In this paper, we designed and analyzed a weak Galerkin finite element method on layer adapted meshes for solving the time-dependent convection-dominated problems. Error estimates for semi-discrete and fully-discrete schemes were presented, and the optimal order of uniform convergence has been obtained. A special interpolation was delicately designed based on the structures of the designed method and layer-adapted meshes. We provided various numerical examples to confirm the theoretical findings.
Citation: Suayip Toprakseven, Seza Dinibutun. A weak Galerkin finite element method for parabolic singularly perturbed convection-diffusion equations on layer-adapted meshes[J]. Electronic Research Archive, 2024, 32(8): 5033-5066. doi: 10.3934/era.2024232
In this paper, we designed and analyzed a weak Galerkin finite element method on layer adapted meshes for solving the time-dependent convection-dominated problems. Error estimates for semi-discrete and fully-discrete schemes were presented, and the optimal order of uniform convergence has been obtained. A special interpolation was delicately designed based on the structures of the designed method and layer-adapted meshes. We provided various numerical examples to confirm the theoretical findings.
[1] | H. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-34467-4 |
[2] | T. Linß, Layer-adapted Meshes for Reaction-Convection-Diffusion Problems, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-05134-0 |
[3] | C. Clavero, J. C. Jorge, F. Lisbona, G. I. Shishkin, A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems, Appl. Numer. Math., 27 (1998), 211–231 https://doi.org/10.1016/S0168-9274(98)00014-2 doi: 10.1016/S0168-9274(98)00014-2 |
[4] | T. Linß, M. Stynes, Numerical methods on Shishkin meshes for linear convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 190 (2001), 3527–3542. https://doi.org/10.1016/S0045-7825(00)00271-1 doi: 10.1016/S0045-7825(00)00271-1 |
[5] | T. E. Tezduyar, Y. J. Park, H. A. Deans, Finite element procedures for time-dependent convection-diffusion-reaction systems, Int. J. Numer. Methods Fluids. 7 (1987), 1013–1033. https://doi.org/10.1002/fld.1650071003 doi: 10.1002/fld.1650071003 |
[6] | V. John, E. Schmeyer, Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Eng., 198 (2008), 475–494. https://doi.org/10.1016/j.cma.2008.08.016 doi: 10.1016/j.cma.2008.08.016 |
[7] | G. Richter, A finite element method for time-dependent convection-diffusion equations, Math. Comp., 54 (1990), 81–106. https://doi.org/10.1090/S0025-5718-1990-0993932-9 doi: 10.1090/S0025-5718-1990-0993932-9 |
[8] | S. Toprakseven, S. Dinibutun, A high-order stabilizer-free weak Galerkin finite element method on nonuniform time meshes for subdiffusion problems, AIMS Math., 8 (2023), 31022–31049. https://doi.org/10.3934/math.20231588 doi: 10.3934/math.20231588 |
[9] | S. Toprakseven, S. Dinibutun, Error estimations of a weak Galerkin finite element method for a linear system of coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms, AIMS Math., 8 (2023), 15427–15465. https://doi.org/10.3934/math.2023788 doi: 10.3934/math.2023788 |
[10] | S. Toprakseven, F. Gao, A modified weak Galerkin finite element method for singularly perturbed parabolic convection-diffusion-reaction problems, J. Comput. Math., 41 (2023), 1246–1280. https://doi.org/10.4208/jcm.2203-m2021-0031 doi: 10.4208/jcm.2203-m2021-0031 |
[11] | V. John, J. Novo, Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations, SIAM J. Numer. Anal., 49 (2011), 1149–1176. https://doi.org/10.1137/100789002 doi: 10.1137/100789002 |
[12] | E. Burman, Consistent SUPG-method for transient transport problems: Stability and convergence, Comput. Methods Appl. Mech. Eng., 199 (2010), 1114–1123. https://doi.org/10.1016/j.cma.2009.11.023 doi: 10.1016/j.cma.2009.11.023 |
[13] | P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133–2163. https://doi.org/10.1137/S0036142900374111 doi: 10.1137/S0036142900374111 |
[14] | B. Cockburn, C. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440–2463. https://doi.org/10.1137/S0036142997316712 doi: 10.1137/S0036142997316712 |
[15] | Y. Li, W. Zhao, W. Zhao, Spatio-temporal scalar auxiliary variable approach for the nonlinear convection-diffusion equation with discontinuous Galerkin method, Numer. Methods Partial Differ. Equations, 40 (2024), e23061. https://doi.org/10.1002/num.23061 doi: 10.1002/num.23061 |
[16] | J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003 doi: 10.1016/j.cam.2012.10.003 |
[17] | Z. Dong, A. Ern, Hybrid high-order method for singularly perturbed fourth-order problems on curved domains, ESAIM: Math. Modell. Numer. Anal., 55 (2021), 3091–3114. https://doi.org/10.1051/m2an/2021081 doi: 10.1051/m2an/2021081 |
[18] | J. Wang, R. Wang, Q. Zhai, R. Zhang, A systematic study on weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 74 (2018), 1369–1396. https://doi.org/10.1007/s10915-017-0496-6 doi: 10.1007/s10915-017-0496-6 |
[19] | A. Al-Taweel, S. Hussain, X. Wang, B. Jones, A $P_0-P_0$ weak Galerkin finite element method for solving singularly perturbed reaction-diffusion problems, Numer. Methods Partial Differ. Equations, 36 (2020), 213–227. https://doi.org/10.1002/num.22415 doi: 10.1002/num.22415 |
[20] | B. Deka, N. Kumar, Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions, Appl. Numer. Math., 162 (2021), 81–105. https://doi.org/10.1016/j.apnum.2020.12.003 doi: 10.1016/j.apnum.2020.12.003 |
[21] | B. Deka, N. Kumar, A systematic study on weak Galerkin finite element method for second-order parabolic problems, Numer. Methods Partial Differ. Equations, 39 (2023), 2444–2474. https://doi.org/10.1002/num.22973 doi: 10.1002/num.22973 |
[22] | H. Zhang, Y. Zou, Y. Xu, Q. Zhai, H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13 (2016), 525–544. |
[23] | Y. Huang, J. Li, D. Li, Developing weak Galerkin finite element methods for the wave equation, Numer. Methods Partial Differ. Equations, 33 (2017), 868–884. https://doi.org/10.1002/num.22127 doi: 10.1002/num.22127 |
[24] | A. AL-Taweel, L. Mu, A new upwind weak Galerkin finite element method for linear hyperbolic equations, J. Comput. Appl. Math., 390 (2021), 113376. https://doi.org/10.1016/j.cam.2020.113376 doi: 10.1016/j.cam.2020.113376 |
[25] | H. Roos, T. Linß, Sufficient conditions for uniform convergence on layer-adapted grids, Computing, 63 (1999), 27–45. https://doi.org/10.1007/s006070050049 doi: 10.1007/s006070050049 |
[26] | Q. Lin, N. Yan, A. Zhou, A rectangle test for interpolated finite elements, Proc. Syst. Sci. Eng., (1991), 217–229. |
[27] | S. Franz, G. Matthies, A unified framework for time-dependent singularly perturbed problems with discontinuous Galerkin methods in time, Math. Comp., 87 (2018), 2113–2132. https://doi.org/10.1090/mcom/3326 doi: 10.1090/mcom/3326 |
[28] | Y. Cheng, Y. Mei, H. Roos, The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems, Comput. Math. Appl., 117 (2022), 245–256. https://doi.org/10.1016/j.camwa.2022.05.004 doi: 10.1016/j.camwa.2022.05.004 |
[29] | D. A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer Berlin, 2011. https://doi.org/10.1007/978-3-642-22980-0 |
[30] | M. Stynes, L. Tobiska, Using rectangular $Q_p$ elements in the SDFEM for a convection-diffusion problem with a boundary layer, Appl. Numer. Math., 58 (2008), 1789–1802. https://doi.org/10.1016/j.apnum.2007.11.004 doi: 10.1016/j.apnum.2007.11.004 |
[31] | N. Kumar, S. Toprakseven, N. S. Yadav, J. Yuan, A Crank-Nicolson WG-FEM for unsteady 2D convection-diffusion equation with nonlinear reaction term on layer adapted mesh, Appl. Numer. Math., 201 (2024), 322–346. https://doi.org/10.1016/j.apnum.2024.03.013 doi: 10.1016/j.apnum.2024.03.013 |