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Abstract: In this paper, we designed and analyzed a weak Galerkin finite element method on layer
adapted meshes for solving the time-dependent convection-dominated problems. Error estimates for
semi-discrete and fully-discrete schemes were presented, and the optimal order of uniform convergence
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1. Introduction

We will present a weak Galerkin finite element method for the following parabolic singularly
perturbed convection-reaction-diffusion problem:

ou—eAu+b-Vu+cu=f(x,y,t) in Qx(0,T],
u=20 on 0Q x (0,T], (1.1)
u(x,0) = u° in Q,

where 2 = (0,1)>,0 < ¢ < 1, and T > 0 is a constant. Assume b = b(x,y), ¢ = c(x,y), and

u® = u°(x, y) are sufficiently smooth functions on £, and

1
b = (b1(x,). b2(x.y)) 2 (B1.B2), ¢ =5V -b2co>0 onL, (1.2)
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for some constants 81, 5, and ¢y. The parabolic convection-dominated problem (1.1) has been utilized
in a broad range of applied mathematics and engineering including fluid dynamics, electrical
engineering, and the transport problem [1,2].

In general, the solution of the problem (1.1) will have abrupt changes along the boundary. In other
words, the solution exhibits boundary/interior layers near the boundary of 2. We are only interested
in the boundary layers by excluding the interior layers which can be accomplished by assuming some
extra compatible conditions on the data; see, e.g., [1,3]. The standard numerical schemes including
the finite element method give unsatisfactory numerical results due to the boundary layers. Some
nonphysical oscillations in the numerical solution can occur even on adapted meshes, and it is not
easy to solve efficiently the resulting discrete system [4]. There are many numerical schemes for
solving convection-dominated problems efficiently and accurately in the literature. These methods
include Galerkin finite element methods [5-7], weak Galerkin finite element methods
(WG-FEMs) [8-10], the streamline upwind Petrov-Galerkin (SUPG) [11, 12], and the discontinuous
Galerkin (DG) methods [13—15]. Among these numerical methods, the standard WG-FEM introduced
in [16] is also an effective and flexible numerical algorithm for solving PDEs. Recently, the WG
methods demonstrate robust and stable discretizations for singularly perturbed problems. In fact,
while the WG-FEM and the hybridizable discontinuous Galerkin share something in common, the
WG-FEM seems more appropriate for solving the time dependent singularly perturbed problems
since the inclusion of the convective term in the context of hybridized methods is not straightforward
and makes the analysis more subtle. Errors estimates of arbitrary-order methods, including the virtual
element method (VEM), are typically limited by the regularity of the exact solution. A distinctive
feature of the WG-FEM lies in its use of weak function spaces. Moreover, hybrid high-order (HHO)
methods have similar features with WG-FEMs. In fact, the reconstruction operator in the HHO
method and the weak gradient operator in WG methods are closely related, and that the main
difference between HHO and WG methods lies in the choice of the discrete unknowns and the design
of the stabilization operator [17]. Notably, in weak Galerkin methods, weak derivatives are used
instead of strong derivatives in variational form for underlying PDEs and adding parameter free
stabilization terms. Considering the application of the WG method, various PDEs arising from the
mathematical modeling of practical problems in science are solved numerically via WG-FEMs using
the concept of weak derivatives. There exist many papers on such PDEs including elliptic equations
in [16, 18, 19], parabolic equations [20-22], hyperbolic equations [23,24], etc.

However, to the best of the author’s knowledge, there is no work regarding the uniform
convergence results of the fully-discrete WG-FEM for singularly perturbed parabolic problems on
layer-adapted meshes. This paper uses three layer-adapted meshes defined through mesh generating
functions, namely, Shishkin-type meshes, Bakhvalov-Shishkin type meshes and Bakhvalov-type
meshes given in [25]. The error estimates in this work show that one has optimal order of convergence
for Bakhvalov-Shishkin type meshes and Bakhvalov-type meshes while almost optimal convergence
for Shishkin-type meshes. The main ingredient of the error analysis is the use of the vertices-edges
interpolation of Lin [26]. The main advantage of this interpolation operator is that we have sharper
error bounds compared with the classical interpolation operators. For the sake of simplicity, the
Crank—Nicolson method is used for time discretization. This scheme yields optimal order estimates
for fully-discrete WG-FEM. As an alternative, one can apply a discontinuous Galerkin method in time
and present optimal order estimates for the fully-discrete scheme [27].
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The rest of the paper is organized as follows. In Section 2, we introduce some notations and recall
some definitions. The regularity of the solution is also summarized and three layer-adapted meshes
have been introduced in Section 2. Also, we define the weak gradient and weak convection operators,
and using these concepts we define our bilinear forms. In Section 3, the semi-discrete WG-FEM and its
stability results have been presented. Section 4 introduces a special interpolation operator and analyses
interpolation error estimates. Section 5 presents error analysis of the semi-discrete WG-FEM for the
problem (1.1) on the layer-adapted meshes. In Section 6, we apply the Crank-Nicolson scheme on
uniform time mesh in time to obtain the fully-discrete WG-FEM, and prove uniform error estimates on
the layer-adapted meshes. In Section 7, we conduct some numerical examples to validate the robustness
of the WG-FEM for the problem (1.1). Summary on the contributions of this work are presented in
Section 8.

2. Preliminaries and weak Galerkin finite element method

Let S be a measurable subset of (. We shall use the classical Sobolev spaces W"™4(S),H'(S) =
Wr2(S), H{(S), LI(S) = W%4(S) for negative integers r > 0 and 1 < g < o0, and (-, -)s for the L? inner
product on S. The semi-norm and norm on H'(S) are denoted by | - |, s and || - ||,.s, respectively. If
S = Q, we do not write S in the subscript. Throughout the study, we shall use C as a positive generic
constant, which is independent of the mesh parameters /4 and €.

2.1. Decomposition of the solution

This section deals with the introduction of a decomposition of the solution which provides a priori
information on the exact solution and its derivatives. Based on this solution decomposition, we
construct layer-adapted meshes. As we noted in the introduction, the solution of (1.1) exhibits
typically two exponential boundary layers at x = 1 and y = 1. The following lemma gives some
information on the solution decomposition and bounds on the solution of (1.1) and its derivatives.

Lemma 2.1. Let k be positive integer and | € (0, 1). Assume that the solution u of the problem (1.1)
belongs to the space C*'(Qr) where Qp := Q x (0,T]. Assume further that the solution u can be
decomposed into a smooth part ug and layer components uy,, uy,, and ur, with

u=ug+up, U, =uy+u, +u, Y(xy)E Q, 2.1

where the smooth and layer parts satisfy

ai+j+ruR

W(x, y<C (2.2)
%(x, y)| < CeTiePrl=/e (2.3)
%u, y)| < Cele PV, (2.4)
%(x, )| < Ce (D P1U=0/e gBr(l-0)]e (2.5
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for any (x,y) € Q, t € [0, T], and positive integers i, j, r withi + j + 2r < k, and C only depends on
b,c, and f and is independent of . Here, ug is the regular part of u, uy, is an exponential boundary
layer along the side x = 1 of Q, uy, is an exponential boundary layer along the side y = 1, while uy, is
an exponential corner layer at (1, 1).

Proof. Under some smoothness conditions and strong imposed compatibility requirements, Shishkin
proved this solution decomposition; see, [1]. O

2.2. Layer-adapted meshes

Let N, and N, be positive integers. For the sake of simplicity, we assume that Ny = N, = N is an
elements T;; = I; X K; with the intervals I; = (x;_, x;) and K; = (y;-1,y;), where the mesh points are
defined by

O=xo<xi<...,xy,=1, 0=y <y <....yn, = 1.

Since the construction of the meshes in both directions is similar, the mesh construction in x-variable
is given here.

We define the transition parameter as

1 oe
T = min ~° _90(1/2)) ’
55
where oo > p + 1 is a positive constant. Here, p is the degree of the polynomials used in the
approximation space. The function ¢ obeys the conditions

@0)=0, ¢ >0, ¢ >0. (2.6)

Assumption 1. Throughout this article, we assume that & < CN~! such that 7 = (”;%

otherwise the analysis can be carried out using uniform mesh.

¢(1/2), since

Let the mesh points x; be equally distributed in [0, xy,2] with N/2 intervals and distributed [xy, 1]
with N/2 intervals using the mesh generating function defined by

2(1 = 71)i/N, fori=0,1,...,N/2,

2.7
1—(k;11)8()0(1—i/N), fori:N/z,N/2+1,...,N. ( )

x; = A(Ii/N) = {

For example, as in [25], the Shishkin-type (S-type) meshes can be deduced by ¢(1/2) = In N while
Bakhvalov-type meshes (B-type) can be recovered by taking ¢(1/2) = In(1/¢).

We will use the mesh characterizing function ¢ defined by ¢ = ¢™%, which is an essential tool in our
analysis below.

Following [2], we list some famous adaptive meshes including S-type, Bakhvalov-Shishkin
meshes (BS-mesh), and B-type in Table 1.
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Table 1. Frequently used layer-adapted meshes.

S-type BS B-type
0 2tIn N —1n[1 -2(1 —N-l)t] —1In[1 =2(1 - &)t]
w(t) N2 1-2(1-N")t 1-2(1-e)
max || ClnN C C

Similarly, we define the transition point in the y-direction as

1 oe
2" B

We first split the domain £ into four subdomains as in Figure 1:

90(1/2))-

Ty = mln(

Q =[0,1-71x[0,1-7], Q. :=[1-711x[0,1-1,],
Q:=[0,1-7]x[1-7,1], Qy:=[1-71]x[l-1,1].

1 L — — — f— T

Q, Q. I it e s IS
l-1, : — l-1, : : : -
2 A

o T A N

0 1-7 1 0 1-7 1

Figure 1. Tensor product Shishkin mesh for N = 8.

Clearly, the mesh is uniform in Q, with a mesh size of O(N™"), highly anisotropic in Q, and Q,,
while it is very fine in Q,,.

Leth! := xi;—xi.1, i=1,...,N hi :=yj=Yyj-1, j = 1,..., N be the mesh sizes of the subintervals.
For the sake of simplicity, we assume that 8, = 8, = 8. Then, one has i = h;, and we simply write
h;, i = 1,..., N for simplicity. The following technical lemmas show the smallness of the boundary
layer-functions and the basic properties of the mesh sizes of the layer-adapted meshes.

Lemma 2.2. [28] Denote by ©; = min{h;/e, 1} e *'=/7¢ for i = N/2 + 1,...,N. There exists a
constant C > 0 independent of € and N such that

max ©; < CN~'max |¢/|
N/2+1<i<N
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N
PR

i=N/2+1

Lemma 2.3. [28] For the layer-adapted meshes we considered here, we have

hi=hy =...=hypand min h;> CeN~ "max [y/].

.....

Moreover, fori = N/2+1,--- N,

27/N, for S-type

h =
1> ’h— > C, for BS- mesh

and, for the B-type mesh,
i=N/2+2,---,N, 12%1>(,

i=1,2,---,N/2, ]”l/\//gﬂ'Z%JrL

where C > 0 is a constant independent of € and N.

2.3. The numerical method

A weak formulation of the problems (1.1) and (1.2) is to look for u € Hé (£2) such that
(u,,v) + A(u,v) = (f,v) Vve Hé(Q), (2.8)
where the bilinear from A(, -) is defined by
A(u,v) .= e(Vu,Vv) + (b - Vu,v) + (cu, v).

Based on the weak formulation (2.8), we define the WG-FEM on the layer-adapted mesh. Let p be
a positive integer. We define a local WG-FE space V(p, K) on each K € 7 given by

V(p, K) := {v = (o, v} : ol € Qp(K), vl € Pyle), e € OK],

where Q,(K) is the polynomials of degree p on K in both variables, and P,(e) denotes the polynomials
of degree p on the edge e.
Defining the WG finite element space Vy globally on 7 as

Vi = {vw = (vo. v} : vilg € V(P K). Vilnoi, = Velerio, - 0K1 0 0K; = (e}, (2.9)

and its subspace
Ve ={v:veVy,v=00n0Q}.

The weak gradient operator V,,uy € [Q,_1(K )]? can be defined on K as

(Vaity, W)k = (o, V - )k + Cup, - Myax Y € [Q, 1 (KD, (2.10)

where n represents the outward unit normal K, (w, v)x denotes the inner product on K for functions
w and v, and (w, v)yx is the L?—inner product on K.
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The weak convection operator b - V,,uy € Q,(K) can be defined on K as

(b - Vyuy, Ok = (o, V- (b)) + (up, b -n&)ox V& € Qu(K).

For simplicity, we adapt

@)= > W) 617 =(8.0), (B0)= > (&g

K E(]—N K ETN

For uy = {ug, up} € Vy and vy = {vo, vy} € Vy, the bilinear form A, (-, -) is given by

A, (uy, vy) = &(Vyuy, Vyvn) + (b - Viuy, vo) + (cuo, v,)

+Sy(uy, vy) + Sc(uy, vy),
where s4(-, -) and s.(:, ) are bilinear forms defined by

Sa(un, vy) = Z Px{Uto — Up, Vo = Vi) gie»
KeTn

Scluy,vw) = D (b nlttg = up), vo = VY

KeTyn

with 0K* = {z € K : b(z) - n(z) > 0} and pg is the penalty term given by

L ifK c Q,
PR\ Namax ), ifK c @\ Q,.

(2.11)

(2.12)

(2.13)

Given a mesh rectangle K, its dimensions parallel to the x and y-axes are written as h, g and h, g,

respectively.

Lemma 2.4. [29] For all K € Ty with hx = min{h,k, h, x}, there exists a constant C depending only

on p such that

2

””N”iz(azo < Ch;(llluNlle(K), Yuy € P,(K). (2.14)
We next formulate our semi-discrete WG scheme as follows (Algorithm 1).
Algorithm 1 The semi-discrete WG-FEM for problem (1.1)
Find uy = (ug, up) € Vy such that
(), vo) + Aw(un, vy) = (frv0)  Yvn = (vo, vp) € Vy, (2.15)

un(0) = u’(0),

where u’(0) € V} is an approximation of u(0).
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3. The semi-discrete scheme and stability analysis

This section is devoted to establishing the stability results of the WG-FEM defined by (2.15). Define
the energy norm || - ||z on the weak function space Vy for vy = {vy, vy} € Vy,

2. 2 1/2 2
onlly ==& > IVl + > b -0l (v = vi) 1B

KeTy KeTwn
+1voll” + Sa(ww, vw). (3.1

Define also an H' equivalent norm on Vy by

onl2 =& D I9vlly + D 1lIb - nlM2 (g = ) [ + Ivoll” + Salvw, v). (3:2)

KeTwn KeTy
The equivalence of these two norms on VY is given in the next lemma.

Lemma 3.1. For vy € V°, one has
Clivalle < llvalle < Clivalle.

Proof. For vy = {vg, v} € V](\’,, it follows from the weak gradient operator (2.10) and integration by
parts that;

(Vavw, W) = (Yo, W) = (Vo = v, - Whgees ¥ w € [Q,oi(K)%, VK € Ty (3.3)

Choosing w = V,,vy in (3.3) and using the Cauchy-Schwartz inequality and the trace inequality (2.4),
we arrive at
(VWVN’ VWVN)K = (VVO’ VWVN)K - <V0 —Vp, I * vaN>gK
< ||VV0||L2(K)||VWVN”L2(K) + lvo — Vb||L2(ﬁK||VwVN||L2(aK)
-1/2
< (IVvollzzxy + Chi lve = vullzaox) IVl ).
Hence, we get
-1/2
||VWVN||L2(K) < ||VV0||L2(K) + ChK / llvo — Vb||L2(aK>-
Summing over all K € 7 yields
ellVuwnl? < 2(ellVvolP + C Y ehillvo = voll2s o )
KGTN
From the penalty term (2.13), we get
ehy!
—<C, VKeTy,
Pk

and

-1

ch
-1 K
E ehi' [vo — vpllzex) = E ——pkllvo = vllzox) < Csa(Wa, V).
KeTw Kery 1K
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As aresult, for vy € VJ(\),, we have
valle < Cllvalle. (3.4)

Taking w = Vv in (3.3) and using the Cauchy-Schwartz inequality, we get

(Vvo, Vvo) g = (V. Vvo)k + (vo — v, - Vvg)
< ||VWVN||L2(K)||VV0||L2(K) +[vo — Vb||L2(aK||VV0||L2(aK)

-1/2
< (IVwvnlliz + Chig P lve = villzeo) IIVvoll 2

where we have again used the trace inequality (2.4).
Consequently,

-1/2
||VV0||L2(K) < ||VWVN||L2(1<) + ChK/ lvo — Vb||L2(aK)-
Summing over all K € 7 yields

2 2 -1 2
el Vvl < 2(&llVuvnlP +C Y ehillve = voll2s o )
KeTn

Therefore, we have
ellVvoll* < 2(ellVyvnll* + Csa(vy, vi)),

which implies
valle < Clivalle. (3.5)

From (3.4) and (3.5), we obtain the desired conclusion, which completes the proof. O
We shall show the coercivity of the bilinear form (A,,(-, ) in || - ||z norm on VI(\’,.

Lemma 3.2. For any vy € V9, the following inequality holds:
A, vy, vy) = Clivally, Yoy € Vy. (3.6)

Proof. For vy = {vo,vp},wy = {wo,wp} € VIQ,, using the weak convection derivative (2.11) and
integration by parts gives

(b - V,vn,wo) = =(vo, V - (bwy)) + (vp, b - nwg)

(3.7)
= (b - Vvo, wo) — (b - n(vo — v3), wo)
and
(b - Vywy,vo) = —=(wo, V- (bvg)) + (wp, b - nvy) (3.8)
= —(wo, V - (b)) + (Wp, b - n(vo — vp)) .
where we use the facts that vy, wy € V9, and (b - nv,, wp,) = 0 in the last inequality.
Combining (3.7) and (3.8), and taking vy = wy, we obtain
1 1
(b-V,vy,v) = _E(V - bvo, vo) — 5(” (Vo = Vp), Vo — V). (3.9)
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From (3.9), we have
1
A, (v, vy) = (Vyvy, Vyvw) + ((_EV : b) Vo, Vo) +Sa(vn, ) + Sc(vw, )
1
- §<b “n(vo — Vp), Vo — V)
1 2
>el[ Vvl + collvol + 5 TZ;‘ b nPeo = v)|| + Satow,vw)
N

2
2Clvyllz,

which yields (3.6) with C = min {co, %} The proof is completed. O

Therefore, the existence of a unique solution to (2.15) follows from the coercivity property of the
bilinear form (3.6). As a result of the two lemmas above, the bilinear form is also coercive in the
|| - [l--norm in the sense that for any vy € VIQ,, there holds

Ay, vn) = Clivwl2. (3.10)

Lemma 3.3. If f € L*(Q) for each t € (0, T), then there is a constant C > 0 independent of t and mesh
size h such that the solution uy(t) = {uy(t), up(t)} defined in (2.15) satisfies

!
luoI < Cllu®lI” + f If()IPds, ¥t e (0,T]. (3.11)
0
Proof. Choosing v = uy(¢) in (2.15) gives that

1d
5 7 1Mo OIF + Ay, uy) = (f, o).

Using the Cauchy-Schwarz inequality and the coercivity (3.6) of the bilinear form A, (-, -),

d
EHUO(I)HZ < 2(f, uo)

< 1P + lleol .
Integrating the above inequality with respect to the time variable ¢, we arrive at
t !
o) < 11l + f IF(IPds + f lluo(s)|Ids. (3.12)
0 0
Using the Gronwall’s inequality gives the desired conclusion. We are done. O
4. Interpolation estimates
First, we define “vertices-edges’ interpolation v of a function v on an element K as follows. Let

K := (=1,1) x (-1, 1) be the reference element with the vertices d; and the edges ¢; fori = 1,...,4.
For $(-,-) € C(K), the approximation P C(K) - Qp(f() is given by

P) (@) =v @) fori=1,...,4, 4.1)
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f(?v)qu = quds VgeP,,(&) fori=1,...,4, 4.2)

€

f f Po)gdédn = f f dqdédn ¥ q € Qya(R). 43)

The approximation operator # is well-defined [30]. Thus, we can define a continuous global
interpolation operator Py : C(2) — Vy by writing

(Pyu)lg := (P(u o Gg)) o G VKeTyucCQ), (4.4)

where the bijective mapping G : K > K is given by Gg(&,m) = (x,y) = (xk + hy,§/2, yx + h n/2).
This interpolation operator has the following stability estimate [30]

Pnoll=x) < Clidll=k), Y € C(K). (4.5)

Since our approximation operator (Pyv)|x is continuous on K, we have {(Pyv)|x, (Pyv)l.} € Vy for
e € 0K. By the trace theorem, we will denote this by Pyv.

Lemma 4.1. [31] For any ¢ € H'(K),
(ViuPng),¢) = (V(Pnd), ¥) Y € Qpi(K), K € Ty.
We recall some technical results from [30].

Lemma 4.2. For any K € Ty and q € [1, o], there exists a constant C such that the vertices-edges-
element approximant Pn¢ satisfies

V= Prdlliagy C D Hchl g

i+j=p+1

p+1¢
0x' oyl

LI(K)
for all p € WPHH4(K),
Lemma 4.3. Let s € [1, p]. The following estimates hold for any K € T y:

s i - as+lw

low - PN‘/’)XHLZ(K) =C ; Mokhyk dxi*1 gy 2w
s i - (9”1',0

||(‘ﬁ - PNw)YHL?(K) <C ; hx’Khy’K W 12(K)

forall y € H*(K).

A careful inspection of the proof of Lemma 4.3 in [30] reveals that the following results also
hold true.

Lemmad4. ForKeTyandsc[l,p+1—-Llwitht=1,2,...,p+ 1, there exists a constant C such
that the vertices-edges-element approximant Pn¢ satisfies

O'(¢ - Pyg) Ll ote
Oxt = Czh hyK (9x1+€(9ys i ’
L2(K) LX(K)
a€(¢ _ pN¢) o ar+[¢
ayf <C Z h hy K axtays a0 iqys—itl
L2(K) LX(K)

forall ¢ € H*(K).
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Lemma 4.5. Let the assumption of Lemma 2.1 hold such that u = ug + ur, uy = ur, + ur, + ur,. Then
there is a constant C > 0 such that the following interpolation error estimates are satisfied:

lug — Prurlliz) < CN™PHD, (4.6)
lluzllzz,) < Ce'2N-(r*D, 4.7)
IVuLll 2, < Ce ' PN-P*D, (4.8)
AuLll 2,y < Ce2N~PHD, (4.9)
NNVPyuLll2@,) + IPNuLllizg,) < CN™PH2), (4.10)
llur = Pyurllizg < C(N~" max /)P (4.11)

Proof. The proof of (4.6) follows from Lemma 4.2 and the solution decomposition (2.2) of Lemma 2.1.
Using the decay bound (2.3) of u,, and the fact that ¢(1/2) > In N, we have

1-7 1-7
2 2
”uLO”LZ(.Q,) = f f |ML0| dXdy
0 0

1-1 1-1
< Cf f e PU=I/edydy < CeN~HPHD),
0 0

which shows (4.7) for u;,,. Similar arguments can be applied to the layer functions u;, and u;,. Thus,
we complete the proof of (4.7). For (4.8) and (4.9), we will prove for u;, since the other two parts
follow similarly. One can use the decay bound (2.3) of u,, to obtain

1- 1-
”VMLO”Z(QOSC‘S_ZJ(; Tfov Te—2ﬁl(1_x)/8dxdy

< C871672ﬁ1‘r/£

< Ce ' NTHPD,

We now shall prove (4.9). Appealing (2.3), one gets

1- 1-
o, < ot [ [ ety

< Cg3ePi/e

< Cg P N~2PHh,
The proof of (4.10) is a little longer. Using an inverse estimate yields
N_]||V7)NML||L2(Q,) + ||7)NML||L2(Q,) < C||7)NML||L2(Q,)-

Hence, we shall estimate ||Pyull2q,. With the help of the stability estimate (4.5) and the decay
bound (2.3) of u;,, we have

- N/2

||PNML0||22(Qr) < Cf Z ij e_Zﬁl(l_Xi)/gdxdy.
0 = Yaia
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If i < N/2, then the sum can be small as a function of £ but not small if i = N/2. Fori=1,...,N/2-1
and x € [x;_1, x;], we have

e—Zﬁl(l—x,-)/s — ez,Bl(xN/Z_xN/Z—l)/ae_zﬁl(1_xi—l)/8 < ezﬂl(XN/Z_XN/Z—I)/Se_zﬁl(l_x)/g

and when i = N/2, again using the fact ¢(1/2) > In N,

e—Z,Bl(l—xN/z)/s = ¢ Bitle < NT2PHD),

Thus,
xN/Z—

[Pri s, oM [

< Cge P (I=n)le 4 c =203
< C(sN720tD 4 NP3
which proves (4.10). To prove (4.11), we use (4.7) and (4.10) to obtain

1
e BU=Degy  CNT3

luz = Pyurliz,y < C (NP0 + N772) < C(N™' max Jy/ ).
On the set Q, U Q,, from the triangle inequality, one obtains
””LO - PNMLOHLz(Q,UQy) < C(”uLO”LZ(Q,UQy) + ||PNML0||L2(Q,UQ),)) =hL+h

For I, we have

1-7 12
||uL0||L2(_Q u2,) < (f e—2,31(1—x)/8dx) < CSI/ZN_(‘DH),
r y 0

For 1, using (4.5) and the decay property (2.3) of u,,

N/2

v 1 1/2
”PN”LO”U(Q,UQy) = {Zf fo [PNML()(X, )’)]2 dydx}
i=]1 Y X=Xi-1 VY=

N2y 12
<C f f e—2,31(1—xi)/8dydx
{; x=xi-1 vy=0 (4 1 2)
N/2-1  ~xi 1 XN/2 1 12
C Z f f e P gy dy + f f e P78 dydx
1 x=x; Jy=0 x=xny2-1 Yy=0

<C{(e+ NN}

IA

where we have used that ¢(1/2) > In N. Applying Lemma 4.2 and the decay property (2.3), we have
forany K Cc Q, U Q,,

+1
(9" MLO
axp+l

5p+ll/lL0

ayp+l

””LO - PNMLOHH(K) S C(hf:rKl

p+1
+ hy’ J*
LX(K)

< C((th’K)PH +h;’j<‘)( fl fl e—z;alu_x)/sdydx)l/z
-7 JO
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< COM < C(N" max |y,

h
where we have used il >CN! > Chy x and Lemma 2.2. Similarly, one can show that (4.11) holds
£
for u;, as well.

For K ¢ Q, U Q, U Q,, one can prove as above Y xco uo,ue, ||uL2 - SDNuL2||
K c Q,,, we obtain

L < CN~?*D_ For

(')p+1ML2

axp+1

p+1
6 ML2
ayp+1

””Lz - PNMLZ”LZ(K) = C(hierl

p+1
+ hy,K
LX(K)

)

LA(K)

hex hy x 1 1 12
< C(( * )P+1 +( Y )P+1)(f f e—(Zﬁl(I—X)+2/32(1—y))/8dydx)
€ € -t Jl-1,

< CO + 0" < C(N™" max |y/|y*.

Thus, we complete the proof of (4.11). The proof of the lemma is now completed. O
Lemma 4.6. Let u € H?*1(Q). Assume that the conditions of Lemma 4.5 hold. Then, we have

IV(ur — Pryur)lliz) < CN77,
IA(ug — Prupllizg) < CN'7,

01(”L — Pyur)
< Ce\ /P IN-(r+D),
ox! L2(Qr)
(91(ML — Pyur)
< C"2 N max [,
ox! L2(Q\2,) ( WD
(91(ML — Pnur)
< Ce\/ZIN-(r+D),
oy L2(Qr)
3I(ML — Pnur)
< CSI/Q—I(N—I max |l///|)p+l—l
oy LQ\2))

forl=1,2, where u; denotes uy,, ur,, or ur,.

Proof. The first and second estimates follow from Lemma 4.3, Lemma 4.4, and the fact that
max{hy g, hy;} < CN ~!. From the triangle inequality and (4.8) and (4.10) of Lemma 4.5, we have

“1/2 A= (p1
IV(ur — Pru)llize, < IVurllizg,) + IVPyuLllzg,) < Ce ' 2PNPD,

where we have used that ¢ < CN~'. This completes the proof of the third and fifth inequalities for
[ = 1. An inverse inequality and (4.9) and (4.10) of Lemma 4.5 lead to

|A(uz, - PNML)”LZ(Q,) < ||AML||L2(Q,) + CN”VPNML”LZ(Q,)
< Ce[1 + (eN)*’* + (eN)*)IN~P*D
< Ce3PN~P+D,
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where again we have used eN < C. This proves the third and fifth inequalities for / = 2. Using
Lemma 4.4 withr = p+ 1 — ¢ for £ = 1,2 and the decay bound (2.3) of u,,, one can show that for any

KcQ.uQ,,

af(l/tLO - PNMLO)I
oxt

+1
0” ur,
axp+1

(9””uL0
axt’aypﬂ—f

p+1-¢
+ hy,K
L2(K)

h, Ll 12
< ng—f((T’K)pH—f_i_hfy}—(l—f)(‘[lv ‘fo‘ €—2ﬁ|(1—x)/€dydx)

< C81/2_€®§7+1_€ < Ce'P YN max |y )

< C(h"H
L2(K)

)

LA(K)

Similarly, one can prove that the result holds for u,,, too.
5€(ML2 — Pnur,)

For K C Q,U Q, U Q,, we get Y ko u0.00, < Ce!2IN-*D For K c Q

axf Xy»
_ L2(K)
we obtain
¢
0" (ur, — Pnur,) < "y, et || 07 s, :
¢ = x,K +1 v.K Lyyp+1-C
Ox I2(K) 0xP LA(K) Ox'yP L2(K)

< Cg—f((hx_’K)p+l—[ + (hy_’K)pH—f)x

& &
L maossaoe 12
( e A dydx)
-t Jl-1,

< CeP @ + 01T < CePI N max !,

which completes the proof of the fourth inequality. Similarly, one can prove that the last inequality
holds true. The proof is now finished.
O

5. Error analysis of the semi-discrete WG-FEM

Unlike the classical numerical methods such as FEM and the SUPG, the proposed WG-FEM does
not have Galerkin orthogonality property. This results in some inconsistency errors in the error bounds.
We first give a useful error equation in the following lemma.

Lemma 5.1. [31] Let u solve the problem (1.1). For vy = {vg, v} € V](\),,

—&(Au,vg) = &(V,,(Pyu), V,,vy) — Eq(u, vy), (5.1)
b -Vu,vg) = (b - V,,(Pyu),vo) — E. (1, vy) (5.2)
(cu,vo) = (c(Pnu),vo) — E; (u, vy) (5.3)
where
E (u,vy) = —e(V(u — Pyu), Vvo) + &(V(u — Pyu) - n,vo — vy ), (5.4)
E.(u,vy) = (u — Pyu,V - (bvg)) — {u — Pyu,b - nvy), (5.5)
E.(u,vy) = (c(Pyu) — cu, ). (5.6)
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The following error equation ey = {ep,ep} = {Pyu — uy,Pyu — up} will be needed in the
error analysis.

Lemma 5.2. Let u and uy be the solutions of (1.1) and (2.15), respectively. For vy = {vo, v} € VO

N}

one has
(66, V()) + ﬂw(eN7 VN) = E(L{, VN)9 (57)
where E(u,vy) = E u,vy) + E.(u,vy) + E.(u,vy), which are defined by (5.4), (5.5),

and (5.6), respectively.
Proof. Multiplying (1.1) by a test function vy = {vg, v} € Vz(\)/’ we arrive at
(ur, vo) — € (Au, vp) + (b - Vu,vp) + (cu, vo) = (f, vo) .
With the help of (5.1), (5.2), and (5.3), the above equation becomes
(U, vo) + & (VyuPyu, Vy,oy) + (b -V, - (Pyu) ,vo) + (cPyu, vo) = (f, vo) + E(u, vy).
Since Pyu is continuous in £, we get
S.(Pyu,vy) = Ss(Pyu,vy) = 0.

Therefore, we have
(s, vo) + A(Pru, vy) = (f,vo) + E(u, vy). (5.8)

Subtracting (2.15) from (5.8) gives (5.7), which completes completed. O

Lemma 5.3. Let Pyu be the vertex-edge-cell interpolation of the solution u of the problem (1.1). Then,
there holds

CN-?*D, if (x,y) € Q,,

C(N~"max [y/|)’*',  otherwise.

(= Py, )| < {
Proof. The solution decomposition (2.1) implies that
u—Pyu = (ug — Pyug) + (ur, — Pyur,) + (ur, — Pyur,) + (ur, — Pnur,) -
Using Lemma 4.2 with ¢ = oo and Lemma 2.1,

+1
o’ Up

0x' oyl

(g = Prvttg) (6, 3) < CN"PD N i) < CN™PD - W(x,y) € Q.

i+j=p+1

Next, we examine the layer parts one by one. Let (x,y) € K C Q, U Q,. From the L* stability
property (4.5) of the interpolation operator, one has

|Gz, = Prtary) (5, )| < Clluagyllzxy < Ce P < CePrr/e < NP,
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Let (x,y) € K € Q, U Q,,. The stability property (4.5) and Lemma 4.2 with g = oo yield
p+1uL p+1uL
||uL() - pNuL()”LM(K) S len {”uLO”LDO(K)’hi},—'—KIHWJ”Lm(K) + h;l:;(lH 6xp+10||Lm(K)}
h
< min {1, (T’K)P+1 + (hy’K)p"'l}e_Bl(l—xi)/s

< €O < C(N™"max |y )P+,

Similarly, we can derive the estimates on the other layer components u;, and u;,. Combining the
above estimates gives the desired conclusion.
Thus, we complete the proof. O

We recall the following trace inequality. For any u € H'(K), one has
lull? < € (Al g, + Nl i I Vel 2y ) - (5.9)

Lemma 5.4. Let u € H"*'(Q) and py be given by (2.13). Assume that the conditions of Lemma 4.5
hold. Then, one has

1/2
82
{Z Z |V - PNu)niz@m} < C(N™" max |y/])".

KeTn K

Proof. For the sake of simplicity, we use the following notations. Let { := ugr — Pyug and {; =
u; —%Pyu; represent the interpolation errors of the regular and layer components of the solution. Hence,
by the triangle inequality, we have

82 82
D MV < D UVl g + IV - (5.10)
KeTn Pk KeTy Pk

With the help of the trace inequality (5.9), we have
IVZrl2 g, < COHR IV ERIE g, + IV Zll 2o ARl 20k0)-

Now, appealing the definition (2.13) of stabilization parameter px and Lemma 4.6 gives

g g
2 5 Vel < € Q5 U1Vl + 19 iz llAdallzce)
K K

KeTn KeTy

< C(82N||V§R||i2(gr) + SllnglliZ(g\Qr) (51 1)

2 2a7-1
+ & ||V§R||L2(Q,)||A§R||L2(9,.) +&N ' In N||V§R||L2(Q\g,.)||A§R||L2(Q\Q,))
< CeN7%,

where we have used that eN < 1.
Using once again the trace inequality (5.9), we have

IVZLIR 2 ey < CURIVELR 0, + IV IV Eelizi)-
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Now, appealing the definition (2.13) of stabilization parameter px and Lemma 4.6 again reveals that

82 82 _
2 5Vl < € Q5 Ui IVElz e, + 19l llAduliz)
K

Kery K KeTw
< C(ENIVELIE,, , + &Vl (5.12)

L2(Q)) L2(Q2\Q))

+ 82||V§L||L2(.Q,.)||A§L||L2(Q,) +&N'In NIVllz@onllALLl2e\0,)
< Cl(e + N"HN®*D £ (N~ max |y/])*"].

Plugging (5.12) and (5.11) into (5.10) yields
2
>
D Vo, < Cle+ NN+ (N~ max /)],
KE‘TN

Consequently, we have

1/2
g _ ,
{Z — ||V~ Paniz(&K)} < C(V' max |y/IY,
K

K E'TN

which completes the proof.

Now, we shall prove the error bounds for the consistency errors.

Lemma 5.5. (A priori bounds) Assume that Ty is the tensor product mesh as defined in Section 2.
Then, for u € H**'(Q) and vy € V9, we have

[Equ, i)l < CN™ max [/ lvulle, (5.13)
|Ec(u, i) + E(u,vi)l < CN™" max /) [vwlle, (5.14)

Proof. It follows from the Cauchy-Schwarz and Holder inequalities that

|Eq(u, vy)l < Z llV(u - PN”)”LZ(K)”VVO”LZ(K)
KeTy

+ > eV = Prllaxlivo = villzar,

KeTwn

=8 +8,. (5.15)

Now, it then follows from Lemma 4.6 that

Sio= ) eV - Pyl I Vvollz)
KeTn
1/2 1/2
= ), &IV = Pawliae IV voll
KeTn
1/2 1/2
< (D) IV = Pyl + ) &IV = Pyun)llizg
KeTn KcQ,
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1/2
+ > PV - Pyl Iyl
Kco\Q,

C(e"?N77 + N0 4 (N~ max [/ )") Il
CN™" max [y )’ [[vwll.. (5.16)

IA

IA

Next, we consider the term S,. From the Cauchy-Schwarz inequality and Lemma 5.4, we have

Sy =2 > IV = Pz Ivo = villizax,

KeTwn
&2 1/2 1/2 517
< {Z = IV(u - PNu)niz(aK)} {Z pxlive - vbuiz(m} ©-17)
Kery PK KeTy
< C(N~" max |/ )?||vyll..
Combining (5.16) and (5.17), we get
|Eq(u, vi)l < C(N™" max [y/')[lvall- (5.18)

From (5.5) and (5.6) and using (u — Iyu,b - nv,) = 0, we arrive at

E.(u,vy) + E.(u,vy) = (u —Pyu,b - Vvp) + (u — Pyu, b - n(vy — vp))
+ (u—Pyu,(V-b-—c)vy)
=: R] + le + Rz.

Now, the Holder inequality and Lemma 5.3 lead us to write

R < C( Z ||t — pNM||L°°(K) ||VV0||L1(K) + Z [|ee — 7DNM||L°°(K) ||VV0||L1(K))
KcQ, Kco\Q,
< (NP " ol + CN™ max /P > IVvollie) )- (5.19)
KcQ, Kc\Q,

The Cauchy Schwartz and inverse inequalities give

D vl < CN D lvolluigy < CNIRIC Y Vol ) < CNIvlle: (520

KcQ, KcQ, KcQ,

Appealing the Cauchy Schwartz inequality on Q \ Q,, we have

D vl < D I¥vllug + D IVvllug + ) I¥volluiax

KCO\2, KCQ, KcQ, KCQy
< VT = 7IVvoll2e,) + V(1 = T)”VVO”LZ(QY)
+ VTLlIVwllze,,) (5.21)
<C'>N > Vol
KCO\Q,

< C(AnN) vyl
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Using the error bounds (5.20) and (5.21) in (5.19), we obtain

[Ri] < CIN™” + (N~! max |/ )An N) (N~ max |/ )? Tlvalle

’ , (5.22)
< C(N~" max [/’ |lvylle,

where we have used the fact that N~!(In N)!/> max [¢’'| = N-'(In N)"/? |y’ (0)| < C.
Since u and Pyu are continuous, we conclude that || — Pyl ) < [l —Pyull =k for any e C 9K €
7 ~. Then, the Holder inequality and Lemma 5.3 imply that

b
(R < > Nl = Pyullisonolivo = volluiary

KeTy
1/2

< 7l = Pyll=arolvo = villzzax 1K'

KeTy

2 -1\!/? 2 12
< (D) =Pl 0K ) (Y plivo = viliEagog,)
KeTwn KeTy
1/2
< C(NP+ (N Tmax |/ )P D(elnN)InN) () pxlvo = Vol )
L*(0K)

KETN
_ 1/2 1
< CN~P*1 2D (max [/ )P vwlle,

where we have used that eIn N < C and (N~! max |y//|)***V In N < N~®P*D(max |y/'|)>P+D,
Using the Cauchy Schwartz inequality and (4.6) and (4.11) of Lemma 4.5, we obtain

[Rol < Cllu — Pulllvoll
< CN~"max |y’ flvyll,.

The proof is completed. O

By letting vy = ey in (5.7), we obtain
1d
EEHeo(f)”z + Aylen, en) < |Eq(u, en)| + |Ec(u, en)l + |E(u, ey).
It then follows from the estimates (5.13) and (5.14), together with Young’s inequality and 3.10, that
1d - /
Ealleo(t)ll2 + Cllexl; < C(N™" max |¢/])’|lexl
-1 wen . S
< C(N™ max |7 + llenlls-
As aresult,
1d - /
Ealleo(t)ll2 + Clleyll; < C(N™" max |y ). (5.23)
Then, by integrating from O to 7 , we have
t
lleo(t)II* + C f llewlZds < C{lleo(O)IP + (N~" max [y/)*"}.
0
This result is collected in the following theorem.
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Theorem 5.1. (Semi-discrete estimate) Let u € H**'(Q) be the solution of (1.1)-(1.2) and uy € VY, be
the solution of (2.15). Then, we have

!
lleoII* + f lelZds < C{lleo(O)IP + (N~" max [y/)*"}.
0
6. Fully-discrete WG finite element scheme

In this section, we shall use the Crank-Nicolson scheme on uniform time mesh in time to derive the
fully discrete approximation of the problem (1.1) and (1.2). For a given partition 0 = 7, < t; < --- <
ty = T of the time interval J = [0, T'] for some positive integer M and step length 7 = %, we define

W™ — W 1
0,0)' = — and "2 = E(w’“rl +w"), 0<n<M-1,
T

where the sequence {w”}nM: o C L*(D). For simplicity, we denote &(-,t,) by & for a function

£:10,T] — L*(Q). We now state our fully discrete weak Galerkin finite element approximation. Find
Uy ={U;, U}} € Vy such that

UL o) + ALU™2,6y) = (f*2, ) Yoy € VY, (6.1)

with U = Pyu(0) and f7+2 = 11+ fm).
The following lemma shows that the Crank-Nicolson scheme is unconditionally stable in the
L? norm.

Lemma 6.1. Let f € C(0,T;L*Q)). Then, we have the following stability estimate for the fully-
discrete scheme (6.1):

10l < C(1u®ll + 7 max [1F @), n=0.1.2,.... M. (6.2)

Proof. Choosing v = Ul’f,“/ % in (6.1), and using the Cauchy-Schwarz inequality, we get

1
n+s

1 o
5 (I3 = IUGIR) + Uy I < il g,

Ll L ,
where we have used that A, (Uy >, Uy *) > CIIUNJr2 ||>. Using the fact that a> — b*> = (a — b)(a + b) and
the coercivity of the bilinear form, we have

1
52 (U5 =gl < /)21,

Let 1 < j < M be an integer. We sum the above inequality fromn = 1ton = j:

J
i 1
U1 < ORI+ CT > 12

n=1

< C(ll+ M max 1(t)D.

Recalling that Mt = T, the result follows. The proof is now completed.
m]
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Next, we shall present the convergence analysis. To begin, we prove the error estimate of the
discretization error Pyu(t,) — U},. To this end, we need to derive an error equation involving the error
ey = Uy —Pyu".

We formulate the error equation for €Y, in the following lemma.

Lemma 6.2. For vy = {vo,Vv,} € Vz(\)/’ we have

(@rv0) + Ay T ow) = @vo) + B ), (6.3)
where &" = %(PNMMI — Pyu) — ™2 and E(u,vy) = Eq(u, vy) + Ec(u, vy) + E,(u, vy).
Proof. From (1.1), one obtains the following equation:
O™ — eAu™ + b - VU™ + ey = 141 (6.4)

On each element T € Ty, for vy = {vp, v} € V](\),, we test equation (6.4) against v, to arrive at

1 n 1 n 1
(5 v0) = O™, vo)y, = D (@AW" vo)r

TeTn

+ (b VU )y + (™, vo)y, (6.5)

TeTn
Using a similar argument in deriving (5.8), one can show that
1 1 1 1 1 1
O™ 2, vo)ry + APy 2, vy) = (f"72,v0) + Egu"™ 2, vy) + E.(u"™2,vy) + E(u"2, vy),

where we have used that Sd(PNu’”% ,vy) =0 and SC(PNWH%, vy) = 0 since Pyu is continuous in Q.
Thus, we get

1 i
;(PNMWrl — Py, vo)r, + Au(Pru,vy) = (72, v0) + E(u, vy) + (€",v0) 7 (6.6)

Subtracting (6.1) from (6.6) gives the conclusion. We complete the proof. O

Lemma 6.3. Let u € H*'(Q). Assume that u and U}, are the solutions (1.1), (1.2), and (6.1),
respectively. One has forn =1,2,..., M,

n—1 4 ty
legl> + C7 > lle *12 < ¢(«* f i (5)IPds + (N~ max [y])?”). (6.7)
j=0 0

1
Proof. Choosing vy = e7v+2 in (6.3) and by the coercivity property (3.6), we find

1 1
n+5 n+5

1 +1p2 2 2 n+y +1
E(Ileﬁ I" = llegll™) + Clley *ll; < (£",ey *) + E(u"2, ey ?),

or, equivalently,

1
n+3

112 2
lleg™ 11" = llegll” + 2Clley,

1 1 1
2 < 27(&" ey ) +2TEW™ 2, €y ?)

Electronic Research Archive Volume 32, Issue 8, 5033-5066.



5055

= (Wl + (Wz. (68)

We can express the term &" = (0, Pyu" — 0.u") + (0.u" — 8tu”+%) =: T, + T,. We write

T

ot P 1 Tn+1
T, = —f —(Pyu(-, ) —u(-, s))ds < —f 1Pnus(-, ) — u,(-, $)l ds, (6.9)
Ot TJ,
and

T = () = ) = 3 (wttnsn) + 106,)

1, [ (6.10)
= Z(f (tl’H-l - S)(tn - S)l/tm(S)dS).
n
From (6.9) and (6.10), we obtain
) 1 In+1 2
||§n|| < f |:;|: (tn+1 - s)(tn - S)“[[[(S)ds:| dX
Q Iy
1 In+1 2
+ f ;f 1Pnu (-, 8) — u(-, S)Ids] dx
Q tn
1 I+l Tnal
=1n f [ (tas1 = $)%(ty = $)°ds f uf,,(s)ds]dx
T JalJy tn
1 In+1
t 5 f [ f Py, 8) — (-, s)|2ds]dx
Q t
3 In+1 ) 1 )
< 150 g otz ()|t + ;HPNM, - uf”LM(O,T;LZ(Q))' (6.11)

Hence, with the aid of the Cauchy-Schwarz and the Poincare inequality, ‘W, in (6.8) can be estimated
as follows.

n+i n+l n+3
Wil = 127" e, DI < 2701€%lley * I < 2711Ellley *1ls

7 2 n+iioo
< SlEE + Clley, 2l

C

s [ 2 2 )
< C(t f s (I "ds + [|Pyu, — Mz||Lw(0,T;Lz(Q))) + Clley °ll; (6.12)
trl

1
n+s

In+1
4 2 -1 2p+2 2
< C(Tf i (I7ds + (N7 max [')F*= + Crlley, |z,
In

where we have used the Young’s inequities in the second inequality, and the estimate (6.11) and
Lemma 4.5 in the second estimates of the righthand side. Applying Lemma 5.5 and Young’s
inequality, we obtain the estimate of the term /, in the righthand side of (6.8) as follows:

|
n+s

CQr(N~"max [y'])")lle)y >l
Ct(N~" max [y/'|)*" + CT||enN+%||§. (6.13)

|1

IA

AN
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Combining (6.8)—(6.13) yields

1 n+
lleg™ 112 = llegll> + Crlley, 117

1
<crt f Nt ($)|Pds + CT(N~' max |y/|)**.
ty

Let I < j < M. Using the fact that ¢}, = 0, we sum the above expression fromn = Oton = j— 1
to obtain

A

tj -/_1
lel|l? + Ct ||e”+2 < crt f i (Pds +C Y (N~ max |y/)*
0 Z o tt ;

IA

ci* f j i ($)IPds + (N~ max |y')*?).
0

We complete the proof. O

Theorem 6.1. Let u € H*'(Q). Assume that u and Uy are the solutions (1.1), (1.2), and (6.1),
respectively. One has forn =1,2,..., M,

Im
llex™ 12 < C(* f e ()IPds + C(N™' max |/ )*P).
0
Proof. Choosing v = ¢}, in (6.3) and by coercivity (3.6), we find

10l + A2 0l = (&, 0:el) + EW'™,0relh).
or, equivalently,

27018: 82 + A (el et = A (el ely) = 27(E", Beel) + 2TEWU" 3, B.el)
< 7)€"\ + Tl0-epIP + 2TEU" 2, d:e).

Thus, we have
1
71 + Al ) = Ay, ) < TIETR + 2TEWE, B,el).

Because ¢) = 0, we sum up the above term from n = 0 to n = m — 1 for any fixed m to get

m—1 m—1

Z ZTHS I” + ZZTE ””/2 3TeN). (6.14)

n=0 n=0

From (6.11), we have

m=1 4 i
2 TN < 55 f ()P ds + 1Pwtte = P 712000 (6.15)
n=0
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Observe that

—_

3

3

20E (u'?,8.¢%) = Y TE(=0.u", ") + 2E (W, e
0 ( ) p ( V) 2B (6.16)
=J+ Jh.
Similar to (6.13), one has
m—1 m—1 .
1] < CZT(N-1 max |'])* + CTZ lley 2112 (6.17)
n=0 n=0
It follows from Lemma 5.5, the Cauchy-Schwarz inequality, and Young’s inequality that
7o) < C(N""max [y/])*” + Cllenll2. (6.18)
From (6.16), (6.17), and (6.18) together with TM = T, we have
m—1 m—1 .
" 2E (w12, .el) < CN™ max /) + Ct ) lley* I + Cllehl. (6.19)
n=0 n=0
Combining (6.14), (6.15), and (6.19) yields that
m—1 ) ) i m-1 |
n m - ’ n+5
> t|oeet] + € flen], < e f ()P ds + (N max [/ + C ) lley ).
n= 0 n=0
Finally, using (6.7), we obtain
m=1 ) ) I'm
Z 7||o-e||” + C|lex]|. < c* f Nt ($)IP ds + (N~ max [/ [)*")
n= O
which completes the proof.
O

7. Numerical Experiments

This section presents various numerical examples for the fully-discrete Crank-Nicolson WG finite
element method. We used MATLAB R2020A in our the calculations. We also used the 5-point Gauss-
Legendre quadrature rule for evaluating of all integrals. All the calculations were calculated using
MATLAB R2016a. The systems of linear equations resulting from the discrete problems were solved
by lower-upper (LU) decomposition.

We apply the fully-discrete WG-FEM on the adaptive meshes shown in Table 1. We choose o = p+
1 and calculate the energy-norm ||e} ||z and the L*-norm error llegll, where ey = {e, e} = {u—Ug, u—-U,}
is the error using N intervals in each direction. The order of convergence (OC) is computed by the
formula

log (llenll / [leanll)

0C(2) = log, (lexll / lleznll) ,  OC(S) = Tog(2log N/ 10g(ZN))’
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The numerical errors and the order of convergences in space are also tested. In order for the space
error to dominate the errors, we take T = N2 for N element in each direction. We list the errors in
the energy norm and L?>-norm and the order of convergence in Tables 2 and 3, respectively. These
numerical results show that the order of convergence is of order p and of order p + 1 in the energy and
L? norms, respectively, which support the stated error estimates in Theorem 6.1.

Table 2. The energy-error and the order of convergence in space for Example 7.1 £ = 107,

Shishkin Bakhvalov- Shishkin Bakhvalov-type
N lleylle 0C(S) lleylle 0CQ2) lleylle 0C(2)
16 1256x107" — 6.311 x 1072 - 6.604 x 1072 -
32 8.192x 1072 0.90 3.381 x 1072 0.90 3.466 x 1072 0.93
64 5.102x 1072 0.93 1.774 x 1072 0.93 1.819 x 1072 0.93
P, 128 3.063x 1072 0.95 9.182 x 1073 0.95 9.547 x 1073 0.93
256 1.781x 1072 0.97 4.687 x 1073 0.97 4.873 x 1073 0.97
512 1.008 x 1072 0.99 2.359 x 1073 1.00 2.453 x 1073 0.99
16 2406%x 1072 - 3.344 x 1073 - 3.9238x107° -
32 9.828x 107 1.90 9.603 x 1074 1.80 1.001 x 1073 1.97
64 3.644x 1073 1.94 2,573 x 1074 1.90 2.626 x 107 1.93
P, 128 1.267x1073 1.96 6.705 x 1073 1.94 6.891 x 1073 1.93
256 4.189x107* 1.97 1.687 x 1073 1.99 1.758 x 107° 1.97
512 1.325x 107 2.00 4.246 x 1076 1.99 4.425 x 1076 2.00
16 4.603x107% — 5.866 x 10~ - 6.402 x 10~ -
32 1.180x 107 2.90 8.422x107° 2.80 8.576 x 107> 2.90
64 2.633x107* 294 1.112x 1073 2.92 1.125x 1073 2.93
P; 128 5.299x 107> 2.97 1.419 x 1076 2.97 1.435x 1076 2.97
256 1.001 x 10> 2.98 1.798 x 1077 2.98 1.806 x 1077 2.99
512 1.782x 107 3.00 2.263 x 1078 3.00 2.273 x 1078 3.00

Example 7.1. Letb = (1,1) and T = 1 in the problem (1.1). We choose f and u® such that the exact
solution is

u(x,y, 1) = e 'xy(1 — x)(1 = y)x(0)k(y),

where k(z) = 1 — e"179/%,

In Figure 2, we plot the numerical solutions of the WG-FEM using the P; element on the three
layer-adapted meshes given in Figure 1 for e = 107 and N = 32.
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Table 3. The L? error and the order of convergence in space for Example 7.1 & = 107>,

Shishkin Bakhvalov- Shishkin Bakhvalov-type
N legll 0C2) llegll 0C2) llegll 0C(2)
16 1.045x1072 - 1.021 x 1072 - 1.023 x 1072 -
32 2723x107%  1.94 2.671 x 1073 1.94 2.675x 1073 1.94
64 6.950x10™* 1.97 6.944 x 10~ 1.97 6.946 x 10~ 1.97
P, 128 1.761x10™> 1.98 1.760 x 107 1.98 1.760 x 107 1.98
256 4.433x107° 199  4430x10° 1.99 4432 x 107 1.99
512 1.109x 1077  1.99 1.105 x 1077 1.99 1.108 x 107’ 1.99
16 2297x107* - 2.286 x 107 - 2.297 x 10~ -
32 3.013x107° 293 3.010 x 1073 2.93 3.011 x 1073 2.93
64 3.845x10°° 297 3.832x 107° 2.97 3.844 x 107 2.97
P, 128 4.873x1077 298 4.862 x 1077 2.98 4.868 x 1077 2.98
256 6.133x 107  2.99 6.130 x 1078 2.99 6.132 x 1078 2.99
512 7.666x10™° 3.00  7.662x 107 3.00 7.664x107° 3.00
16 3.783x107° - 3.780 x 1073 - 3.782x 1073 -
32 2481x10° 393 2.479 x 1076 3.93 2.480 x 107 3.93
64 1.616x1077 394 1.613 x 1077 3.94 1.614 x 1077 3.94
P; 128 1.031x10% 3.97 1.028 x 1078 3.97 1.030 x 1078 3.97
256 6.488 x 10719 3.99 6.485 x 1071° 3.99 6.487 x 10710 3.99
512 4.083x 107" 4.00 4.077x 107! 400  4.079x 107! 4.00

We next present the temporal convergence rate for Example 7.1. In order for the temporal error to
dominate the error, we take N = 256 and & = 107>, and use the P5 element. We report the results in the
L?>-norm and the energy norm in Tables 4 and 5, respectively. We see that the order of convergence in
time is of order O(1?), which verifies the theoretical estimate claimed in Theorem 6.1.

Table 4. The L? error and the order of convergence in time for Example 7.1 £ = 107>,

Shishkin Bakhvalov- Shishkin Bakhvalov-type
T lleg | 0C(2) llegll 0C(2) legll 0C(2)
12 7425%x1073 — 7.424 x 1073 - 7425 %x 1073 -
1/4  1.818x107% 2.03 1.816 x 1073 2.03 1.818 x 1073 2.03
1/8  4.545x10™* 1.99 4.545 x 1074 1.99 4.545 x 1074 1.99
1/16 1.136x107* 2.00 1.135x 1074 2.00 1.136 x 107* 2.00
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Table 5. The energy error and the order of convergence in time for Example 7.1 & = 107>,

Shishkin Bakhvalov- Shishkin Bakhvalov-type
T lleylle 0C2) lleylle 0C2) lleylle 0C(2)
12 7425%x1073 — 7.424 x 1073 - 7.425 x 1073 -
1/4  1.856x 107 2.00 1.852 x 1073 2.00 1.855x 1073 2.00
1/8  4.672x107* 1.99 4.668 x 1074 1.99 4.669 x 1074 1.99
1/16 1.168x107* 2.00 1.104 x 1074 2.00 1.106 x 107* 2.00

numerical solution S-type

a @

(a) S-type mesh

numerical solution B-type

© o o
a&) w S
) i

numerical solution BS-type
©
&

oo
u

(c) B-type mesh

Figure 2. Numerical solution of Example 7.1 for &£ = 107> using P;.
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Lastly, we test the robustness of the WG-FEM method with respect to the small parameter & for
Example 7.1. We take N = 256 and use the P, element for the values of ¢ = 107, r = 5,6,...,10.
The results are reported in Table 6. These results show that the WG-FEM is robust with respect to the
perturbation parameter &.

Table 6. The energy-error in space for Example 7.1 for the values of &.

Shishkin Bakhvalov- Shishkin Bakhvalov-type

g lley |l lley |z llex |l

107 1.781 x 1072 4.687 x 1073 4.873 x 1073
1076 1.780 x 1072 4.685 x 1073 4.877 x 1073
1077 1.780 x 1072 4.685x 1073 4.877 x 1073
108 1.780 x 1072 4.685 % 1073 4.877 x 1073
10~ 1.780 x 1072 4.685 x 1073 4.686 x 1073
10-10 1.780 x 1072 4.685 x 1073 4.879 x 1073

The order of convergence via loglog plot in the energy norm and L? norm are plotted in Figures 3
and 4, respectively, for Example 7.2. We observe that the order of convergence of order p and of order
p+ 1 in the energy and L? norms, respectively, which support the stated error estimates in Theorem 6.1
as in Example 7.1. To test the temporal error, we choose N = 256 and € = 1072, and use the P, element.
We present the results in the L?>-norm and the energy norm in Tables 7 and 8, respectively. We see that
the order of convergence in time is of order O(7?) as claimed in Theorem 6.1.

NN ~\ — (N;In N)2
Y — |
10°¢ ‘:\ \ —- :s
\ : =05
102 F \

104 F

105
108 F

100 F

104 ' ' 107 : '
10° 10' 102 10° 10° 10’ 10° 10°

(a) P; element (b) P, element.

Figure 3. The order of convergence in energy norm via loglog plot for Example 7.2 for
& = 107> using P, and P, elements.
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107" ; T 10°

10,5 L 1 10,10 1 1
10° 10' 102 10° 10° 10’ 10? 10°

(a) P, element (b) P, element.

Figure 4. The order of convergence in L?>-norm via loglog plot for Example 7.2 for £ = 107>
using P; and P, elements.

Example 7.2. Letb = (1 +x,2—y), c = (1 + x> +y?), and T = 1 in the problem (1.1). We take f and
u® such that the exact solution is

(32 Cal )
u(x,y, t) — etxy(l —e (3-2x—x )/(26))(1 —e (B—dy+y )/(2‘9))'

Table 7. The L? error and the order of convergence in time for Example 7.2 £ = 107.

Shishkin Bakhvalov- Shishkin Bakhvalov-type
T lleg | 0C(2) llegll 0C(2) llegll 0C(2)
12 7391x107% - 7.390 x 1072 - 7.391 x 1072 -
1/4  3217x107%2 1.20 3.215x 1072 1.20 3.216 x 1072 1.20
1/8 9.901x107 1.70 9.895 x 1073 1.70 9.900 x 1073 1.70
1/16 6.449x 10~ 2.00 6.445 x 10~ 2.00 6.448 x 10~ 2.00

Table 8. The energy error and the order of convergence in time for Example 7.2 & = 107>,

Shishkin Bakhvalov- Shishkin Bakhvalov-type
T lleylle 0C2) lleylle 0C2) lleylle 0C(2)
12 6.521x1072% — 6.518 x 1072 - 6.520 x 1072 -
/4  1.723x107%2 192 1.720 x 1072 1.92 1.722 x 1072 1.92
1/8 4277x107° 201 4.274 x 1073 2.01 4.276 x 1073 2.01
1/16 1.061 x 1073 2.02 1.057 x 1073 2.02 1.060 x 1073 2.02
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We also test the WG-FEM for Example 7.2 for the robustness against €. The results are presented
in Table 9 for N = 256 and the P, element for the values of e = 107", r = 5,6, ..., 10. Again, one sees
that the WG-FEM is the parameter-uniform method.

Table 9. The energy-error in space for Example 7.2 for the values of €.

Shishkin Bakhvalov- Shishkin Bakhvalov-type

e lefylle ez eyl

107° 7.856 x 1074 1.432 x 1074 1.441 x 1074
107° 7.852x 1074 1.430 x 107* 1.440 x 10~
1077 7.852 x 107 1.430 x 1074 1.440 x 10~
1078 7.852 x 107 1.430 x 1074 1.440 x 1074
107° 7.852x 1074 1.430 x 1074 1.440 x 1074
10710 7.843 x 1074 1.439 x 1074 1.440 x 1074

8. Conclusions

In this paper, we present the Crack-Nicolson- WG-FEM applied to the singularly perturbed
parabolic convection-dominated problems in 2D. We use the Crack-Nicolson scheme in time on
uniform mesh and the WG-FEM in space on three layer-adapted meshes:  Shishkin,
Bakhvalov-Shishkin, and Bakhvalov meshes. We prove (almost) uniform error estimates of order p in
the energy norm and second order estimate in time. With the use of a special interpolation operator,
the error analysis of the semi-discrete WG-FEM and the fully discrete WG-FEM have been carried
out. Various numerical examples are conducted to validate the convergence rate of the
proposed method.
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