Research article Special Issues

Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations

  • Received: 07 March 2023 Revised: 08 May 2023 Accepted: 15 May 2023 Published: 25 May 2023
  • MSC : 65D30, 65D32, 65R20

  • This paper is concerned with solving a class of generalized Boussinesq shallow-water wave (GBSWW) equations by the linear barycentric rational collocation method (LBRCM), which are nonlinear partial differential equations (PDEs). By using the method of direct linearization, those nonlinear PDEs are transformed into linear PDEs which can be easily solved, and the corresponding differentiation matrix equations of their discretization linear GBSWW equations are also given by a Kronecker product. Based on the error estimate of a barycentric interpolation, the rates of convergence for numerical solutions of GBSWW equations are obtained. Finally, three examples are presented to show theoretical results.

    Citation: Zongcheng Li, Jin Li. Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations[J]. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921

    Related Papers:

  • This paper is concerned with solving a class of generalized Boussinesq shallow-water wave (GBSWW) equations by the linear barycentric rational collocation method (LBRCM), which are nonlinear partial differential equations (PDEs). By using the method of direct linearization, those nonlinear PDEs are transformed into linear PDEs which can be easily solved, and the corresponding differentiation matrix equations of their discretization linear GBSWW equations are also given by a Kronecker product. Based on the error estimate of a barycentric interpolation, the rates of convergence for numerical solutions of GBSWW equations are obtained. Finally, three examples are presented to show theoretical results.



    加载中


    [1] G. B. Whitham, Linear and Nonlinear Waves, New York: John Wiley and Sons, 1974. https://www.researchgate.net/publication/321197913
    [2] R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511624056
    [3] J. L. Bona, M. Chen, J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part Ⅰ: Derivation and linear theory, J. Nonlin. Sci., 12 (2002), 283–318. https://doi.org/10.1007/s00332-002-0466-4 doi: 10.1007/s00332-002-0466-4
    [4] P. Daripa, W. Hua, A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: Filtering and regularization techniques, Appl. Math. Comput., 101 (1999), 159–207. https://doi.org/10.1016/S0096-3003(98)10070-X doi: 10.1016/S0096-3003(98)10070-X
    [5] P. Daripa, R. K. Dash, A class of model equations for bi-directional propagation of capillary-gravity waves, Int. J. Eng. Sci., 41 (2003), 201–218. https://doi.org/10.1016/S0020-7225(02)00180-5 doi: 10.1016/S0020-7225(02)00180-5
    [6] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, New York: Springer-Verlag, 1990. https://doi.org/10.1007/b97481
    [7] Y. Liu, M. Song, H. Li, Y. Li, W. Hou, Containment problem of finite-field networks with fixed and switching topology, Appl. Math. Comput., 411 (2021), 126519. https://doi.org/10.1016/j.amc.2021.126519 doi: 10.1016/j.amc.2021.126519
    [8] Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353. https://doi.org/10.22436/jnsa.008.04.07 doi: 10.22436/jnsa.008.04.07
    [9] S. Li, Z. Wang, High Precision Meshless barycentric Interpolation Collocation Method-Algorithmic Program and Engineering Application, Beijing: Science Publishing, 2012.
    [10] Z. Wang, S. Li, Barycentric Interpolation Collocation Method for Nonlinear Problems, Beijing: National Defense Industry Press, 2015.
    [11] F. Dell'Accio, F. D. Tommaso, O. Nouisser, N. Siar, Solving Poisson equation with Dirichlet conditions through multinode shepard operators, Comput. Math. Appl., 98 (2021), 254–260. https://doi.org/10.1016/j.camwa.2021.07.021 doi: 10.1016/j.camwa.2021.07.021
    [12] F. Dell'Accio, F. D. Tommaso, G. Ala, E. Francomano, Electric scalar potential estimations for non-invasive brain activity detection through multinode shepard method, MELECON, 2022, 1264–1268. https://doi.org/10.1109/MELECON53508.2022.9842881 doi: 10.1109/MELECON53508.2022.9842881
    [13] R. Baltensperger, J. P. Berrut, The linear rational collocation method, J. Comput. Appl. Math., 134 (2001), 243–258. https://doi.org/10.1016/S0377-0427(00)00552-5 doi: 10.1016/S0377-0427(00)00552-5
    [14] J. P. Berrut, S. A.Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36 (2014), 105–123. https://doi.org/10.1137/120904020 doi: 10.1137/120904020
    [15] J. P. Berrut, G. Klein, Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259 (2014), 95–107. https://doi.org/10.1016/j.cam.2013.03.044 doi: 10.1016/j.cam.2013.03.044
    [16] E. Cirillo, K. Hormann, On the Lebesgue constant of barycentric rational Hermite interpolants at equidistant nodes, J. Comput. Appl. Math., 349 (2019), 292–301. https://doi.org/10.1016/j.cam.2018.06.011 doi: 10.1016/j.cam.2018.06.011
    [17] M. S. Floater, K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
    [18] J. P. Berrut, M. S. Floater, G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants, Appl. Numer. Math., 61 (2011), 989–1000. https://doi.org/10.1016/j.apnum.2011.05.001 doi: 10.1016/j.apnum.2011.05.001
    [19] Z. Wang, Z. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chinese J. Appl. Mech., 35 (2018), 195–201. https://doi.org/1000-4939(2018)03-0631-06
    [20] Z. Wang, L. Zhang, Z. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chinese J. Appl. Mech., 35 (2018), 304–309. https://doi.org/10.11776/cjam.35.02.D002 doi: 10.11776/cjam.35.02.D002
    [21] D. Tian, J. He, The Barycentric artional interpolation collocation method for boundary value problems, Thermal Sci., 22 (2018), 1773–1779. https://doi.org/10.2298/TSCI1804773T doi: 10.2298/TSCI1804773T
    [22] W. Luo, T. Huang, X. Gu, Y. Liu, Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett., 68 (2017), 13–19. https://doi.org/10.1016/j.aml.2016.12.011 doi: 10.1016/j.aml.2016.12.011
    [23] J. Li, Y. Cheng, Numerical solution of Volterra integro-differential equations with linear barycentric rational method, Int. J. Appl. Comput., 2020,137. https://doi.org/10.1007/s40819-020-00888-1 doi: 10.1007/s40819-020-00888-1
    [24] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020), 92. https://doi.org/10.1007/s40314-020-1114-z doi: 10.1007/s40314-020-1114-z
    [25] J. Li, Linear barycentric rational collocation method for solving biharmonic equation, Demons. Math., 55 (2022), 587–603. https://doi.org/10.1515/dema-2022-0151 doi: 10.1515/dema-2022-0151
    [26] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equ., 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
    [27] J. Li, Linear barycentric rational collocation method for solving non-linear partial differential equations, Int. J. Appl. Comput. Math., 8 (2022), 236. https://doi.org/10.1007/s40819-022-01453-8 doi: 10.1007/s40819-022-01453-8
    [28] J. Li, X. Su, J. Qu, Linear barycentric rational collocation method for solving telegraph equation, Math. Meth. Appl. Sci., 44 (2021), 11720–11737. https://doi.org/10.1002/mma.7548 doi: 10.1002/mma.7548
    [29] L. Akinyemi, M. Senol, U. Akpan, H. Rezazadeh, An efficient computational technique for class of generalized Boussinesq shallow-water wave equations, J. Ocean. Eng. Sci., In Press. https://doi.org/10.1016/j.joes.2022.04.023
    [30] K. Jing, N. Kang, A convergent family of bivariate Floater-Hormann rational interpolants, Comput. Methods Funct. Theory, 21 (2021), 271–296. https://doi.org/10.1007/s40315-020-00334-9 doi: 10.1007/s40315-020-00334-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1154) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog