be obtained from Eq (4.6) that ti = λi + λ̄i and λiλi = 1. Adding these conditions to
Eq (6.1), we get the following special Horadam sequence:

F(i)
τ = tiF

(i)
τ−1 − F(i)

τ−2, F(i)
0 = 0, F(i)

1 = 1, (6.5)

where d = ti > 2, q = 1. By replacing the expression of Eq (4.5) with the results of Eq (6.4), the
expression for F(i)

τ and ∆F(i)
τ can be obtained:

F(i)
τ =

λτi − λ̄
τ
i

λi − λ̄i
= U (i)

τ−1(
ti

2
), ∆F(i)

τ = F(i)
τ+1 − F(i)

τ = U (i)
τ

( ti

2

)
− U (i)

τ−1

( ti

2

)
. (6.6)

Finally, using Eqs (4.1), (6.6), Eqs (4.2), (6.6), and Eqs (4.3), (6.6), the accurate equivalent re-
sistance formulas (5.1)–(5.3) can be individually derived. To clarify the process of transforming the
original formulas into the new ones using the Chebyshev polynomials of the second kind, we will pro-
vide a detailed explanation below.
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Remark 2: In Eq (4.4), g(i)
k,s can be reformulated and defined based on Eq (6.6).

When k = s = 1,

g(i)
1,1 = (ti − 2) (1 − h1) F(i)

x1
F(i)

n−x1
+ h1(F(i)

n + F(i)
0 )

= (ti − 2) (1 − h1) U (i)
x1−1U (i)

n−x1−1 + h1(U (i)
n−1 + U (i)

−1) ∆= l(i)
1,1.

(6.7)

When k = 1 and s = 2,

g(i)
1,2 = (ti − 2) (1 − h1) F(i)

x1
F(i)

n−x2
+ h1(F(i)

n−|x1−x2 |
+ F(i)

|x1−x2 |
)

= (ti − 2) (1 − h1) U (i)
x1−1U (i)

n−x2−1 + h1(U (i)
n−|x1−x2 |−1 + U (i)

|x1−x2 |−1) ∆= l(i)
1,2.

(6.8)

When k = s = 2,

g(i)
2,2 = (ti − 2) (1 − h1) F(i)

x2
F(i)

n−x2
+ h1(F(i)

n + F(i)
0 )

= (ti − 2) (1 − h1) U (i)
x2−1U (i)

n−x2−1 + h1(U (i)
n−1 + U (i)

−1) ∆= l(i)
2,2.

(6.9)

Similarly, for ∆F(i)
k in Eq (4.5), when k = n and k = n−1, respectively, based on Eq (6.6), the following

expressions can be derived:

∆F(i)
n = F(i)

n+1 − F(i)
n = U (i)

n − U (i)
n−1

∆
= ∆U (i)

n−1, (6.10)

∆F(i)
n−1 = F(i)

n − F(i)
n−1 = U (i)

n−1 − U (i)
n−2

∆
= ∆U (i)

n−2, (6.11)

By combining Eqs (4.1)–(4.3) with Eqs (6.7)–(6.11), respectively, we obtain Eqs (5.1)–(5.3).

7. Special cases and 3D visualization

Based on equivalent resistance formulas (5.1)–(5.3), this section will examine the impact of varying
parameters on the equivalent resistance formulas. Utilizing specific given conditions, we will generate
3D surface plots to visually depict these effects.

When r2 = {0, r, 2r}, and assuming uniform resistance values of r = r0 = r1 = 1 (i.e., h = h1 = 1),
we can derive the formula for the equivalent resistance between specific points d1(x1, y1) and d2(x2, y2).

Case 1. When r2 = 0, d1 = (20, 30), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
(y2 − 30)2

mn
+

2
m

m∑
i=2

l(i)
1,1S 2

30,i − 2l(i)
1,2S 30,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.1)

where S y,i = sin y(i−1)π
m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 30, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 2, 3, . . . , m.
Let m = n = 75, x1 = 20, y1 = 30. Then, a special equivalent resistance formula is obtained as

follows:

R75×75({20, 30}, {x2, y2}) =
(y2 − 30)2

75 × 75
+

2
75

75∑
i=2

l(i)
1,1S 2

30,i − 2l(i)
1,2S 30,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.2)
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where S y,i = sin y(i−1)π
75 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 30, y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 2, 3, . . . , 75.

When r2 = r, d1 = (20, 30), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
4

2m + 1

m∑
i=1

l(i)
1,1S 2

30,i − 2l(i)
1,2S 30,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.3)

where S y,i = sin y(2i−1)π
2m+1 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 30, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.

Let m = n = 75, x1 = 20, y1 = 30. Then, a special equivalent resistance formula is obtained as
follows:

R75×75({20, 30}, {x2, y2}) =
4

151

75∑
i=1

l(i)
1,1S 2

30,i − 2l(i)
1,2S 30,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.4)

where S y,i = sin y(2i−1)π
151 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 30, y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 1, 2, . . . , 75.

When r2 = 2r, d1 = (20, 30), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=1

l(i)
1,1S 2

30,i − 2l(i)
1,2S 30,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.5)

where S y,i = sin y(2i−1)π
2m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 30, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.

Let m = n = 75, x1 = 20, y1 = 30. Then, a special equivalent resistance formula is obtained as
follows:

R75×75({20, 30}, {x2, y2}) =
2

75

75∑
i=1

l(i)
1,1S 2

30,i − 2l(i)
1,2S 30,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.6)

where S y,i = sin y(2i−1)π
150 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 30, y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 1, 2, . . . , 75.

The three-dimensional surface plot of the equivalent resistance between points d1 (20, 30) and
d2(x2, y2) is shown in Figure 5.
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(a) (b) (c)

Figure 5. (a) is the 3D distribution map of equivalent resistance in Eq (7.2); (b) is the
3D distribution map of equivalent resistance in Eq (7.4); (c) is the 3D distribution map of
equivalent resistance in Eq (7.6).

Case 2. When r2 = 0, d1 = (20, y2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=2

l(i)
1,1S 2

y2,i +
(
l(i)
2,2 − 2l(i)

1,2

)
S 2

y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.7)

where S y,i = sin y(i−1)π
m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 2, 3, . . . , m.
Let m = n = 75, x1 = 20, y1 = y2. Then, a special equivalent resistance formula is obtained as

follows:

R75×75({20, y2}, {x2, y2}) =
2

75

75∑
i=2

l(i)
1,1S 2

y2,i +
(
l(i)
2,2 − 2l(i)

1,2

)
S 2

y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.8)

where S y,i = sin y(i−1)π
75 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 2, 3, . . . , 75.
When r2 = r, d1 = (20, y2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
4

2m + 1

m∑
i=1

l(i)
1,1S 2

y2,i +
(
l(i)
2,2 − 2l(i)

1,2

)
S 2

y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.9)

where S y,i = sin y(2i−1)π
2m+1 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = n = 75, x1 = 20, y1 = y2. Then, a special equivalent resistance formula is obtained as

follows:

R75×75({20, y2}, {x2, y2}) =
4

151

75∑
i=1

l(i)
1,1S 2

y2,i +
(
l(i)
2,2 − 2l(i)

1,2

)
S 2

y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.10)

where S y,i = sin y(2i−1)π
151 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 1, 2, . . . , 75.
When r2 = 2r, d1 = (20, y2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=1

l(i)
1,1S 2

y2,i +
(
l(i)
2,2 − 2l(i)

1,2

)
S 2

y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.11)
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where S y,i = sin y(2i−1)π
2m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = n = 75, x1 = 20, y1 = 30. Then, a special equivalent resistance formula is obtained as

follows:

R75×75({20, y2}, {x2, y2}) =
2

75

75∑
i=1

l(i)
1,1S 2

y2,i +
(
l(i)
2,2 − 2l(i)

1,2

)
S 2

y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.12)

where S y,i = sin y(2i−1)π
150 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 1, 2, . . . , 75.
The three-dimensional surface plot of the equivalent resistance between points d1 (20, y2) and

d2(x2, y2) is shown in Figure 6.

(a) (b) (c)

Figure 6. (a) is the 3D distribution map of equivalent resistance in Eq (7.8); (b) is the
3D distribution map of equivalent resistance in Eq (7.10); (c) is the 3D distribution map of
equivalent resistance in Eq (7.12).

Case 3. When r2 = 0, d1 = (20, x2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
(y2 − x2)2

mn
+

2
m

m∑
i=2

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.13)

where S y,i = sin y(i−1)π
m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 2, 3, . . . , m.
Let m = n = 75, x1 = 20, y1 = x2. Then, a special equivalent resistance formula is obtained as

follows:

R75×75({20, x2}, {x2, y2}) =
(y2 − x2)2

75 × 75
+

2
75

75∑
i=2

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.14)

where S y,i = sin y(i−1)π
75 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 2, 3, . . . , 75.
When r2 = r, d1 = (20, x2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
4

2m + 1

m∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.15)
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where S y,i = sin y(2i−1)π
2m+1 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = n = 75, x1 = 20, y1 = x2. Then, a special equivalent resistance formula is obtained as

follows:

R75×75({20, x2}, {x2, y2}) =
4

151

75∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.16)

where S y,i = sin y(2i−1)π
151 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 1, 2, . . . , 75.
When r2 = 2r, d1 = (20, x2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.17)

where S y,i = sin y(2i−1)π
2m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = n = 75, x1 = 20, y1 = 30. Then, a special equivalent resistance formula is obtained as

follows:

R75×75({20, x2}, {x2, y2}) =
2
75

75∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2,iS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
74 + ∆U (i)

73 − 2
, (7.18)

where S y,i = sin y(2i−1)π
150 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = 74, 73, i = 1, 2, . . . , 75.
The three-dimensional surface plot of the equivalent resistance between points d1 (20, x2) and

d2(x2, y2) is shown in Figure 7.

(a) (b) (c)

Figure 7. (a) is the 3D distribution map of equivalent resistance in Eq (7.14); (b) is the
3D distribution map of equivalent resistance in Eq (7.16); (c) is the 3D distribution map of
equivalent resistance in Eq (7.18).

Case 4. When r2 = 0, d1 = (x1, 50), and d2 = (x2, 70), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
400
mn
+

2
m

m∑
i=2

l(i)
1,1S 2

50,i − 2l(i)
1,2S 50,iS 70,i + l(i)

2,2S 2
70,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.19)

Electronic Research Archive Volume 32, Issue 12, 6733–6760.



6746

where S y,i = sin y(i−1)π
m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 50, 70, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 2, 3, . . . , m.
Let m = 90, n = 100, y1 = 50, y2 = 70. Then, a special equivalent resistance formula is obtained

as follows:

R90×100({x1, 50}, {x2, 70}) =
400

90 × 100
+

1
45

90∑
i=2

l(i)
1,1S 2

50,i − 2l(i)
1,2S 50,iS 70,i + l(i)

2,2S 2
70,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.20)

where S y,i = sin y(i−1)π
90 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 50, 70, k = 1, 2,

s = 1, 2, v = 99, 98, i = 2, 3, . . . , 90.
When r2 = r, d1 = (x1, 50), and d2 = (x2, 70), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
4

2m + 1

m∑
i=1

l(i)
1,1S 2

50,i − 2l(i)
1,2S 50,iS 70,i + l(i)

2,2S 2
70,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.21)

where S y,i = sin y(2i−1)π
2m+1 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 50, 70, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = 90, n = 100, y1 = 50, y2 = 70. Then, a special equivalent resistance formula is obtained

as follows:

R90×100({x1, 50}, {x2, 70}) =
4

181

90∑
i=1

l(i)
1,1S 2

50,i − 2l(i)
1,2S 50,iS 70,i + l(i)

2,2S 2
70,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.22)

where S y,i = sin y(2i−1)π
181 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 50, 70, k = 1, 2,

s = 1, 2, v = 99, 98, i = 1, 2, . . . , 90.
When r2 = 2r, d1 = (x1, 50), and d2 = (x2, 70), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=1

l(i)
1,1S 2

50,i − 2l(i)
1,2S 50,iS 70,i + l(i)

2,2S 2
70,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.23)

where S y,i = sin y(2i−1)π
2m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 50, 70, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = 90, n = 100, y1 = 50, y2 = 70. Then, a special equivalent resistance formula is obtained

as follows:

R90×100({x1, 50}, {x2, 70}) =
1

45

90∑
i=1

l(i)
1,1S 2

50,i − 2l(i)
1,2S 50,iS 70,i + l(i)

2,2S 2
70,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.24)

where S y,i = sin y(2i−1)π
180 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = 50, 70, k = 1, 2,

s = 1, 2, v = 99, 98, i = 1, 2, . . . , 90.
The three-dimensional surface plot of the equivalent resistance between points d1 (x1, 50) and

d2(x2, 70) is shown in Figure 8.

Electronic Research Archive Volume 32, Issue 12, 6733–6760.



6747

(a) (b) (c)

Figure 8. (a) is the 3D distribution map of equivalent resistance in Eq (7.20); (b) is the
3D distribution map of equivalent resistance in Eq (7.22); (c) is the 3D distribution map of
equivalent resistance in Eq (7.24).

Case 5. When r2 = 0, d1 = (y2, y2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=2

(
l(i)
1,1 − 2l(i)

1,2 + l(i)
2,2

)
S 2

y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.25)

where S y,i = sin y(i−1)π
m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 2, 3, . . . , m.
Let m = 90, n = 100, x1 = y1 = y2. Then, a special equivalent resistance formula is obtained as

follows:

R90×100({y2, y2}, {x2, y2}) =
400

90 × 100
+

1
45

90∑
i=2

(
l(i)
1,1 − 2l(i)

1,2 + l(i)
2,2

)
S 2

y2,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.26)

where S y,i = sin y(i−1)π
90 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = 99, 98, i = 2, 3, . . . , 90.
When r2 = r, d1 = (y2, y2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
4

2m + 1

m∑
i=1

(
l(i)
1,1 − 2l(i)

1,2 + l(i)
2,2

)
S 2

y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.27)

where S y,i = sin y(2i−1)π
2m+1 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = 90, n = 100, x1 = y1 = y2. Then, a special equivalent resistance formula is obtained as

follows:

R90×100({y2, y2}, {x2, y2}) =
4

181

90∑
i=1

(
l(i)
1,1 − 2l(i)

1,2 + l(i)
2,2

)
S 2

y2,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.28)

where S y,i = sin y(2i−1)π
181 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = 99, 98, i = 1, 2, . . . , 90.
When r2 = 2r, d1 = (y2, y2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=1

(
l(i)
1,1 − 2l(i)

1,2 + l(i)
2,2

)
S 2

y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.29)
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where S y,i = sin y(2i−1)π
2m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = 90, n = 100, x1 = y1 = y2. Then, a special equivalent resistance formula is obtained as

follows:

R90×100({y2, y2}, {x2, y2}) =
1

45

90∑
i=1

(
l(i)
1,1 − 2l(i)

1,2 + l(i)
2,2

)
S 2

y2,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.30)

where S y,i = sin y(2i−1)π
180 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = y2, k = 1, 2,

s = 1, 2, v = 99, 98, i = 1, 2, . . . , 90.
The three-dimensional surface plot of the equivalent resistance between points d1 (y2, y2) and

d2(x2, y2) is shown in Figure 9.

(a) (b) (c)

Figure 9. (a) is the 3D distribution map of equivalent resistance in Eq (7.26); (b) is the
3D distribution map of equivalent resistance in Eq (7.28); (c) is the 3D distribution map of
equivalent resistance in Eq (7.30).

Case 6. When r2 = 0, d1 = (y2, x2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
(y2 − x2)2

mn
+

2
m

m∑
i=2

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2, jS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.31)

where S y,i = sin y(i−1)π
m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 2, 3, . . . , m.
Let m = 90, n = 100, x1 = y2, y1 = x2. Then, a special equivalent resistance formula is obtained as

follows:

R90×100({y2, x2}, {x2, y2}) =
(y2 − x2)2

90 × 100
+

1
45

90∑
i=2

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2, jS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.32)

where S y,i = sin y(i−1)π
90 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = 99, 98, i = 2, 3, . . . , 90.
When r2 = r, d1 = (y2, x2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
4

2m + 1

m∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2, jS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.33)
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where S y,i = sin y(2i−1)π
2m+1 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = 90, n = 100, x1 = y2, y1 = x2. Then, a special equivalent resistance formula is obtained as

follows:

R90×100({y2, x2}, {x2, y2}) =
4

181

90∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2, jS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.34)

where S y,i = sin y(2i−1)π
181 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = 99, 98, i = 1, 2, . . . , 90.
When r2 = 2r, d1 = (y2, x2), and d2 = (x2, y2), the equivalent resistance formula is given by:

Rm×n(d1, d2) =
2
m

m∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2, jS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
n−1 + ∆U (i)

n−2 − 2
, (7.35)

where S y,i = sin y(2i−1)π
2m , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = n − 1, n − 2, i = 1, 2, . . . , m.
Let m = 90, n = 100, x1 = y2, y1 = x2. Then, a special equivalent resistance formula is obtained as

follows:

R90×100({y2, x2}, {x2, y2}) =
1

45

90∑
i=1

l(i)
1,1S 2

x2,i − 2l(i)
1,2S x2, jS y2,i + l(i)

2,2S 2
y2,i

∆U (i)
99 + ∆U (i)

98 − 2
, (7.36)

where S y,i = sin y(2i−1)π
180 , l(i)

k,s is defined in Eq (5.4), ∆U (i)
v is defined in Eq (5.5), and y = x2, y2, k = 1, 2,

s = 1, 2, v = 99, 98, i = 1, 2, . . . , 90.
The three-dimensional surface plot of the equivalent resistance between points d1 (y2, x2) and

d2(x2, y2) is shown in Figure 10.

(a) (b) (c)

Figure 10. (a) is the 3D distribution map of equivalent resistance in Eq (7.32); (b) is the
3D distribution map of equivalent resistance in Eq (7.34); (c) is the 3D distribution map of
equivalent resistance in Eq (7.36).

8. Comparison of calculation efficiency

In this section, we will conduct a comparative experiment on the computational efficiency of Eqs
(4.1), (5.1), Eqs (4.2), (5.2) and Eqs (4.3), (5.3) under the same scale of resistor network. The calcu-
lation scale in this experiment is denoted by m × n, “time” is the time in seconds, and t denotes the
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Central Processing Unit (CPU) time taken to calculate the equivalent resistance between points d2 and
d1. In the experimental results, “−” indicates that the calculation scale beyond the memory limit of
Matlab or time exceeds 1200 seconds.

The experiment is completed under the environmental conditions of CPU model Intel Core i5-
7300HQ, CPU frequency 2.50 GHz, and Matlab version is R2023b. To simplify the experiment, we
define d1 as the fixed point on the resistor network and d2 as any point on the resistor network except
for the origin d1. t1 and t2 denote total CPU times from all points (excluding point d1) to d1 computed
by Eqs (4.1)–(4.3) and Eqs (5.1)–(5.3), respectively.

Table 1. The comparison of calculation efficiency for equivalent resistance formulas (4.1)
and (5.1).

m × n r r0 r1 t1 t2

100 × 80 1 1 1 2.1159 0.3200
200 × 100 1 1 1 10.9268 1.5819
300 × 200 1 1 1 49.0227 6.7040
400 × 300 1 1 1 130.9464 17.5922
500 × 400 1 1 1 272.1105 36.3245
600 × 500 1 1 1 453.2466 59.3510

Table 2. The comparison of calculation efficiency for equivalent resistance formulas (4.2)
and (5.2).

m × n r r0 r1 t1 t2

100 × 80 1 1 1 2.1134 0.3025
200 × 100 1 1 1 10.3649 1.4459
300 × 200 1 1 1 47.3364 6.3218
400 × 300 1 1 1 124.0385 16.6283
500 × 400 1 1 1 258.6759 34.3150
600 × 500 1 1 1 429.6586 56.1510

Table 3. The comparison of calculation efficiency for equivalent resistance formulas (4.3)
and (5.3).

m × n r r0 r1 t1 t2

100 × 80 1 1 1 2.0686 0.3154
200 × 100 1 1 1 10.3438 1.5022
300 × 200 1 1 1 46.6202 6.5125
400 × 300 1 1 1 123.0294 17.0670
500 × 400 1 1 1 255.7654 35.0518
600 × 500 1 1 1 424.8610 56.9760

Tables 1–3 demonstrate the comparison of calculation efficiency between the three original formulas
and the optimized formulas when d1 = (0, 0), r = r0 = r1 = 1, under different resistor network scales.
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Table 4. The comparison of calculation efficiency for equivalent resistance formulas (4.1)
and (5.1).

m × n r r0 r1 t1 t2

300 × 200 0.1 1 1 46.1489 6.3012
400 × 300 0.1 1 1 124.1933 16.4533
500 × 400 0.1 1 1 258.9349 33.7327
600 × 600 0.1 1 1 559.4526 71.8150
700 × 700 0.1 1 1 888.4606 113.1800
1000 × 1000 0.1 1 1 − 327.3041

Table 5. The comparison of calculation efficiency for equivalent resistance formulas (4.2)
and (5.2).

m × n r r0 r1 t1 t2

300 × 200 0.1 1 1 46.5638 6.3750
400 × 300 0.1 1 1 124.1012 16.5507
500 × 400 0.1 1 1 257.9374 33.9606
600 × 600 0.1 1 1 558.7647 71.7020
700 × 700 0.1 1 1 880.1761 111.6293
1000 × 1000 0.1 1 1 − 322.4906

Table 6. The comparison of calculation efficiency for equivalent resistance formulas (4.3)
and (5.3).

m × n r r0 r1 t1 t2

300 × 200 0.1 1 1 45.8709 6.5736
400 × 300 0.1 1 1 121.8801 16.8996
500 × 400 0.1 1 1 255.0192 34.5999
600 × 600 0.1 1 1 547.2879 74.3344
700 × 700 0.1 1 1 872.2106 114.7769
1000 × 1000 0.1 1 1 − 348.4239

Table 7. The comparison of calculation efficiency for equivalent resistance formulas (4.1)
and (5.1).

m × n r r0 r1 t1 t2

400 × 300 1 0.1 1 102.5669 13.3473
500 × 400 1 0.1 1 198.1812 26.8643
600 × 500 1 0.1 1 340.6793 46.0543
700 × 700 1 0.1 1 632.4905 84.0681
800 × 800 1 0.1 1 920.5850 123.0619
1000 × 1000 1 0.1 1 − 234.9719
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Table 8. The comparison of calculation efficiency for equivalent resistance formulas (4.2)
and (5.2).

m × n r r0 r1 t1 t2

400 × 300 1 0.1 1 101.5474 13.7645
500 × 400 1 0.1 1 196.7793 26.6959
600 × 500 1 0.1 1 344.8172 45.6919
700 × 700 1 0.1 1 623.8246 82.6657
800 × 800 1 0.1 1 916.8383 121.4126
1000 × 1000 1 0.1 1 − 228.7297

Table 9. The comparison of calculation efficiency for equivalent resistance formulas (4.3)
and (5.3).

m × n r r0 r1 t1 t2

400 × 300 1 0.1 1 101.6689 14.2586
500 × 400 1 0.1 1 196.6264 27.6493
600 × 500 1 0.1 1 344.2061 45.6482
700 × 700 1 0.1 1 625.0337 83.5090
800 × 800 1 0.1 1 916.8602 122.5768
1000 × 1000 1 0.1 1 − 230.7143

Table 10. The comparison of calculation efficiency for equivalent resistance formulas (4.1)
and (5.1).

m × n r r0 r1 t1 t2

400 × 300 1 1 0.1 124.0123 16.6234
500 × 400 1 1 0.1 258.9065 34.1610
600 × 600 1 1 0.1 491.2254 64.3837
700 × 700 1 1 0.1 752.0369 99.3462
1000 × 1000 1 1 0.1 − 268.8378
1500 × 1500 1 1 0.1 − 844.9737

Table 11. The comparison of calculation efficiency for equivalent resistance formulas (4.2)
and (5.2).

m × n r r0 r1 t1 t2

400 × 300 1 1 0.1 122.7504 16.4076
500 × 400 1 1 0.1 253.9374 33.9152
600 × 600 1 1 0.1 485.4244 63.0957
700 × 700 1 1 0.1 743.9324 97.0477
1000 × 1000 1 1 0.1 − 263.8606
1500 × 1500 1 1 0.1 − 833.5678
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Table 12. The comparison of calculation efficiency for equivalent resistance formulas (4.3)
and (5.3).

m × n r r0 r1 t1 t2

400 × 300 1 1 0.1 123.5598 16.8619
500 × 400 1 1 0.1 255.0641 34.9176
600 × 600 1 1 0.1 483.3796 64.6518
700 × 700 1 1 0.1 740.9571 99.2226
1000 × 1000 1 1 0.1 − 269.2752
1500 × 1500 1 1 0.1 − 850.4470

Tables 4–12 demonstrate the comparison of calculation efficiency between the three original formu-
las and the optimized formulas under different resistor network scales, when d1 = (0, 0), r, r0, and r1

take on different resistance values.

Table 13. The comparison of calculation efficiency for equivalent resistance formulas (4.1)
and (5.1).

d1 r r0 r1 t1 t2

(0, 0) 1 1 1 287.2009 39.0213
(100, 100) 1 1 1 331.0542 43.5153
(200, 200) 1 1 1 330.9252 43.8494
(300, 300) 1 1 1 333.9882 43.6171
(400, 400) 1 1 1 331.8870 43.5418
(500, 500) 1 1 1 291.8674 40.0112

Table 14. The comparison of calculation efficiency for equivalent resistance formulas (4.2)
and (5.2).

d1 r r0 r1 t1 t2

(0, 0) 1 1 1 283.1312 38.9512
(100, 100) 1 1 1 330.7856 43.1121
(200, 200) 1 1 1 331.2546 42.7238
(300, 300) 1 1 1 332.0763 42.9871
(400, 400) 1 1 1 331.0865 43.0201
(500, 500) 1 1 1 288.7652 39.4102

Table 15. The comparison of calculation efficiency for equivalent resistance formulas (4.3)
and (5.3).

d1 r r0 r1 t1 t2

(0, 0) 1 1 1 290.0054 38.0398
(100, 100) 1 1 1 331.4275 43.8749
(200, 200) 1 1 1 335.0756 44.1664
(300, 300) 1 1 1 334.2624 44.0014
(400, 400) 1 1 1 333.1217 43.7522
(500, 500) 1 1 1 290.9776 40.1867
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Tables 13–15 demonstrate the comparison of calculation efficiency between the three original for-
mulas and the optimized formulas when the resistor network scale is 500 × 500 and r = r0 = r1 = 1,
with d1 at different positions on the resistor network.

Table 16. The comparison of calculation efficiency for equivalent resistance formulas (4.1)
and (5.1).

m × n r r0 r1 t1 t2

500 × 500 1 100 1 311.4661 42.2254
500 × 500 1 10 1 311.0778 41.6979
500 × 500 1 1 1 286.9392 38.8447
500 × 500 1 0.1 1 238.5423 33.3052
500 × 500 1 0.01 1 215.9418 30.6747
500 × 500 1 0.001 1 206.5932 29.5556

Table 17. The comparison of calculation efficiency for equivalent resistance formulas (4.2)
and (5.2).

m × n r r0 r1 t1 t2

500 × 500 1 100 1 313.0235 41.4472
500 × 500 1 10 1 312.3204 40.5223
500 × 500 1 1 1 295.7632 38.5525
500 × 500 1 0.1 1 239.6477 32.0898
500 × 500 1 0.01 1 218.5301 29.7269
500 × 500 1 0.001 1 210.2919 27.8761

Table 18. The comparison of calculation efficiency for equivalent resistance formulas (4.3)
and (5.3).

m × n r r0 r1 t1 t2

500 × 500 1 100 1 313.0125 42.9886
500 × 500 1 10 1 311.9131 41.3279
500 × 500 1 1 1 295.7632 39.0744
500 × 500 1 0.1 1 239.5199 32.8809
500 × 500 1 0.01 1 219.7493 29.6860
500 × 500 1 0.001 1 206.0903 27.9331

Tables 16–18 demonstrate the comparison of calculation efficiency between the three original for-
mulas and the optimized formulas when the scale of resistor network is consistent, d1 = (0, 0), r =
r1 = 1, and r0 takes on different resistance values.

Remark 3: The experimental data from Tables 1–12 show that when the resistance values are the
same and the selection of the fixed node d1 is consistent, the CPU times required to calculate the equiv-
alent resistance by Eqs (4.1)–(4.3) and Eqs (5.1)–(5.3) will gradually increase with the enlargement of
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the resistor network scale. However, regardless of how the resistor network scale changes, under the
same conditions, the calculation efficiency of the optimized Eqs (5.1)–(5.3) is approximately 7 times
higher than that of the original Eqs (4.1)–(4.3). From Tables 4 to 12, it can be observed that When
the scale of the resistor network reaches 1000× 1000, the original formulas have become very difficult
to compute, while the optimized formulas can still complete the calculation tasks very quickly. This
further demonstrates the necessity of the optimized formulas (5.1), (5.2) and (5.3).

Remark 4: The experimental data from Tables 13–15 can be observed to show that under the same
resistor network scale and conditions, the calculation efficiency of both the original formulas and the
optimized formulas does not change significantly. However, comparatively, if the selection point d1 is
at the edge of the resistor network, the CPU times cost to calculate the equivalent resistance is relatively
less.

Remark 5: The experimental data from Tables 1–12 show that reducing the resistance value of r0

can improve the calculation efficiency of both the original and optimized formulas to a certain extent.
The experimental data from Tables 16–18 further suggest that as the resistance value of r0 decreases, the
computational efficiency of both the original and optimized formulas will be enhanced to some degree
when processing resistor networks of the same scale. However, this improvement in computational
efficiency will cease when the resistance value of r0 becomes sufficiently small.

9. Conclusions

In this paper, we propose a heuristic path planning algorithm based on the potential function and
successfully apply it to the globe model. This method ingeniously utilizes the characteristic that the
potential in the resistor network decreases gradiently from the current input point to the current out-
put point. It provides a new perspective for the design of path planning algorithms and pioneers new
applications for resistor networks. By introducing the Chebyshev polynomial of the second class, the
original equivalent resistance formulas are optimized, significantly improving the computational effi-
ciency of equivalent resistance. This offers an effective method for dealing with large-scale data issues.
We used several specific examples to plot corresponding three-dimensional views, demonstrating the
changes in equivalent resistance between two points under different conditions. The final compara-
tive experiments confirmed that the optimized equivalent resistance formulas can save a considerable
amount of time cost when processing large-scale resistor networks compared to the original formulas.
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linearen Vertheilung galvanischer Ströme geführt wird, Ann. Phys.-Berlin, 148 (1847), 497–508.
https://doi.org/10.1002/andp.18471481202

17. C. Pennetta, E. Alfinito, L. Reggiani, F. Fantini, I. DeMunari, A. Scorzoni, Biased resistor net-
work model for electromigration failure and related phenomena in metallic lines, Phys. Rev. B, 70
(2004), 174305. https://link.aps.org/doi/10.1103/PhysRevB.70.174305

18. M. Lai, W. Wang, Fast direct solvers for Poisson equation on 2D polar and spherical geometries,
Numer. Methods Partial Differ. Equations, 18 (2002), 56–68. https://doi.org/10.1002/num.1038

19. V. Winstead, C. L. DeMarco, Network essentiality, IEEE Trans. Circuits Syst. I Regul. Pap., 60
(2012), 703–709. https://doi.org/10.1109/TCSI.2012.2215734

20. G. Ferri, G. Antonini, Ladder-network-based model for interconnects and transmission lines
time delay and cutoff frequency determination, J. Circuit. Syst. Comput., 16 (2007), 489–505.
https://doi.org/10.1142/S0218126607003794

21. M. Q. Owaidat, R. S. Hijjawi, J. M. Khalifeh, Network with two extra interstitial resistors, Int. J.
Theor. Phys., 51 (2012), 3152–3159. https://doi.org/10.1007/s10773-012-1196-5

22. N. S. Izmailian, M. Huang, Asymptotic expansion for the resistance between two maxi-
mally separated nodes on an M by N resistor network, Phys. Rev. E, 82 (2010), 011125.
https://doi.org/10.1103/PhysRevE.82.011125
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